详解4种立体显示技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解4种立体显示技术
要使一幅画面产生立体感,至少要满足三个方面的条件:
一、画面有透视效果
透视效果是观看三维世界时的基本规律,是画面产生立体感的基本要求。如果画一个立方体却不遵照立方体的透视规律来画,那么画出来的作品就一定不会产生立方体所应有的立体感,不过即使是这样的作品还是有透视效果的,只不过是别的东西的透视效果。那么什么是没有透视效果呢?一个正方形就没有透视效果,如果画面中只有一个孤零零的正方形的话就绝对不会有立体感。
二、画面有正确的明暗虚实变化
真实世界中根据光源的亮度、颜色、位置和数量的不同,物体会有相应的亮部、暗部、投影和光泽等,同时近处的物体在色彩的饱和度、亮度、对比度等方面都相对较高,远处的则较低。如果画面中没有这些效果或是违反这些规律,都不会产生好的立体感。
三、双眼的空间定位效果
人眼在观看物体时,两只眼睛分别从两个角度来观看,看到的两幅画面自然有细微的差别,大脑将两幅画面混合成一幅完整的画面,并根据它们的差别线索感知被视物的距离。这就是双眼的空间定位,是人眼感知距离的最主要的手段。如果重放画面的时候不能再现这种空间定位的感觉,那么即使前两点做很不错也总觉得欠缺点什么。
以上三点只有同时满足才能产生比较完美的立体效果,普通显示器可以实现前两点却无法实现第三点,而所谓的立体显示技术也就是能够再现空间定位感的显示技术。
关于为什么普通显示器无法再现空间定位感,可以藉由观察视差角的不同来理解。视差角就是双眼和一点的两条连线之间的角度,距离近则视差角大、距离远则视差角小,物体的表面有无数个点,那么就有无数个视差角,我们只需找其中有代表性的几个作分析。
如图显示,人眼在看真实的圆柱体和看屏幕上显示的圆柱体时,视差角有明显的不同,看屏幕时的视差角实际上和看平板玻璃时是一样的,因此不管屏幕上显示的内容如何变化,立体感始终是一个平面,这也是普通显示器无法实现立体显示的原因。既然如此,首先想到的解决办法自然就是把显示器做成圆柱体形状,这样当然可以完美的显示圆柱体,不过这样的显示器不管显示什么内容时都会机械的制造出中间近、两边远的效果。
世界上倒也的确有类似的技术,比如有一种国家专利的“立体眼镜”,它就是通过光学手段把输送给两眼的画面作处理,把给其中一只眼的画面扭曲成平行四边形。这样就相当于把画面下部的视差角增大了,产生了近的感觉,画面的上部则感觉比较远。虽然是十分单纯的欺骗眼睛的手段,对于大部分画面来说这种效果倒也不错。但是,它并不能算是立体显示技术。
那么为了完美显示每一种物体,显示电风扇时就得用电风扇形的显示器,显示飞机又要用飞机形状的显示器,如果要显示宇宙该用什么形状的显示器呢?显然,这样就走入了一条死胡同,因此必须找到其它的方法。我们继续思考的话可以想到,视差角之所以存在都是因为我们有两只眼睛,那么我们可以从这一点着手。
设法分别向两眼输送两个拍摄角度略有不同的画面,给左眼的画面只让左眼看到,给右眼的只让右眼看到,那么如同前面提到的立体眼镜,调节两幅画面之间的细微差距就相当于调节视差角。
既然可以人为的控制视差角,我们就可以在显示圆柱体时调节视差角产生圆柱体的立体感,显示电风扇、飞机时产生电风扇和飞机的立体感,显示宇宙时产生宇宙中每个星球的立体感等等。按照这个方法不就可以实现完美的立体显示了吗?事实上,当今主流的4种立体显示技术都是基于这个原理的。
立体显示技术的种类非常多,大部分还在实验室中,目前投入应用比较多的是分色、分光、分时和光栅4种技术。
根据上面的介绍,实现基于双眼视觉的立体显示需要经过两大步骤,首先,要准备好两套分别供左眼和右眼观看的画面。目前,这种画面的来源有三种途径:
一、双机拍摄。拍摄电影或图片时将两台照像机或摄像机并排放置,两机间的角度和距离都模拟人的双眼。
二、从3D场景中提取。由于3D场景本来就被设计用来可供任何角度观看,所以从中提取两套画面自然不难,提取的两套画面相互间的角度要模拟人的双眼。
三、用软件智能模拟。这是利用计算机根据原始画面重新生成两套画面,可用于将现有的普通视频和图片转换为立体显示的片源,但效果略差。
在第一步中,三种获取途径是通用的,但实际的产品中通产只采用某一种方式。
片源准备好以后,第二个步骤就是将它们输送给双眼,并且要点是给左眼观看的画面只能让左眼看到。在输送时其实并不需要刻意的调节两套画面的差距,只要能将上述途径获得的片源按要求输送给双眼,那么人眼就会自动产生与画面对应的立体感了。为了实现这一步,各种立体显示技术采用了不同的方式,4种技术的区别也就在于此。
4种主流立体显示技术的原理及实现方法
下面就介绍4种技术如何将片源输送给双眼,其中前三种,分色、分光、分时技术的流程很相似,都是需要经过两次过滤,第一次是在显示器端,第二次是在眼睛端:分色:分色技术的基本原理是让某些颜色的光只进入左眼,另一部分只进入右眼。我们眼睛中的感光细胞共有4种,其中数量最多的是感觉亮度的细胞,另外三种用于感知颜色,分别可以感知红、绿、蓝三种波长的光,感知其它颜色是根据这三种颜色推理出来的,因此红、绿、蓝被称为光的三原色。要注意这和美术上讲的红、黄、蓝三原色是不同的,后者是颜料的调和,而前者是光的调和。
显示器就是通过组合这三元色来显示上亿种颜色的,计算机内的图像资料也大多是用三原色的方式储存的。分色技术在第一次过滤时要把左眼画面中的蓝色、绿色去除,右眼画面
中的红色去除,再将处理过的这两套画面叠合起来,但不完全重叠,左眼画面要稍微偏左边一些,这样就完成了第一次过滤。第二次过滤是观众带上专用的滤色眼镜,眼镜的左边镜片为红色,右边的镜片是蓝色或绿色,由于右眼画面同时保留了蓝色和绿色的信息,因此右边的镜片不管是蓝色还是绿色都是一样的。
注意,也有一些眼镜是右边为红色,这样第一次过滤时也要对调过来,购买产品时一般都会附赠配套的滤色眼镜,因此标准不统一也不用在意。以红、绿眼镜为例,红、绿两色互补,红色镜片会削弱画面中的绿色,绿色镜片削弱画面中的红色,这样就确保了两套画面只被相应的眼睛看到。其实准确的说是红、青两色互补,青介于绿和蓝之间,因此戴红、蓝眼镜也是一样的道理。目前,分色技术的第一次滤色已经开始用计算机来完成了,按上述方法滤色后的片源可直接制作成DVD等音像制品,在任何彩色显示器上都可以播放。
分光:常见的光源都会随机发出自然光和偏振光,分光技术是用偏光滤镜或偏光片滤除特定角度偏振光以外的所有光,让0度的偏振光只进入右眼,90度的偏振光只进入左眼(也可用45度和135度的偏振光搭配)。两种偏振光分别搭载着两套画面,观众须带上专用的偏光眼镜,眼镜的两片镜片由偏光滤镜或偏光片制成,分别可以让0度和90度的偏振光通过,这样就完成了第二次过滤。目前,分光技术的应用还主要停留在投影机上,早期必须使用双投影机加偏振光滤镜的方案,现在已经可以用单投影机来实现,不过都必须配合不破坏偏振光的金属投影幕才能使用。
分时:分时技术是将两套画面在不同的时间播放,显示器在第一次刷新时播放左眼画面,同时用专用的眼镜遮住观看者的右眼,下一次刷新时播放右眼画面,并遮住观看者的左眼。按照上述方法将两套画面以极快的速度切换,在人眼视觉暂留特性的作用下就合成了连续的画面。目前,用于遮住左右眼的眼镜用的都是液晶板,因此也被称为液晶快门眼镜,早期曾用过机械眼镜。
光栅:光栅技术和前三种差别较大,它是将屏幕划分成一条条垂直方向上的栅条,栅条交错显示左眼和右眼的画面,如1、3、5…显示左眼画面,2、4、6…显示右眼画面。然后