大学物理下-- 稳恒磁场

合集下载

大学物理Ⅱ第10章 稳恒磁场

大学物理Ⅱ第10章 稳恒磁场

r
B
17
2.运动电荷的磁场
q
B
0 4
q r0
r2
r
P B
六、毕奥-萨伐尔定律的应用
r
P
B
1. 载流直导线的磁场
求距离载流直导线为a处 一点P 的磁感应强度 B

dB
0
4
Idl sin r2
B
dB
0
4
Idl sin r2
I
Idl
a
r
B
P
根据几何关系
r a csc
l acot acot
萨法尔定律 二、 两定理:磁高斯定理和安培环路定理
三、 两种力:安培力(做功)、洛仑兹力(不做功)
四、 磁介质:磁介质中的环路定理
§10.1 电流 电动势
一、电流、电流密度
大量电荷的定向运动形成电流。 方向规定:正电荷运动方向
1.电流强度: I dq
dt
2.电流密度:
描述导体内各点的电流分布情况
a
da边: F1 I da B
F1 Bl1I sin
bc边: F1/ Ibc B
F2
F1/ Bl1I sin( )
b
F1 d
F2/
pm
c
F1/
ab边: cd边:
F2 I ab B F2/ I cd B
F2 Bl2I F2/ Bl2I
41
•线圈在均匀磁场受合力 F F1 F1/ F2 F2/ 0
B
13
I I
直电流磁感线
圆电流磁感线
I
螺线管 磁感线
(1)磁感应线都是环绕电流的闭合曲线,磁场是 涡旋场。
(2) 任意两条磁感应线在空间不相交。 (3)磁感应线方向与电流方向遵守右螺旋法则。

大学物理,稳恒磁场10-4安培环路定理概述.

大学物理,稳恒磁场10-4安培环路定理概述.

0I B
2πR
R
oR r
12
10.4 安培环路定理
第10章 稳恒磁场
例:求无限长载流圆柱面的磁场分布。
L1
r
IR
L2 r
0I B
2π R
oR r

解 0 r R, B d l 0 l r R, l B d l 0I
B0 B 0I
2π r 13

LB dl μ0 I

B d l
L

μ0 ( I1
I1
I1
I2)


μ(0 I1

I

2
I1
I2 I3
I1
L
I1
思考:

1) B 是否与回路 L 外的电流有关?


2)若 B d l 0 ,是否回路 L 上各处 B 0 ? L
是否回路 L 内无电流穿过?
2πR
当 2R d 时,
螺绕环内可视为均匀场。
令:n N
2R
B μ0nI
第10章 稳恒磁场
d
R
10
10.4 安培环路定理
第10章 稳恒磁场
例:无限长载流圆柱体的磁场。
I
解:1)对称性分析
2)选取回路

r R :
Bdl
l

μ0 I
RR
L
r
B
2 π rB 0I,
B μ0 I 2πr
电流共同产生的。
3)环路定理适用于闭合稳恒电流的磁场。而有限电 流(如一段不闭合的载流导线)不适用环路定理。
4)安培环路定理说明磁场性质 —— 磁场是非保守场,是涡旋场。

大学物理 稳恒磁场的基本性质

大学物理  稳恒磁场的基本性质

7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
四 安培环路定理的应用举例
例1 求长直密绕螺线管内磁场
解 1 ) 对称性分析螺旋管内为均匀场 , 方向沿
轴向, 外部磁感强度趋于零 ,即 B 0 .
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
2 ) 选回路 L .
磁场 B 的方向与
电流 I 成右螺旋.
s
B dS B dS
S
S
-Br 2
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例 如图载流长直导线的电流为 I ,
形面积的磁通量.
解 先求
试求通过矩 B ,对变磁场
B
给B出dΦ后0I 积分求BΦ// S
I
l
2π x dΦ BdS
0I
ldx

M
NB
++++++++++++
P
LO

B dl B dl B dl BPM
B MN 0nMNI B 0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场 为零.
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2)选取回路
RR

rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l

0
π π

《大学物理》稳恒磁场

《大学物理》稳恒磁场
42
第四节 安培环路定理
Bdl L
0 (I1 I2 )
(0 I1
I

2
I1
I2 I3
I1
L
I1
问(1)B 是否与回路 L 外电流有关?
(2)若
LB d l 0 ,是否回路 L 上各处
B
0

是否回路 L 内无电流穿过?
43
第四节 安培环路定理
安培环路定理的应用
例题 无限长载流圆柱体的磁场
33
第三节 磁通量 磁场的高斯定理
例题 如图载流长直导线的电流为 I, 试求通过矩形面积的磁通量.
B
I
l
d1 d2
o
x

B 0I
2π x
dΦm
BdS
0I
2πx
ldx
Φm
B dS 0Il
S

d2 dx x d1
Φm
0 Il

ln
d2 d1
34
第三节 磁通量 磁场的高斯定理 磁场的高斯定理
d
I
B1
r1
dl1
B2 dl2
r2
l
B1
0I ,
2 π r1
B2
0 I
2 π r2
B1
dl1
B2
dl2
0 I

d
B1 dl1 B2 dl2 0
l B d l 0
40
第四节 安培环路定理
多电流情况
I1
I2
I3
l
B B1 B2 B3
Bdl
l
0(I2 I3)
推广:
➢ 安培环路定理
第13章

大学物理 稳恒磁场

大学物理 稳恒磁场

第十一章稳恒磁场磁场由运动电荷产生。

磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。

磁极不可分与磁单极。

一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。

二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。

注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。

§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。

二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。

若正电荷沿此方向运动,其所受磁力为零。

(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。

即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。

若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。

磁感强度B 的单位:特斯拉(T)。

§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。

一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。

大学物理稳恒磁场 ppt课件

大学物理稳恒磁场  ppt课件
2
NI R
B2

0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2

0 NI
2R
[1
(R2
R3

x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2

0 NI
2R
[1 pp(t课R件2
R3

x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B

0nI
2
cos2
ppt课件
cos1
27
讨论
B

0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB

dB
Idl

P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系

磁场叠加原理: B dB

oIdl rˆ
ppt课L件
L 4r 2
dB

μ0 4π

大学物理稳恒磁场

大学物理稳恒磁场

B2
0
r
r2 R2
I
rR
I
0I rR p r
B20R I2r rR
rp
B 0I rR 2r
B
无限长圆柱导体电流外面的磁场与电流
都集中在轴上的直线电流的磁场相同
.
R
r
无限长通电柱面
B2r 0 rR
0I rR p r I
B0 rR
rp
B 0I rR 2r
B
思考:有人说:“环路不环绕
电流时,环路上磁场必处处为
o
( D ) 20I R
B
( E ) 20I 8R
.
[A]
5.如图所示,电流由长直导线 1 经 a 点流 入电阻均匀分布的正方形线框,再由 b 点 流出,经长直导线 2 返回电源(导线 1、2 的延长线均通过 o 点)。设载流导线 1、2 和正方形线框在框中心o 点产生的磁感应 强度分别用 B1、B2、B3 表示,则 o 点的感 应强度大小
单位长度的电流)到处均匀。大小为 j
解:视为无限多平行
长直电流的场。 B
p
分析场点p的对称性
B
因为电流平面是无限大,故与电流平面等距离的 各点B的大小相等。在该平面两侧的磁场方向相反。
.
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有
L B d lB 2 lojl
(A )BR2B r. (B)BRBr. (C )2BRB r. (D )BR4Br.
.
[B]
4.两半径为R的相同导体细圆环,互相垂直放 置,且两接触点A、B连线为环的直径,现有 电流1沿AB连线方向由A端流入,再由 B端流 出,则环中心处的磁感应强度大小为:

大学物理稳恒磁场课件

大学物理稳恒磁场课件

流,也可引起空间电 荷从S面流入和流出时,则S面内
荷分布的变化
的电荷相应发生变化。
由电荷守恒定律,单位时间内由S 流出的净电量应等 于S 内电量的减少
电流连续性方程 恒定(稳恒)电流条件
SdS
dq内 dt
d q内 0 dt
SdS0
大学物理
5.欧姆定律的微分形式
dU—小柱体两端的电压 dI —小柱体中的电流强度
dq dt
方向:正电荷运动的方向 单位:安培(A)
大学物理
几种典型的电流分布
粗细均匀的 金属导体
粗细不均匀的 金属导线
半球形接地电极 附近的电流
电阻法勘探矿藏 时的电流
同轴电缆中的 漏电流
大学物理
电流强度对电流的描述比较粗糙: 如对横截面不等的导体,I 不能反映不同截面处 及同一截面不同位置处电流流动的情况。
静电场的电力线发自正电荷止于负电荷,
有头有尾,不闭合。
磁场的高斯定理 SBdS0
在恒定电流的磁场中,磁感应强
度 B 矢量沿任一闭合路径 L的线积
分(即环路积分),等于什么?
Bdl ?
L
大学物理
1. 长直电流的磁场
1.1 环路包围电流
B
在垂直于导线的平面内任作的环 路上取一点P,到电流的距离为r,
B0nI
若在长螺线管的端口处
B 0nI
2
本次课作业:
大学物理
1. 预习§14.5, §14.6 2. 思考题14.5-14.7 3. 习题14.5,14.7,14.8,14.9,14.10,14.11 作业提交日期: 10月12日
§3 安培环路定理
大学物理
静电场:
高斯定理: sD dSq

大学物理第四章稳恒磁场

大学物理第四章稳恒磁场



3
2
方向沿X轴正向 有一定限度
2 N IR 讨论: (1)如计有N匝线圈,则 0 Bp 2( R 2 x 2 )3 / 2
(2)x=0时(在圆心处), 若为半圆,则如何? (3)x>>R 例:
B
0 I
2R
B
0 IR 2
2x
3
2
R
BO B1 B2 B3
0 Idl r dB 4 r 2
I
dl 如图,直导线中带电粒子数密度为 n,每个粒子带电为 q,以 速度V沿电流方向运动,导线的截面积为 S,那么,单位时间 内流过截面的电量为qnVS,即
0 qnVS dl r 0 qnSdl V r 0 qdN V r dB 2 2 2 4 r 4 r 4 r

L
Idy sin r2
(1)
统一积分变量
a a r sin sin
B L
0 dB 4

L
Idy sin r2 x
dB
y actg actg
ad dy sin 2
P
将以上各式代入(1)式,得:
I B 0 4 讨论:
1
a
O
I
r


dy
2
y
y

2
1
I sind 0 I cos 1 cos 2 a 4a
(1)方向:垂直纸面向外(由右手螺旋法则来定) (2)L>>a时,
0 I 1 0 , 2 时B 2a 0 I (3)半无限长 1 , 2 0时B 2 4a

大学物理第六章稳恒磁场重点内容

大学物理第六章稳恒磁场重点内容

第六章稳恒磁场
1、主要的概念:电流强度,磁感应强度,电流元,磁感应线,磁通量,磁化和磁介质。

2、主要的了解定律:磁场叠加原理,毕奥—萨伐尔定律(推导一些特殊载流导线和运动电荷的B),磁场中的高斯定律,安培环路定律。

(了解定理的导出以及其重要的物理意义)
3、主要计算:利用毕奥—萨伐尔定律、安培环路定理计算一些特殊载流导线产生的磁感应强度;安培力和洛伦兹力的计算;磁介质中的磁化,以及应用介质中的安培环路定理计算磁场强度矢量(H)和磁感应强度(B)。

4、重点内容:毕奥—萨伐尔定律、安培环路定理、磁场力、力矩;磁介质的磁化、介质中的安培环路定理。

2.磁场方程: 磁场高斯定理:
(表明磁场是无源场)
(表明磁场是有旋场)
掌握推导过程
*通过霍尔电压可以求得磁场和电流大小。

6. 均匀磁化的B 、H 、M 关系及表面磁化电流密度与磁化强度的关系

(M H B 0 +=μ H M m χ= m r 1χμ+=
B 代表 H 代表 M 代表

——m r 0χμμ 4.载流线圈的磁矩 3.电磁相互作用 B
l Id f d ⨯=2)磁场对载流导线的安培力
⎰⨯=l
B
l Id f 3)磁场对载流线圈的作用力矩 B
m M
⨯=4)5.霍耳电压
1)安培定律。

大学物理 第九章 稳衡磁场 老师课件

大学物理  第九章  稳衡磁场   老师课件

Φm = BS cosθ = BS⊥
Φm = B ⋅ S
dΦm = B ⋅ d S Φm = ∫ B ⋅ d S
S
s⊥
θ
s
v B
θ v B
v dS
v en
v B
v θ B
单位:韦伯 单位 韦伯 1WB=1Tm2
s
3.磁场的高斯定理 磁场的高斯定理
v B
S
v dS1 v θ1 B 1
dΦm1 = B1 ⋅ d S1 > 0
y
v v
o
v F =0
+
v v
x
实验发现带电粒子在 磁场中沿某一特定直线方 向运动时不受力, 向运动时不受力,此直线 方向与电荷无关. 方向与电荷无关.
z
当带电粒子在磁场中垂直于此特定直线运动时 受力最大. 受力最大 带电粒子在磁场中沿其他方向运动时 F垂直 与特定直线所组成的平面. 于v 与特定直线所组成的平面
l
多电流情况
I1
I2
I3
B = B + B2 + B3 1
l
∫ B ⋅ d l = µ (I
0 l
2
− I3 )
以上结果对任意形状的闭合电流( 以上结果对任意形状的闭合电流(伸向无限远 的电流)均成立. 的电流)均成立.
安培环路定理
B ⋅ dl = µ0 ∑Ii ∫
l i =1
N
真空的稳恒磁场中, 真空的稳恒磁场中,磁感应强度 B 沿任一闭合 路径的积分的值,等于µ0乘以该闭合路径所包围 路径的积分的值, 的各电流的代数和. 的各电流的代数和 注意:电流I正负 正负的规定 注意:电流 正负的规定 :I与l成右螺旋时,I 与 成 螺旋时, 之为负 为正;反之为负.

大学物理稳恒磁场

大学物理稳恒磁场

要点二
详细描述
当电流通过导体时,导体中的自由电子在磁场中受到洛伦 兹力的作用,产生电子漂移现象,使导体受到与电流和磁 场方向垂直的作用力。电荷产生洛伦兹力,影响电荷的运动轨迹。
详细描述
当带电粒子在磁场中运动时,受到洛伦兹力的作用,使 粒子的运动轨迹发生偏转,偏转方向与粒子的带电性质 和运动方向有关。
磁场的散度和旋度
总结词
磁场的散度和旋度是描述磁场分布的重要物理量,散 度表示磁场线穿入的净通量,而旋度表示磁场线的环 绕程度。
详细描述
磁场的散度描述了磁场线穿入的净通量,如果一个点 的磁场散度为正,表示该点附近的磁场线有穿入的趋 势,即磁场线从外部指向该点;如果散度为负,则表 示磁场线有穿出的趋势,即磁场线从该点指向外部。 而磁场的旋度则描述了磁场线的环绕程度,它与磁感 应强度的方向和变化率有关。了解磁场的散度和旋度 对于理解磁场的基本性质和解决相关问题非常重要。
磁感应强度和磁通量
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉(T)。
磁通量
表示磁场中穿过某一面积的磁力线数 量,单位是韦伯(Wb)。
磁场中的介质
磁介质
能够影响磁场分布的物质,根据磁化性质可分为顺磁质、抗磁质和铁磁质。
磁化强度
描述介质被磁化程度的物理量,与介质内部微观粒子磁矩有关。
02
CATALOGUE
互感和变压器原理
总结词
互感现象是两个线圈之间磁场耦合的现 象,变压器则是利用互感现象实现电压 变换的电气设备。
VS
详细描述
当两个线圈靠得很近时,一个线圈中的电 流会在另一个线圈中产生感应电动势,这 种现象称为互感现象。变压器是利用互感 现象实现电压变换的电气设备,它由一个 初级线圈和一个次级线圈组成,当初级线 圈中有交流电通过时,次级线圈中会产生 感应电动势,从而实现电压的升高或降低 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具体方法:
设线圈中通以电流 I
计算电流在空间的磁场B
求出通过线圈回路的磁通量
由定义式求出 L 和 M
3、磁场能量 载流自感线圈的磁场能量
1 2 W LI 2 2 1 1B 1 2 磁场能量密度 wm BH H 2 2 2
磁场的能量
1 Wm wm dV BH dV V 2
I4
电流元在磁场中受力: df Idl B 一段载流导线受力: f m Idl B L 线圈所受的磁力矩: M mB 磁力的功:A Id I ( 2 1 ) 1 洛伦兹力:f L qv B IB 霍耳效应:U H RH b
I
p
a
N
(3)半径为R的半圆形载流 线圈,通以电流I,在均匀磁场 B 中,若 以 oo 为轴,线圈受到的磁力矩为多少?
o
I
o
B
1 2 M m B,m IR n 2 M mB sin (

2
)
1 IR 2 B 2 方向:沿oo轴向上
第十、十一章
稳恒磁场习题课
一 基本要求
1. 掌握毕奥—萨伐尔定律, 并会用该定律计算载流导 体的磁场
2. 掌握用安培环路定理计算磁场强度的 条件和方法 3. 掌握安培定律和洛仑兹力公式,会计 算简单形状截流导体的磁力 4. 了解磁介质中的安培环路定理,了解 磁场强度的概念
二.基本内容
1、磁感应强度 B
2( R x ) I 0 圆形截流导线圆心处的磁场 B 2R
2
2 32
载流长直螺旋管轴线上的磁场 B 0 nI
无限长的载流圆柱体 内 B 0 Ir 2
2R

0 I B 2r
i 0 无限大的均匀带电的平板 B 2
4、运动电荷的磁场(注意电荷的正负)
0 qv r0 B 4 r 2
r oR
R2
1
解:应用磁介质中的安培 环路定理求解 取图示半径为 的圆形 闭合回路,在圆周上 的大小分别为常 数, 方向沿圆周切线方向,则
r
R2
o R1
rr
oR
1 1
R2
和 的分布图
电磁感应 复习课
一、基本要求
1、掌握电磁感应定律和 楞次定律及其应用。 2、理解自感和互感现象,并会计算简 单线圈的 L 和 M。 3、理解磁场能量的计算 4、了解位移电流概念和麦克斯韦方程 的积分形式
二、基本内容 1、感应电动势的计算 电磁感应定律
说明
d N d 或i i dt dt
(1)这是计算感应电动势的普遍适用公式, 但必须在闭合回路情况下计算 (2)公式中“ ”号表示电动势的方向, 是楞次定律的数学表示,它表明 i 总是与 磁通量的变化率的符号相反
(3)电动势方向可采用电磁感 应定律中负号规定法则来确定,也可以 由楞次定律直接确定
o B b x
a
x C
A,B导线处于相同的 磁场 B中,则
方向:垂直导线,与 直导线相吸
I1
A
I2
Idl
dF
BC导线(处于 不均匀磁场中),则
o B b x
a
x C
方向:垂直于CB
AC导线处于不均匀磁场中
由dF Idl B得
方向:图示
dx 因为 dl o cos 45
2.图示一通以电流 I1的无 限长直导线一侧放置一通 有电流 I 2的等腰直角三角 形线圈,且与直导线共面,已知一直角 边与导线平行,相距为b,直角边长为a, 求线圈中各导线受力 A 解:用安培定律 分别计算各导线 受力, dF Idl B
I1
I2
Idl
dF
B方向:
S
l
麦 克 斯 韦 电 磁 场
方 程 的 积 分 形 式

V
dV q
S
E dl
D l H dl S ( d t ) ds
B ds 0
S
B ds t
6、电磁波的特性
x H H 0 cos (t ) H 0 cos(t kx) u 2π x E E0 cos (t ) E0 cos(t kx) k u
5. 描述稳恒磁场的两条基 本定律 (1)磁场的高斯定理
s
磁场是无源场(涡旋场) B d s 0
(2)安培环路定理 n
L i 1
L
I1
B d l I 0 i
I2
I3
用安培环路定理计算磁场的条件和方法 I i 正负的确定:规定回路环形方向,由 右手螺旋法则定出
bc
bc 2a
v B dl
所以,线框的感应电动势为
i bc ad 4a B sin t
2
方向:顺时针
讨论:直接由电磁感应定律
d d i BS cos t dt dt 2 BS sin t 4a B sin t
b
d
ad
f
c
n
B
o

bc
B
3 2a B sindl 0 4 n 2 2 3a B sin 3a B sin t a 方向: b c o b ad 导线 B 2a 1 d ad 2a B sindl o c 0 4 2 a B sin t 方向 d a
注意体积元 dV 的选取
4、位移电流的定义:
D d D I d d ds ds S S t dt
通过电场中某截面的电流等于通过该截 面的电位移通量对时间的变化率
5、反映电磁场基本性质和规律的麦克 斯韦方程组的积分形式
D ds
2
第二部分 电流在磁场中所受的作用
四 计算
1 计算下面各点的有关物理量 (1)载流导线在o点的磁感强度 1 0 I
B0 B直线 B圆弧 B 0 2 2R 方向:
I
R o
I
(2)P,Q点的磁感强度 0 I Bp 0,方向: 4a BQ B1 B2 0 I B1 B2 (cos 1 cos 2 ) 4a Q a 0 I 2 (1 ) a 4a 2 0 I 2 BQ (1 ),方向: 2a 2
.
5)电磁波的能流密度(坡印廷)矢量
四、计算 一根细导线弯曲成直径为 2R 的半圆形AC,均匀磁场 B 垂直 于半圆平面。当导线绕 A点在半圆平面内 逆时针 转动时,求 AC间的感应电动势大 小 用动生电动势表达式计算 解:
i Ek dl v B dl AC 在半圆上取一线元 dl 该线元速度
I1
A
I2
dl dF
Idl
o B b x
a
x C
方向: AC
4、+q以速度 沿x轴运动,求使+q不偏 转需加多大的 E
f m qv B qvBi j qvBk
v
fm fe
qvB qE
方向沿-Z方向
5 有一长为 ,电荷线密度 为 的带电线段 ,绕垂 直轴 在水平面内匀角速 转动,如图,设 点距轴为 ,角速度 求带电线段在 点产生的磁感强度和磁矩
C

B
APC AC 0 1 2 APC AC B ( 2 R)
2
A
p
2、边长为 2a 的正方形导体线 框,在均匀磁场 B 中,线框绕 eb 3ea ,求线 轴oo以 转动, o 框的感应电动势 a e 解:用动生电动势表示式计算
可知: ab 和cd导线的动生电 动势为零(为什么) (设 t 0,时 0 ) 而 bc 导线上的感应电动势
C

dl

2
v AP 2 R sin 2
B
A

d
v
p vB
v B 2 RB sin 2 方向沿 AP 延长线 v B dl


2 RB sin dl cos 2 2 2R B 2 R d sin cos
解:分析 运动电荷(电 流)激发磁场的计算
(1)取图示坐标 在线段上取一电荷 元
其相应的电流
圆形电流在 点的磁场
(2)圆电流
的磁矩
5.长直圆柱形铜导线半径为 , 外面这一 层相对磁导率为 的圆桶形磁介质外半径 为 ,设导线内有均匀分布电流 通过, 铜的相对磁导率 ,求导线和磁介质 内外的磁场强度 和磁感应强度的分布
M max B m
第一部分 稳恒磁场
方向:试验线圈平衡后,其磁矩的方向 2、磁矩:
m I S n
3.毕奥—萨伐尔定律
矢 r 处的磁感应强度 Id l 0 Idl r0 dB r0 r 2 4 r 方向的确定:Idl r0 由磁场叠加原理得稳恒截流导体的磁场 0 Idl r0 B dB 2 4 r
a 、 首先选定回路的饶行方向 , 规定回路
绕行方向与回路所围面积的正法向满足右 手螺旋关系
b、根据感应电动势的正负来确定方向
若是正,则与饶行方向一致 若是负,则与饶行方向相反
dI 自感电动势 L L dt dI 互感电动势 M M dt 2、自感和互感的计算 L L I 或 L dI dt 21 12 M I1 I2 21 12 或 M dI1 dI 2 dt dt
可见,通常情况下,在磁场中运动的 闭合导线回路时,用电磁感应定律较为方 便!
相关文档
最新文档