《化工分离工程》课件第4讲分离过程.ppt
化工分离过程PPT课件

D
第37页/共45页
C个组分,采用C-1个塔,分离序数为:
SC
C 1
S j SC j 或:SC
i1 (6 28)
[(2 C 1)]! C!(C 1)!(6
29)
用(6—28)或(6—29)计算结果列入表6—2。
对于特殊精馏: 例萃取精馏:加质量分离剂,且数目多。
第28页/共45页
返回
第29页/共45页
返回
第30页/共45页
返回
第31页/共45页
返回
6.2.4 设置中间冷凝器和中间再沸器的精馏 1. 使操作向可逆精馏方向趋近 2. 采用中等温度的再沸器和冷凝器 图6—13 SRV蒸馏
特点:沿全塔布置的换热元件能大大降低塔 顶、塔釜负荷
提馏段:蒸汽流率自下而上稳定增加 精馏段:液体回流量自上而下稳定增加
出
n j[ xi, j ln( i, j xi, j )] (6 11)
进
二元混合物分离成纯组分:
Wmin,T RT nF [ x A,F ln( A,F x A,F) xB,F ln( B,F xB,F)] (6 12)
例6-1; 例6-2
第7页/共45页
传热速率: Q nk Hk n j H j Wmin,T
第19页/共45页
使净功降低的方法:
降低压差 减少温差 减少浓度与平衡浓度差 1)塔设备
若N越多,使△P↑,不可逆性越大 可使:气速↓,液层高度↓;使△P ↓ 但是:气速↓,生产能力不变时D ↑,投资费↑
液层高度↓,板效率↓ 改进方式:1. 选择合适的塔径、液层高度
2. 改板式塔为高效填料塔
第20页/共45页
第15页/共45页
化工分离过程ppt

自由度数与
相律:f c 2 c 2 2 c
组分数相当
计算类型 泡点温度 泡点压力 露点温度 露点压力
规定量(c个)
P, x1, x2 ,xc1 T , x1, x2 ,xc1 P, y1, y2 ,yc1 T , y1, y2 ,yc1
求解量 T , y1, y2,yc P, y1, y2,yc T , x1, x2 ,xc P, x1, x2 ,xc
2. lnPiS=Ai-Bi/(t+Ci)
3. 常压操作 解法1:用试差法计算
Ki Pi S
c
P ; Ki xi 1 i 1
T(设) ∑Kixi
70℃ 0.379
110℃ 1.344
98℃ 0.951
100℃ 1.00
15
2.2.1 泡点温度和压力的计算
解法2:用αiK计算(不试差,适用于完全理想系)
露点温度是在一定压力下降低温度,当出现第一个液滴 时的温度,露点压力是在一定温度下增加压力,当出现 第一个液滴时的压力。
5
泡点和露点的意义
泡点温度:一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温 度,也就是一定组成的液体在一定压力下与蒸汽达到汽液平衡时的温度。
露点温度:一定组成的汽体,在恒压下冷凝的过程中,出现第一个液滴时的温 度,也就是一定组成的蒸汽在一定压力下与液相达到汽液平衡时的温度。
c
f P Ki xi 1 0 i 1
11
2.2.1 泡点温度和压力的计算
1. 平衡常数与组成无关的泡点温度计算
Ki f (T , P)
泡点方程:
c
f T Ki xi 1 0 i 1
化工分离工程(PPT32页).pptx

•
10、阅读一切 好 书 如 同 和过 去 最 杰 出 的人 谈 话 。 16 : 49 :1 1 16 : 49 : 11 1 6: 4 93 /1 3 /2 0 21 4:49:11 PM
•
11、越是没有 本 领 的 就 越加 自 命 不 凡 。2 1 .3 .1 3 16 : 49 : 11 1 6: 4 9Ma r- 21 1 3- Mar - 21
分离原理 蒸汽压不同 蒸汽压不同 溶解度不同 溶解度不同
过饱和 吸附力不同 湿组分蒸发 溶解度不同
离子的可交换性
2)速率控制分离过程
过程名称 气体扩散
原料 气体
分离剂 压力梯度和膜
产品 气体
热扩散 气体或液体 湿度梯度
气体或液体
分离原理
多孔膜中扩散的速 率差异
热扩散速率差异
电渗析 电泳
反渗透 超过滤由以:D来自lton分压定律 A可B 知BA:pyxAAA+//pxyBBB=p,而pA=yAp,pB=yBp,所
2)液液萃取的选择性系数 已知Ak、A B两yA组/ x分A 在两相kB中的yB分/ x配B 系数为:
则其选择性系数为:
AB
kA kB
yA / yB xA / xB
1.3 过程开发及方法
化工分离工程
Chemical Separation Engneering
课程简介
化工分离工程是化学工程学科的重要组成部分,是化 学工程与工艺专业的一门专业必修课。本课程的任务 是利用相平衡热力学、动力学的微观机理,传热、传 质和动量传递理论来研究化工及其它相关过程中复杂 物质的分离和纯化技术,分析和解决在化工生产、设 计和科研中常用的分离过程的理论和实际问题。
《化工分离工程》PPT课件-第4讲分离过程

y i = K i xi
C
i = 1,2,..., C
C
(2)摩尔分率加和方程: 2个 摩尔分率加和方程:
∑x
i =1
i
= 1 .0
∑y
i =1
i
= 1.0
2C+ 2C+2 C个
(3)汽液平衡常数关联式: 汽液平衡常数关联式:
Ki = f (T , P, x, y)
i = 1,2,...,C
变量数: 变量数:
泡点和露点计算在设计计算中应用
精馏塔各级温度确定
泡点和露点计算在设计计算中应用
精馏塔操作压力的选择
① 塔顶蒸汽的冷凝温度和釜液的 沸腾温度 ② 对组分相对挥发度的影响 ③塔的造价和操作费用 ④对传质效率的影响
计算出发点: 计算出发点:
单级汽液平衡系统, 单级汽液平衡系统,汽液相具有相同的温度T和压力p, 组分的液相组成与汽相组成成平衡关系。 组分的液相组成与汽相组成成平衡关系。 (1)相平衡方程: 相平衡方程: 计 算 方 程: C个
( new )
yi
yi(old ) = (old ) ∑ yi
(3)判断收敛的准则或者是温度的调节方案直接 ) 关系到收敛速度和稳定性。 关系到收敛速度和稳定性。
二、泡点压力的计算
仍然依据的是泡点方程: 仍然依据的是泡点方程:
f ( p ) = ∑ K i xi − 1 = 0
i =1 C
当汽相为理想气体,液相为理想溶液时: 当汽相为理想气体,液相为理想溶液时:
f (T ) = ∑ K i xi − 1 = 0
i =1 C
泡点温度计算
泡点压力计算
一、泡点温度的计算
1. Ki与组成无关: 与组成无关: 泡点方程: 泡点方程: 假定T 假定
化工分离工程教学PPT--04

过程传质分离过程的严格模拟计算主要内容及要求:学习并掌握多组分多级分离过程的平衡级理论模型的建立及求解。
重点:泡点法(BP法)、流率加和法(SR 法)。
第五章传质分离过程的严格模拟计算5.1 平衡级的理论模型5.2 三对角矩阵法5.3 同时校正法5.4 多组分分离非平衡模型3☐多组分精馏过程简捷计算☐多组分吸收过程简捷计算1lg )1lg(---=A A N ϕϕ⏹⏹特殊精馏,多组分吸收,多组分萃取等过程也stream flow rates, stream compositions, and heatprocedures maywhen multicomponent physical properties stage efficiencies are not reasonably严格计算的原则:在给定的条件下,对每块塔板同时进行物料衡算,热量衡算及相平衡和归一化计算。
Aspen Plus,HYSIM,ProII等。
5.1 平衡级的理论模型U j W jF j L j V j L j-1V j+1Q j z i,j ,H F,j ,T F,j ,p F,jy i,j+1,H j+1,T j+1,p j+1x i,j ,h j ,T j ,p jx i,j-1,h j-1,T j-1,p j-1y i,j ,H j ,T j ,p j 第j级平衡级General equilibrium stageASSUME THAT:(1) PHASE EQUILIBRIUM IS ACHIEVED AT EACH STAGE各级上达到相平衡(2) NO CHEMICAL REACTIONS OCCUR无化学反应(3) ENTRAINMENT OF LIQUID DROPS IN VAPOR AND OCCLUSION OF VAPOR BUBBLES IN LIQUID ARE NEGLIGIBLE忽略雾沫夹带假定各级上达到相平衡且无化学反应。
化工分离工程PPT课件

7.1.1 分离用膜和膜分离设备
一、膜种类
二
天然膜 生物膜
、
天然物质改性膜 人工膜 无机膜 金属膜
设 备
非金属膜 有机膜 均质膜
微孔膜
管卷板 式式框
式
非对称性膜
复合膜
离子交换膜
➢ 膜性能:
1.分离透过性
a. 透过通量
单位时间通过单位膜面积的物理量。
b. 分离效率 用截留率表示: (R)
截留率:表示膜对溶质的截留能力,可用
操作中:
阳膜中带负电荷的基团“R SO3 ” 吸引溶液中带正电荷的离子,排斥带负电荷 的离子;
阴膜中带正电荷的基团“R N (CH3 )3 ” 吸引带负电荷的离子,排斥带正电荷的 离子
这种现象称:反粒子迁移
即:与膜所带电荷相反的离子穿过膜的现象 称反粒子迁移。
+++++++++++
1
Na
新型分离技术
第一节 膜分离技术 第二节 吸附分离 第三节 反应精馏
第一节 膜分离技术
➢ 膜的作用:
选择渗透
➢ 适用:
1.热敏性物质 ——可常温操作
2.特殊溶液 ——可用于大分子、无机盐、蛋
白质溶液等
第一节 膜分离技术
7.1.1 7.1.2 7.1.3 7.1.4 7.1.5
分离用膜和膜分离设备 反渗透 超滤与微滤 电渗析 其它膜分离
J — 时间时的渗透通量 kg / m 2 h m — 率减系数(小数)
2. 物化稳定性
强度、耐温、耐压性等
二、分离设备 (1)板框式膜具
↑↑
(2)卷式膜具 由四层组成
化工分离技术 PPT课件

膜是具有选择性分离功能的材料, 利用膜的选择性分离实现料液的 不同组分的分离、纯化、浓缩的 过程称作膜分离。它与传统过滤 的不同在于,膜可以在分子范围 内进行分离,并且这过程是一种 物理过程,不需发生相的变化和 添加助剂。
1.微滤 具体涉及领域主要有:医药工业、 食品工业(明胶、葡萄酒、白酒、果汁、 牛奶等)、高纯水、城市污水、工业废 水、饮用水、生物技术、生物发酵等。 2.超滤 早期的工业超滤应用于废水 和污水处理。三十多年来,随着超滤技工业、生物制剂、 中药制剂、临床医学、印染废水、食品 工业废水处理、资源回收、环境工程等 众多领域。 (提醒)
• 与传统的制备色谱技术相比, SMB 采 用连续操作手段, 易于实现自动化操 作, 制备效率高, 制备量大, 大型模 拟移动床制备仪器每年制备量可达百 万吨级水平, 同时流动相的消耗量少, 因而在石油、精细化工、食品工业、 制药工业(特别是手性药物) 等诸多领 域发挥很大作用, 应用前景广阔。
模拟移动床技术的发展
国内模拟移动床分离技术的发展和应用
• 1.石化行业
• 国内引进的模拟移动床分离装置大部分采用美国 UOP公司的工艺技术及吸附剂。
• 2.糖醇食品行业
• 糖醇行业上, 模拟移动床分离装置可用于果糖与 葡萄糖分离; 木糖与阿拉伯糖分离; 麦芽糖醇与 多糖醇和山梨醇分离; 甘露醇与山梨醇分离; 甘 露糖与葡萄糖分离; 低聚果糖分离; 大豆低聚糖 与一糖二糖分离等。
膜分离技术
• 定义 • 工艺原理 • 技术特点 • 应用领域 • 发展与展望
膜分离技术是指在分子水平上不 同粒径分子的混合物在通过半透 膜时,实现选择性分离的技术
种类可分为:微滤膜(MF)超滤膜 (UF)、纳滤膜(NF)、反渗透膜 (RO)等
《化工分离工程》PPT课件

进料
溶质、盐 溶剂、水
推动力:压力差(1000~10000kPa) 传递机理:优先吸附毛细管流动溶解、扩散模型 膜类型:非对称性膜或复合膜
整理ppt
37
渗析(D):
目的:大分子溶质溶液脱小分子,小分子溶质溶 液脱大分子。
进 料
扩散 液
净化液 接受液
推动力:浓度差
传递机理:筛分、微孔膜内的受阻扩散
透过物:小分子溶质或较小的溶质
萃取:5、6
结晶:10
整理ppt
目的产 物
18
总 结:
● 原料的净化与粗分
● 反应产物的提纯
● 药物的精制和提纯
● 精选金属的提取
● 食品除水、除毒、病毒分离、同 位数分离
● 三废处理
整理ppt
返回 19
1.1.2 分离过程在清洁工艺中的
地位与作用
清洁工艺:生产工艺和防治污染有机的结 合,将污染物减少或消灭在工艺过程中。
挥发度( 蒸汽压) 有较大差
由催化裂化 装置主蒸塔 顶产物中回
出
热量(
别
收乙烷及较
L
ESA)
轻的烃。
萃
取
MSA
或 共
L或V
沸
精
馏
原料
相态 L:
汽、液 或汽液 L 混合物
液体溶剂( MSA)或塔 釜加热(
ESA)
液体共沸剂 (MSA)或 塔釜加热(
ESA)
改变原溶 液的相对 挥发度
整理ppt
以苯酚作溶 剂由沸点相 近的非芳烃 中分离芳烃 ;以醋酸丁 酯作共沸剂 从稀溶液中 分离醋酸。
整理ppt
9
实例3:Fe3+和Ti4+的分离实验(二)
化工分离过程

?求取基准态逸度、液相活度系数和汽相逸度系数。
1. fi 0 L 基准态逸度(Fugacity under standard state)
活度系数等于1的状态。
(1)可凝性组分
xi 1, i 1
i
ˆL f i
xi f i 0 L
fi
OL
fi
L
基准态是与系统具有相同T、P和同一相态的纯i组分。
ˆ V py f i i
K
s C 2 s pC
ˆ L ps x f i i i
yi 9117 .0 2 2.647 xi p 3444 .2
与实际体系相差较大
(2)
逸度系数的表达式:
bi b ˆ ln Φi lnZ m 1 vt b vt 2 aai RTvt
yA xA 1 y A 1 xA
y A xA
=
pA* xA + pB* (1-xA) pA* xA pB* + xA (pA* - pB*)
气相线在液相线下面
(2) T-x-y 图(恒P)
(3) x-y 图
2. 相平衡常数 K 对组分 i 的相平衡常数Ki,有
yi Ki xi
(2)p-x-y 图 这是 p-x 图的一种,把液相组成 x 和气相组成 y 画在 同一张图上。A和B的气相组成 yA 和 yB 的求法如下:
pA yA p
y A p* A xA * y B p B xB
pB yB p
* 若 p* A pB
pA yA = p =
pA* xA
yA xA y B xB
2. 吸收 AB
xA xB (其中A为吸收质,B 为惰性组分) y A yB
《化工分离工程》课件

分离过程优化
参数优化
新技术应用
通过调整工艺参数,如温度、压力、 流量等,优化分离过程,提高分离效 率和产品质量。
关注并引入先进的分离技术,如膜分 离、超临界流体萃取等,提高分离过 程的效率和降低能耗。
设备改进
针对现有设备的不足,提出改进措施 ,如改进塔内件、优化换热器等,提 高设备的分离性能和生产能力。
分离设备选型
根据分离流程的需要,选 择适合的分离设备,如蒸 馏塔、萃取塔、过滤器等 。
工艺流程设计
根据原料和产品的性质, 设计合理的工艺流程,确 保分离过程的效率和稳定 性。
能耗和效率分析
能耗分析
分析分离过程中的能耗来源,如热能 、电能等,并提出节能措施。
效率分析
评估分离过程的效率,包括分离效率 和生产效率,并提出提高效率的措施 。
02
蒸馏可以分为简单蒸馏、平衡蒸 馏和连续蒸馏等多种方式,适用 于从石油、天然气、煤等原料中 提取轻质烃、芳烃等。
萃取
萃取是利用不同物质在两种不混溶液体中的溶解度差异,将目标物质从一种溶剂 转移到另一种溶剂中。
萃取广泛应用于化工、制药、食品等领域,如从植物中提取天然色素、从海水中 提取铀等。
吸附
天然气工业
天然气的净化与分离,如天然 气脱硫、脱水等。
食品工业
食品的加工与分离,如果汁的 浓缩与提纯、乳制品的加工与 分离等。
石油工业
石油的分离与提纯,如石油裂 化、液化气分离等。
制药工业
药物的提取与分离,如中药的 提取、化学药物的合成与分离 等。
环保领域
废气、废水的处理与资源化利 用,如烟气脱硫脱硝、污水处 理等。
05
化工分离工程的实际应用案例
石油工业中的分离技术
《化工分离技术》课件

其他工业领域的应用
除了上述领域外,分离技术还 广泛应用于食品工业、化学工
业、电子工业等领域。
在食品工业中,分离技术用于 食品的加工、提取和纯化等环 节,如提取咖啡因、茶多酚等
。
在化学工业中,分离技术用于 化学品的生产、分离和纯化等 环节,如合成高分子材料、精 细化学品等。
根据膜的性质和结构的不同,膜分离可以分为微滤、超滤、纳滤、 反渗透等。
膜分离技术的应用
膜分离技术在饮用水处理、工业废水处理、物料浓缩等领域广泛应用 。
其他分离技术
• 其他常见的分离技术包括色谱分离、电泳分离、泡沫分离 等。这些技术各有特点和应用范围,可根据具体需求选择 使用。
03
分离过程与设备
蒸馏过程与设备
制药行业
分离技术用于药物的提取 、纯化和分离,如结晶、 过滤等。
食品工业
分离技术用于食品的加工 和分离,如果汁的过滤和 脱色等。
02
分离原理与技术
蒸馏技术
蒸馏技术原理
蒸馏是一种基于物质沸点差异的分离 技术,通过加热使液体混合物沸腾, 然后将蒸汽冷凝成液体,从而实现组 分的分离。
蒸馏技术分类
蒸馏技术的应用
根据操作方式的不同,萃取可以 分为单级萃取、多级萃取、逆流
萃取等。
萃取技术的应用
萃取技术在化工、制药、环保等 领域广泛应用,可用于分离液体
混合物和固体混合物。
吸附分离技术
吸附分离技术原理
吸附是,使目标组分被吸附 在吸附剂表面,从而实现组分的分离。
蒸馏定义
蒸馏是一种利用混合物中各组分挥发度不同而实现分离的单元操 作。
《分离工程第四章》PPT课件

水接触,非极性基团在内,形成一个非极性的核心、在 此核心可以溶解非极性物质。假设将外表活性剂溶于非 极性的有机溶剂中,并使其浓度超过临界胶束浓度 (CMC),便会在有机溶剂内形成聚集体,这种聚集体称 为反胶束,其构造示意见图b。在反胶束中,外表活性 剂的非极性基团在外与非极性的有机溶剂接触,而极性 基团那么排列在内形成一个极性核(po1ar core)。此极 性核具有溶解极性物质的能力,极性核溶解水后,就形 成了“水池〞(water pool)。当含有此种反胶束的有机 溶剂与蛋白质的水溶液接触后,蛋白质及其他亲水物质 能够通过螯合作用进入此“水池〞。由于周围水层和极 性基团的保护,保持了蛋白质的天然构型,不会造成失 活。蛋白质的溶解过程和溶解后的情况示意于图中。
因为许多实验数据均间接地证明了水壳模型的正确性。 例如:(1)反胶团内酶的构造和活性与W0值密切相关, 说明酶对其周围存在的水层非常敏感;(2)反胶团内酶 反响动力学行为与在正常的水相中相似,活性与pH的 关系同样表现为钟状曲线。
a
b
c
d
反胶团的溶解作用
10.2 反胶束萃取蛋白质的根本原理
10.2.1 三元相图及萃取蛋白质
在反胶束萃取蛋白质的研究中,用得最多的是阴离子外表活性 剂AOT(AerosolOT),其化学名为丁二酸-2-乙基己基磺酸钠, 构造式见图
这种外表活性剂容易获得,其特点是具有双链,极性 基团较小、形成反胶束时不需加助外表活性剂,并且 所形成的反胶束较大,半径为170nm,有利于大分子 蛋白质进入。常使用的阳离子外表活性剂名称和构造 如下: (1)CTAB(cetyl-methyl-ammonium bromide)溴 化十六烷基三甲胺/十六烷基三甲基胺溴
10.2.3 反胶束萃取蛋白质的动力学 萃取过程中,蛋白质在互不相溶的两相间的传递可分为 三步:蛋白质从水溶液主体扩散到界面;在界面形成包 容蛋白质的反胶束;含有蛋白质的反胶束在有机相中扩 散离开界面。反萃取过程那么相反,含有蛋白质的反胶 束从有机相主体扩散到界面;包容蛋白质的反胶束在界 面崩裂;蛋白质从界面扩散到水溶液主体。蛋白质进入 或离开反胶束相的传递通量可用下式计算:
《化工分离工程》PPT课件

减轻浓差极化的有效途径: 提高传质系数
方法:增加料液流速;增加湍流速度;提高 温度;清洗膜面。
整理ppt
20
反渗透过程通量与下列 △P —△ )↑
但能耗大。应选择适当的 △P (2)操作温度:T
T ↑,使纯水的透过系数A ↑,J ↑ 但受膜耐温所限。
(3)料液流速 流速大,传质系数大。 但溶质的渗透通量JA大。
整理ppt
21
(4)料液的浓缩程度
浓缩程度高,水回收率高。 但:① 有效压差小; ② 污染膜。
(5)膜材料与结构
(主要研究方向)
整理ppt
22
四、反渗透过程工艺流程与计算 1. 一级一段连续式
盐水
淡化水流
膜
整理ppt
10
(3)管式膜具
透过液
中心分布管
料液
浓缩液
纤维束管
整理ppt
11
7.1.2 反渗透
透过:溶剂 截留:水中无机离子、胶体物质、大分子溶液 应用: 海水、苦咸水淡化; 废水处理; 锅炉用水软化; 乳品、果汁浓缩; 生产产品、生物制剂的分离、浓缩。
整理ppt
12
一、基本原理 盐水溶液:
M1 — 料液侧表面膜中 M2 — 渗透液侧表面膜中 DMA — 膜中A的有效扩散系数
x — 摩尔分率 A — 溶质
—膜厚度
整理ppt
18
三、浓差极化
xMAi xAi
xMA2
xA1
xA2 xAixA1
传质方向
溶质在膜表 面附近积累
这种现象为浓差极化
整理ppt
19
浓差极化对过程的不利影响:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泡点和露点计算在设计计算中应用
精馏塔操作压力的选择
① 塔顶蒸汽的冷凝温度和釜液的 沸腾温度
② 对组分相对挥发度的影响 ③塔的造价和操作费用 ④对传质效率的影响
计算出发点:
单级汽液平衡系统,汽液相具有相同的温度T和压力p,
组分的液相组成与汽相组成成平衡关系。
计 算 方 程:
(1)相平衡方程: C个
泡点压力计算
C
f T Ki xi 1 0 i 1
一、泡点温度的计算
1. Ki与组成无关:
Ki f (T , P)
泡点方程: 假定T 已知P
C
f T Ki xi 1 0 i 1
得到Ki
Kixi
f(T)=|Kixi-1 |<
调整T
no
yes
T,yi
(1)温度T初值的选定
取纯物质的沸点作为温度的迭代初值。
yi Ki xi i 1,2,..., C
(2)摩尔分率加和方程: 2个
C
xi 1.0
i 1
C
yi 1.0
i 1
(3)汽液平衡常数关联式: C个
2C+2
Ki f (T , P, x, y) i 1,2,..., C
变量数:
方程总数:
设计变量:
3C+2个 (yi , xi , Ki , T , P)
因此有:
Ki
pis p
ln
pis
ai
bi ci T
ln
Ki
Ai
bi ci T
牛顿迭代法
对函数 f(x)=0 其求根的迭代公式为:
xk 1 xk
f (xk ) f ' (xk )
如果
ln
Ki
Ai
bi ci T
f (T )
f (t)
xi p
exp( ai
bi ci
t
)
1
f '(T0 )
泡点和露点的意义
泡点温度: 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力 下与蒸气达到汽液平衡时的温度 。
露点温度: 一定组成的汽体,在恒压下冷凝的过程中,出现第一个液滴时的温度,也就是一定组成的汽体在一定压力 下与液相达到汽液平衡时的温度 。
泡点和露点计算在设计计算中应用 精馏塔各级温度确定
(2) Ki值的获得
1)p-T-K图(烃类物系) 2)简化表达式: K i Pis / P 3)经验关系式
(3)温度T的调整
Ki xi 1 T设高了,降低T。
Ki xi 1 T设低了,提高T。
T的调整幅度可采用牛顿-拉普森法:
T (k1)
T (k)
f T k f T k
f T Ki xi 1
2C+2个
2C+2个 唯一解
已知变量数: C个(c-1个组成,温度(压力)
计算复杂程度取决于Ki。
2.2.1 泡点温度和压力的计算
规定液相组成 x 和压力p(或温度T), 计算汽相组成 y 和温度T(或压力p)。
已知: x 、p 计算: y 、T
泡点温度计算
已知: x 、T 计算: y 、p
泡点方程:
已知: x 、p 计算: y 、T
2. Ki与组成有关: 泡点温度计算
已知: x 、T 计算: y 、p
泡点方程:
泡点压力计算
C
f T Ki xi 1 0 i 1
Ki f T , P, x, y
由状态方程法或活度系数法求取Ki :
Ki
ˆiL ˆiV
Ki
yi xi
i
Pi s
s i
ˆiV P
ij
Ki Ki
Ki ij K j
yi Ki xi ij K j xi
yi ij K j xi 1
yi
yi ij K j xi ij xi
yi
ij K j xi
ij xi
用相对挥发度计算等压泡点
yi Ki xi 1
ij xi
Ki Kj
xi
1 KJ
利用相对挥发
平衡常数与组成无关的等压泡点温度的计算
对这类问题的计算,工程上经常利用P—T—K图查出 平衡常数,由于温度是未知的,所以,计算过程需要
试差。一般可以按如下的步骤进行:
设T 由P—T—K图查K
c
Ki xi 1
Ni1
Y
Yi
用迭代法计算等压泡点
对与汽相满足理想气体,液相满足理想溶液的体系,
其平衡常数可以表示为: 根据安托尼公式:
expVmL,i
p pis RT
活度法计算平衡常数公式
圆整yi,计算iV
Y
Y
yin 1
yin
yin1 yin1
几点说明:
(1)内、外循环的安排:
当压力不大时(2MPa以下), Ki对yi不敏感,而对温 度较为敏感,因此将yi放在内层循环。
(2)圆整yi:
yinew
yiold yiold
分离过程
第2章 单级平衡过程
?
多组分物系的泡点和露点计算
泡点和露点计算是分离过程设计中最基本的汽 液平衡计算,泡点温度为在压力一定的条件下 升高温度,当出现第一个气泡时的温度,泡点 压力系指在一定温度下,降低压力,当出现第 一个气泡时的压力。露点温度是在一定压力下 降低温度出现第一个液滴是的温度,露点压力 是在一定温度下增加压力出现第一个液滴时的 压力。
T0 T
牛顿迭代法
牛顿迭代法
f ' (t)
(
xi p
exp( ai
bi ci
t
)( (t
bi ci )2
))
f ' (t)
(Ki xi
(t
bi ci )2
)
பைடு நூலகம்
tk 1 tk
f (t) f ' (t)
tk
Ki xi 1
Ki xi
(tk
bi ci )2
用相对挥发度计算等压泡点
(3)判断收敛的准则或者是温度的调节方案直接 关系到收敛速度和稳定性。
二、泡点压力的计算
仍然依据的是泡点方程:
C
f p Ki xi 1 0 i 1
当汽相为理想气体,液相为理想溶液时:
c
pb
p
s i
xi
i 1
当汽相为理想气体,液相为非理想溶液时:
c
pb i pis xi i 1
当Ki=f(T,p,x,y)时,用活度系数法(压力不太高)或 状态方程法(压力较高)计算泡点压力。
度计算出相平衡常 数,利用相平衡常 数计算饱和蒸汽压, 利用饱和蒸汽压与 温度的关系求出温 度
K j
1
ij xi
Kj
p
s j
p
平衡常数与组成有关等压泡点计算
在此之前我们分别研究过利用状态方程和活度系数计 算相平衡常数的问题。不同的相平衡常数的计算方法会 导致不同求解方法, 对于非理想性很强的体系,由其相平衡常数的计算公式 可知:在已知压力和液相组成时,计算相平衡常数的其 他各项等均为温度的函数,而对泡点的计算,温度又恰 恰是未知数,此外,汽相组分的逸度系数还是汽相组成 的函数,因此在计算过程中需要试差方法求解,由于问 题复杂,手算难以完成,需要计算机计算
exp
viL
(
P RT
Pi
s
)
活 度 系 数 法 计 算 调整T 泡 点 温 度 的 框 图
开始
输入p,x及有关参数 设T并令iV=1,作第一次迭代
计算pis、ViL、is、i
计算Ki和yi 计算yi
是否第一次迭代
N
yi有无变化
N N
Ln yi
Y
输出T,y
结束
已知条件
Ki
piisVpis