红外光谱与拉曼光谱
红外光谱(IR)和拉曼光谱(Raman)
![红外光谱(IR)和拉曼光谱(Raman)](https://img.taocdn.com/s3/m/6fba4ccc08a1284ac850437d.png)
3.3红外分光光度计
按分光器将红外分光光度计分为四代: 以人工晶体棱镜作为色散元件的第一代; 以光栅作为分光元件的第二代; 以干涉仪为分光器的傅里叶变换红外光度计是第3代;
用可调激光光源的第4代仪器。
3.3.1双光束红外分光光度计的工作原理:
3.3.2 红外分光光度计的主要部件:
(1)光源: 光源的作用是产生高强度、连续的红外光。 (a)硅碳棒。由硅碳砂加压成型并经锻烧做成。工作温 度1300~1500℃,工作寿命1000小时。硅碳棒不需要预热, 寿命也较长。价格便宜。
波长或波数可以按下式互换:
_
( cm-1)=1/λ(cm)=104/λ(μm)
在2.5μm处,对应的波数值为: _ = 104/2.5 (cm-1)=4000cm-1
一般扫描范围在4000~400cm-1。 波长在2.5~25μm,叫中红外区。 波长0·75~2·5μm叫近红外区。 波长在25~100μm叫远红外区。
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
近来,已采用可调激光器作为光源来代替单色器,研制 成功了激光红外分光光度计,即第四代红外分光光度计, 它具有更高的分辨率和更广的应用范围,但目前还未普及。
υ as
面内变 形振动
δ 面内
面外变 形振动 δ 面外
面内摇摆 ρ
剪式振动
δs
面外摇摆 ω 扭曲振动 τ
跃迁时能级变化的大小为:as > s > δ。
能级变化大的出峰在高频区,即波数值大;能级变化小 的出峰在低频区,即波数值小。
第五章红外光谱和拉曼光谱1
![第五章红外光谱和拉曼光谱1](https://img.taocdn.com/s3/m/142c385cf68a6529647d27284b73f242326c317f.png)
OH
CO
指纹区
3650~3100 cm-1 1700 cm-1
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个
分子的特征。可用于鉴定两个化合物是否同一化合物。
影响特征吸收峰的结构因素
➢化学键的强度
化学键越强, 力常数 k 越大,红外吸收频率υ越 大。
CC
CC
CC
伸缩 2150cm-1 1650cm-1 1200cm-
收各种波长不同的光,形成复杂的红外光谱。
其中某些振动模式不伴随偶极变化,根据选律 没有红外光谱,而分子的对称性又致使相同频率的 振动吸收重叠(简并),所以在复杂分子的红外光谱 中,基频的吸收数目又总小于简正振动形式个数。
理论上每个自由度在IR中可产生1个吸收峰,实际上 IR光谱中的峰数少于基本振动自由度,原因是:
产生红外光谱的原因
分子的化学键发生(弯曲或者伸缩)振动的能量 在8~50KJ/mol,正好处在红外光波的能量范围内。 常用红外光谱仪的波长为2500nm~15000nm。
产生红外光谱的特征性
两种不同分子的红外光谱不可能是一样的。 因此红外光谱可以象人们的指纹一样作为化 合物的分子指纹。
➢红外光谱图
➢理解分子的振动形式。
伸缩振动反对对称称伸伸缩缩
多原子分子的振动 弯曲振动面面外内弯弯曲曲
➢ 掌握红外吸收峰数与振动自由度的关系。 线性分子的振动自由度为35 非线性分子的振动自由度为36
➢ 简并、红外非活性振动、泛频峰、等基本概念。
相关计算
对于波长为0.9纳米的光子计算其波数,频率及能量,
λ=0.9nm=9×10-10m=9×10-8cm
偶而在红外光谱中也出现下列现象:
红外线与拉曼光谱
![红外线与拉曼光谱](https://img.taocdn.com/s3/m/e2c1ddb70342a8956bec0975f46527d3250ca66a.png)
波数, cm-1 = 104 /( , µm )
2
红外光谱与拉曼光谱的区别:信号产生的方式不同
红外光谱为吸收光谱,拉曼光谱为散射光谱(一般信号很弱) 二者在研究分子结构上具有互补性
3
红外光谱法的特点
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有 共轭体系的有机化合物
红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没 有偶极矩变化的振动在拉曼光谱中出现)
除单原子和同核分子如Ne、He、O2、H2等外,几乎所有的 有机化合物在红外光谱区均有吸收;
除光学异构体,某些高分子量的高聚物以及在分子量上只有 微小差异的化合物外,凡是具有结构不同的两个化合物,其红外 光谱一定不相同
25
红外吸收峰的强度
e >100 L cm-1 mol-1 20 < e <100 10< e <20 1< e <10
非常强峰(vs) 强峰(s) 中强峰(m) 弱峰(w)
影响因素 振动能级的跃迁概率,跃迁时的偶极矩变化大小;而
偶极矩与分子结构的对称性有关
基频吸收峰:基态向第一激发态跃迁,概率大,峰较强 倍频吸收峰:基态向第二激发态跃迁,概率小,峰较弱
例如1: C-C、 CC、 CC三种碳碳键的质量相同, 键力常数的顺序是三键>双键>单键。因此在红外光谱中, CC的吸收峰出现在 2222 cm-1,而CC约在1667 cm-1 , C-C 在 1429 cm-1;
例如2: C-C、C-O、C-N键的力常数相近,但相对折合质量不 同: C-C < C-N < C-O,这三种键的基频振动峰分别出现在1430 cm-1 、1330 cm-1 、1280 cm-1附近
第七章红外与拉曼光谱
![第七章红外与拉曼光谱](https://img.taocdn.com/s3/m/aca29b8eb9d528ea81c779f6.png)
5. 跨环效应 ( transannular effect, T )
通过空间发生的电子效应。
6. 氢键:使伸缩频率降低
分子内氢键:对峰位的影响大 不受浓度影响
分子间氢键:受浓度影响较大
浓度稀释,吸收峰位发生变化
由于C—D峰吸收频率的明显改变, 可用于有机物的红外分析.
例:
H ph C H S i Me 3 n -Bu Li 溶剂 Li ph H C S i Me 3 产物
~1775 cm-1 1750~1740 cm-1
1710 cm-1
1710 cm-1
例: 预测酮类化合物的吸收峰:
六环, 1710 cm-1
O
五环, 1740 cm-1
O
③酮、酯、酰胺的区分: 酮羰基: ~1710 cm-1 酯羰基: 1735—1710 cm-1 酰胺羰基: 1710—1680 cm-1
现在强的基频的大约2倍处,一般都是弱吸收带。
合频带(combination tone): 出现在2个或多个基频 频率之和或之差附近。也是弱吸收带。
倍频带与合频带统称为泛频带。
振动偶合(vibrational coupling)
费米共振(Fermi resonance)
影响振动频率的因素
外部因素
n ROH R O H H O R O H R
缔合后的羟基, 吸收频率: 3400~3200 cm-1.
ii) 分子内氢键:
氢键越强, 频率越低; 峰的强度正比于浓度.
例:
O H O H C C
(C H3)2
3200—2500 cm-1 (吸收峰很宽)
(C H3)2
② 含N—H键的化合物:
3500—3300 cm-1
红外光谱和拉曼光谱的原理
![红外光谱和拉曼光谱的原理](https://img.taocdn.com/s3/m/0baa75851b37f111f18583d049649b6649d70953.png)
红外光谱和拉曼光谱是常用的分析技术,可以用于研究物质的结构、组成和性质。
它们基于不同的原理,下面简要介绍一下它们的工作原理:
1.红外光谱(Infrared Spectroscopy):
红外光谱利用物质与红外辐射(波长范围通常为2.5-25微米)的相互作用来研究物质的分子结构和化学键的振动状态。
其原理基于分子吸收红外辐射时,物质中的原子核和化学键会被激发,产生特定的振动和转动。
当物质受到红外光源照射后,通过测量样品对不同波长红外光的吸收程度,可以得到红外光谱图。
红外光谱图上的峰值位置和强度提供了关于物质中的化学键种类、官能团和分子结构的信息。
2.拉曼光谱(Raman Spectroscopy):
拉曼光谱则利用物质与激光光源相互作用时,散射光中的微小频率偏移来分析物质的结构和振动信息。
当样品受到激光照射时,其中的分子会发生拉曼散射现象,即散射光中的部分光子与物质相互作用后发生能量的频移。
这种频移对应着分子的振动和转动模式。
通过测量样品散射出来的光的频率变化,可以获取拉曼光谱图。
拉曼光谱图上的峰值位置和强度提供了关于物质所含化学键、官能团和结构的信息。
3.总结:
红外光谱和拉曼光谱都是通过物质与不同光源的相互作用来研究其结构和性质。
红外光谱利用物质对红外辐射的吸收来分析物质的化学键振动,而拉曼光谱则是通过测量散射光的频率变化来分析物质的振动信息。
两种技术在分析样品成分、鉴定物质、研究反应机理等方面都有广泛的应用。
红外光谱IR和拉曼光谱Raman课件
![红外光谱IR和拉曼光谱Raman课件](https://img.taocdn.com/s3/m/4f4f1a2224c52cc58bd63186bceb19e8b8f6ec2f.png)
优缺点分析
IR光谱
优点是检测的分子类型广泛,可用于多种类型的化学分析;缺点是需要样品是固态或液态,且某些基团可能无法 检测。
Raman光谱
优点是无需样品制备,对气态、液态和固态样品都适用;缺点是检测灵敏度相对较低,可能需要更长的采集时间 和更强的光源。
选择与应用指南
选择
根据样品的类型和所需的化学信息,选择合适的分析方法。对于需要检测分子振动信息 的样品,IR光谱更为合适;而对于需要快速、非破坏性检测的样品,Raman光谱更为
领域的研究和应用。
04
CATALOGUE
红外光谱(IR)与拉曼光谱( Raman)比较相似性与差异性Fra bibliotek相似性
两种光谱技术都利用光的散射效应来 检测物质分子结构和振动模式。
差异性
IR光谱主要检测分子中的伸缩振动, 而Raman光谱则主要检测分子的弯曲 振动。此外,IR光谱通常需要样品是 固态或液态,而Raman光谱对气态和 液态样品也适用。
拉曼散射是由于物质的分子振动或转动引起的,散射光的频率与入射光的频率不同 ,产生拉曼位移。
拉曼散射的强度与入射光的波长、物质的浓度和温度等因素有关。
拉曼活性与光谱强度
拉曼活性是指物质在拉曼散射中的表 现程度,与物质的分子结构和对称性 有关。
在拉曼光谱实验中,可以通过控制入 射光的波长和强度,以及选择适当的 实验条件来提高拉曼光谱的强度和分 辨率。
红外光谱解析
特征峰解析
根据红外光谱的特征峰位置和强 度,推断出分子中存在的特定振
动模式。
官能团鉴定
通过比较已知的红外光谱数据,可 以鉴定分子中的官能团或化学键。
结构推断
结合其他谱图数据(如核磁共振、 质谱等),可以推断分子的可能结 构。
物理学中的红外光谱和拉曼光谱
![物理学中的红外光谱和拉曼光谱](https://img.taocdn.com/s3/m/85ef9acaf605cc1755270722192e453610665b22.png)
物理学中的红外光谱和拉曼光谱红外光谱和拉曼光谱是物理学中常见的两种光谱分析技术。
红外光谱(Infrared Spectroscopy)是通过测量吸收红外光的能力来分析物质的分子结构和化学键的情况;而拉曼光谱(Raman Spectroscopy)则是通过测量分子和晶格结构对入射光的散射来分析物质的分子结构和化学键的状态。
这两种光谱分析技术已成为当今科学技术领域中不可或缺的重要工具。
红外光谱常用于分析物质的分子结构,还可分析分子中的化学键。
分子中的原子可通过它们的质量、电荷和其环境对红外光的散射和吸收,发生振动和旋转。
每个分子都有自己的特定振动模式,包括结构和运动序列。
当红外光照射样品时,这些振动模式会形成一个可识别和特异的吸收图谱。
吸收的图谱可分为不同的区域,每个区域可对应特定的化学键或分子结构。
通过识别样品中各区域的特征吸收带,研究人员可以分析样品中存在的分子结构和化学键种类,从而了解样品的组成和特性。
与红外光谱相比,拉曼光谱具有更高的分辨率和更广的适用范围。
拉曼光谱中的散射光谱是通过入射光与样品分子或物质中发生的振动和旋转的相互作用而产生的。
这种光谱分析方法具有非破坏性、快速和高灵敏度等优点。
由于在红外光谱中存在的低频振动模式在拉曼光谱中也很活跃,因此该技术与红外光谱相比较而言,可提供更准确和更灵敏地分析可得到更高的分辨率。
目前,世界上许多领先的科学研究机构和实验室都应用拉曼光谱技术来研究从天体物质到分子生物学等研究值得注意的范围,以展现其在此领域中不可或缺的作用。
虽然红外光谱和拉曼光谱技术在科学、医学和工程领域中都有着广泛的应用,但这些技术也存在一些仍需注意、继续深究的领域。
例如,在生物医学领域中,研究人员正在探索利用红外光谱和拉曼光谱技术来识别癌细胞、病毒和菌株。
这些应用还需要更多的研究、开发和改进,才能更好地用于检测、治疗和预防世界各地所面临的健康问题。
综而言之,红外光谱和拉曼光谱技术在物理学中的应用非常广泛,并成为现代科学研究中不可或缺的重要工具。
分子拉曼和红外
![分子拉曼和红外](https://img.taocdn.com/s3/m/e9a8b491370cba1aa8114431b90d6c85ed3a884f.png)
分子拉曼和红外都是分子光谱技术,用于研究分子的振动和转动状态。
分子拉曼光谱是通过测量分子对激光的散射来获取分子的振动和转动信息。
当激光照射到分子上时,分子会吸收部分光能并发生振动和转动,这些振动和转动会导致分子的极化率发生变化,从而改变分子对激光的散射。
通过测量散射光的频率和强度,可以得到分子的振动和转动信息。
红外光谱是通过测量分子对红外光的吸收来获取分子的振动和转动信息。
当红外光照射到分子上时,分子会吸收部分光能并发生振动和转动,这些振动和转动会导致分子的偶极矩发生变化,从而改变分子对红外光的吸收。
通过测量吸收光的频率和强度,可以得到分子的振动和转动信息。
分子拉曼和红外技术都可以用于分子结构的鉴定、化学反应的研究、材料的表征等领域。
它们的主要区别在于拉曼光谱是通过测量散射光的频率和强度来获取分子的振动和转动信息,而红外光谱是通过测量吸收光的频率和强度来获取分子的振动和转动信息。
此外,拉曼光谱对非极性分子的检测更敏感,而红外光谱对极性分子的检测更敏感。
拉曼光谱和红外光谱
![拉曼光谱和红外光谱](https://img.taocdn.com/s3/m/3ca2f6ea09a1284ac850ad02de80d4d8d15a01f3.png)
拉曼光谱和红外光谱拉曼光谱和红外光谱是光谱学的两个重要分支。
拉曼光谱是一种分子光谱学,它能够通过对振动分子的分析来测量它们的结构特征。
红外光谱是一种从热释放模式中获取分子结构信息的技术,它可以用来研究分子的结构特性,以及分子之间的相互作用。
拉曼光谱和红外光谱的主要原理都是利用分子的振动模式来获取分子的结构特征。
拉曼光谱的基本原理是,当分子振动时,它们会发出不同频率的能量,从而产生特定的光谱特征。
红外光谱的原理是,当分子热力学升温或热损耗时,它们会发出不同频率的红外能量,从而产生特定的红外光谱特征。
拉曼光谱和红外光谱在分子结构表征和分析中都有着重要的作用。
拉曼光谱可以用来获取分子的精细结构信息,不仅可以测定分子的化学结构,而且还可以测定其中的振动模式,用来描述分子的构型。
红外光谱可以用来获取分子的粗略结构信息,可以用来确定分子的结构特征,并给出分子的相互作用方式,从而为分子的设计和研究提供重要的参考。
拉曼光谱和红外光谱的应用的领域有很多,比如材料科学中的结构表征和分析、生物学中的细胞标志物、医学中的癌症检测、化学反应动力学和能量转化等,以及环境污染检测等等。
拉曼光谱和红外光谱均可用来研究多种不同的物质,包括气体和液体,甚至于有机物、无机物和络合物等。
拉曼光谱和红外光谱技术是一种非常重要的分子表征和分析技术,它在材料科学、生物学、化学、环境学和医学等领域有着广泛的应用。
它们的结构表征和分析技术特别重要,可以深入地研究物质的性质,为分子设计和研究奠定基础。
综上所述,拉曼光谱和红外光谱是光谱学的重要分支,它们可以用来获取分子结构特征,在材料科学、生物学、化学、环境学和医学等领域有着广泛的应用。
拉曼光谱和红外光谱分析和表征技术有助于深入研究物质的性质,为分子工程提供重要的参考。
红外和拉曼光谱课件PPT
![红外和拉曼光谱课件PPT](https://img.taocdn.com/s3/m/20cd754d78563c1ec5da50e2524de518964bd3ef.png)
拉曼光谱与分子结构的关系
拉曼光谱的谱线
拉曼光谱的谱线反映了物质分子的振动和转动能级的变化, 不同物质分子的拉曼光谱具有独特的特征谱线。
分子振动和转动能级
拉曼光谱实验操作流程
实验操作流程
01
02
03
04
1. 打开拉曼光谱仪,预热并 稳定仪器。
2. 将激光器调整到合适的波 长和功率。
3. 将样品放置在样品台上, 并调整焦距和位置,确保激光
光束能够照射到样品上。
4. 进行拉曼光谱的采集,记 录实验数据,并进行分析和解
释。
数据处理与分析
数据处理
对采集的红外或拉曼光谱数据进行平 滑处理、基线校正、归一化等操作, 以提高数据质量和可分析性。
红外和拉曼光谱课件
目录
CONTENTS
• 红外光谱基本原理 • 拉曼光谱基本原理 • 红外光谱与拉曼光谱的应用 • 实验技术与操作 • 红外和拉曼光谱的发展趋势
01 红外光谱基本原理
红外光谱的产生
红外光谱是分子吸收特定波长的 红外光后产生的光谱,其原理基
于分子振动和转动能级跃迁。
当红外光照射分子时,分子中的 电子和振动、转动能级发生相互 作用,导致分子吸收特定波长的
分子转动是指分子整体绕其质心旋转, 其转动能级跃迁也会产生红外光谱。
红外光谱与分子结构的关系
不同化学键或基团在红外光谱中具有特定的吸收峰,这些吸收峰的位置和强度可以 反映分子内部结构和化学键类型。
通过分析红外光谱的吸收峰位置和强度,可以推断出分子的结构特征和化学键信息, 如碳氢、碳氧、碳碳等键的弯曲和伸缩振动。
拉曼光谱跟红外光谱的区别
![拉曼光谱跟红外光谱的区别](https://img.taocdn.com/s3/m/2569ff8609a1284ac850ad02de80d4d8d15a01ae.png)
拉曼光谱跟红外光谱的区别
拉曼光谱和红外光谱是两种不同的光谱技术,有以下几个主要区别:
1. 基本原理:红外光谱是通过测量分子吸收红外光的能量来分析样品的功能团信息,而拉曼光谱则是通过测量样品中分子振动引起的光散射来分析样品的化学结构。
2. 分析范围:红外光谱通常适用于分析样品中的官能团、化学键类型和某些结构特征,而拉曼光谱则可以提供更详细和全面的关于样品分子振动模式和化学结构信息。
3. 样品要求:红外光谱需要样品具有一定的吸收能力,因此大多数有机化合物和无机物都可以进行红外光谱测试。
而拉曼光谱对样品的要求相对较低,可以测试几乎所有类型的样品,包括固体、液体和气体。
4. 干扰因素:红外光谱对水分和二氧化碳有较强的吸收能力,因此在测试液体或气体样品时需要特别注意这些干扰因素。
而拉曼光谱对水和二氧化碳的干扰较小。
5. 仪器配置:红外光谱需要使用红外光源和红外检测器,且样品通常需要准备成KBr片或涂布在红外透明基板上。
而拉曼光谱则需要使用激光光源和拉曼散射检测器。
总的来说,虽然红外光谱和拉曼光谱都可以用于化学分析,但它们的原理、应用范围和仪器配置等方面有着一定的区别。
在
实际应用中,选择使用哪种光谱技术取决于需要分析的样品类型和所关注的分析信息。
红外光谱和拉曼光谱的联系和区别
![红外光谱和拉曼光谱的联系和区别](https://img.taocdn.com/s3/m/c02310b4f71fb7360b4c2e3f5727a5e9846a2774.png)
红外光谱和拉曼光谱的联系和区别
红外光谱和拉曼光谱的联系和区别如下:
一、联系:两者都是振动光谱。
二、区别:
1、红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线;拉曼光谱是一种阶数更高的光子---分子相互作用,要比红外吸收光谱的强度弱很多。
2、拉曼采用的是激光激发,而红外光谱只能是红外光束。
3、拉曼光谱信号弱,而红外信号强。
4、红外是分子偶极矩变化,拉曼是分子极性变化。
5、拉曼光谱特别适合那些没有极性的对称分子的检测;红外光谱则需要分子内部有一定的极性才能产生红外光谱。
红外和拉曼光谱
![红外和拉曼光谱](https://img.taocdn.com/s3/m/92b1771dba1aa8114431d973.png)
共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐; 有O原子存在时;O越靠近C N,峰越弱;
3. 双键伸缩振动区( 1900 1200 cm-1 )
(1) RC=CR′ 1620 1680 cm-1 强度弱, R = R′ (对称)时,无红外活性。 (2)单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
酸酐的C=O
双吸收峰:1820~1750 cm-1 ,两个羰基振动偶合裂分; 线性酸酐:两吸收峰高度接近,高波数峰稍强; 环形结构:低波数峰强;
羧酸的C=O
1820~1750 cm-1 ,
氢键,二分子缔合体;
4. X-Y,X-H 变形振动区 < 1650 cm-1
指纹区 (1350 650 cm-1 ) ,较复杂。
四、红外吸收峰强度
问题:C=O 强;C=C 弱;为什么? 吸收峰强度跃迁几率偶极矩变化 吸收峰强度 偶极矩的平方 偶极矩变化——结构对称性; 对称性差偶极矩变化大吸收峰强度大 符号:s (强);m (中);w (弱)
红外吸收峰强度比紫外吸收峰小2~3个数量级;
五、红外吸收光谱的特征性
特征区
七、影响峰位变化的因素
化学键的振动频率不仅与其性质有关,还受分子的内部 结构和外部因素影响。相同基团的特征吸收并不总在一个固 定频率上。
1.内部因素
(1)电子效应 a.诱导效应:吸电子基团使吸收峰向高频方向移动(兰移)
R-COR C=0 1715cm-1
;
R-COH C=0 1730cm -1 ;
-CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动
-CH2-C-H
2930 cm-1
拉曼光谱与红外光谱
![拉曼光谱与红外光谱](https://img.taocdn.com/s3/m/e64a033b580216fc700afdc8.png)
拉曼光谱Raman spectra拉曼散射的光谱。
1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。
在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。
靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。
瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。
小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。
拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子,同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子,同时分子从高能态跃迁到低能态(反斯托克斯线)。
分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。
与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。
激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。
拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。
(一)含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。
在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。
红外光谱(IR)和拉曼光谱(Raman)
![红外光谱(IR)和拉曼光谱(Raman)](https://img.taocdn.com/s3/m/0afd2b3da45177232e60a22f.png)
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
近来,已采用可调激光器作为光源来代替单色器,研制 成功了激光红外分光光度计,即第四代红外分光光度计, 它具有更高的分辨率和更广的应用范围,但目前还未普及。
第三章 红外光谱(IR)和拉曼光谱(Raman)
3.1引言 3.1.1红外光谱的发展
红外光谱(Infrared Spectroscopy,简称IR) 拉曼光谱(Raman)
分子光谱
两者得到的信息可以互补。
在十九世纪初就发现了红外线,到1892年有人利用岩盐棱 镜和测热幅射计(电阻温度计)测定了20多种有机化合物的 红外光谱。
1905年科伯伦茨发表了128种有机和无机化合物的红外 光谱,红外光谱与分子结构间的特定联系才被确认。
到1930年前后,随着量子理论的提出和发展,红外光 谱的研究得到了全面深入的开展,并且依据测得的大量物 质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光度计 问世。这是一台以棱镜作为色散元件的第一代红外分光光 度计。
μ’ 为折合质量。 μ’=m1m2/(m1+m2) (m为原子质量)
原子质量用相对原子量代替:
m1=M1/N,
M1、M2为原子量,N为阿佛加德罗常数。
m2=M2/N 。
μ为折合原子量
μ=
M1 M2 M1 M2
将π、c和N的数值代入(2)式,并指定将键力常数(见p 61 表3-1)中 的105代入。
键 H-C H-C C-C C=C C≡C C-O C=O C-Cl C≡N
红外光谱与拉曼光谱的区别
![红外光谱与拉曼光谱的区别](https://img.taocdn.com/s3/m/6a96fb7c777f5acfa1c7aa00b52acfc789eb9fe2.png)
红外光谱与拉曼光谱的区别
红外光谱和拉曼光谱是两种常见的分析光谱技术。
它们在分析材料的化学成分和结构中都有广泛的应用。
然而,红外光谱和拉曼光谱的原理和应用领域不同,它们也有一些明显的区别。
红外光谱是通过分析物质在红外光线下与光的相互作用来对其
进行分析的技术。
这些相互作用包括物质分子振动和对称性的变化。
红外光谱可以提供有关分子中哪些键结合在一起的信息,因此可用于确定一个物质的分子结构。
常见的红外光谱仪使用的是可见光波长范围之外的光,通常在4000 cm^-1到400 cm^-1区域内进行测量。
拉曼光谱也是一种分析物质结构的技术,但是它是通过分析物质在激发光线下与光的相互作用来对其进行分析的。
与红外光谱不同,拉曼光谱是通过测量物质分子在激发光线下散射的光的能量来研究
分子结构的振动。
拉曼光谱可以为化学物质提供关于键的长度,角度和氧化状态等信息。
常见的拉曼光谱仪使用激光作为光源,通常在4000 cm^-1到80 cm^-1区域内进行测量,比红外光谱的测量范围更宽。
总的来说,虽然红外光谱和拉曼光谱都是分析物质结构的技术,但它们的原理和测量方法有所不同,因此它们也各自具有优势和局限性。
在实际应用中,科学家可以根据需要选择适当的技术,结合其他分析方法进行全面的分析。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1 红外光谱
6 红外光谱与拉曼光谱
红外光谱的波长范围是0.8- 1000μm, 又可分成三个部分:
0.8-2.5μm,称为近红外区; 2.5-50μm,称为中红外区; 50-1 000μm或称为远红外区。
7 红外光谱与拉曼光谱
中红外区:
– 光谱是来自物质吸收能量以后,引起 分子振动能级之间的跃迁,因此称为 分子的振动光谱。
振动频率
13 红外光谱与拉曼光谱
14 红外光谱与拉曼光谱
以HCl为例:
– K=5.1×105
15 红外光谱与拉曼光谱
19 红外光谱与拉曼光谱
在以下各处出现酰胺基的特征谱带,3300cm-1 [υ( NH)] 1635cm-1 [υ( C=O)],1540cm-1 [υ(NH)+υ(N-C)]以及690 cm-1和 580 cm-1,但在1400-800cm-1 又有细小的区别。
第十六章 红外光谱与拉曼光谱
1 红外光谱与拉曼光谱
红外光谱和拉曼光谱属于波谱技术 的范畴。
波谱技术
– 是某种特定波长、强度的辐射能通过 特征能态间的跃迁后而引发的电磁波 谱。
2 红外光谱与拉曼光谱
波谱技术分两大类:
– 吸收波谱和发射波谱
吸收波谱 紫外、可见分光光谱
红外分光光谱 微波光谱
X射线吸收光谱 核磁共振光谱 电子自旋共振光谱
– ②采用楔型薄膜; – ③在样品薄膜两侧涂上一层折射率和
样品相近,且对红外透明的物质,最 常用的有石蜡油和全氟煤油。
30 红外光谱与拉曼光谱
变。
– 这些弱点的存在限制了色散型红外 光谱仪的发展。
24 红外光谱与拉曼光谱
傅里叶变换红外光谱仪:
– 关键部分是干涉仪系统。 – 由干涉仪完成干涉调频,在连续改变
光程差的同时,记录下中央干涉条纹 的光强度变化,即得到干涉图。 – 利用电子计算机将这一干涉图进行傅 里叶函数的余弦变换,最后得到入们 可辨认的红外光谱图。
25 红外光谱与拉曼光谱
构成单元如下图所示:
26 红外光谱与拉曼光谱
傅里叶变换红外光谱仪的优点:
– 排除了色散型仪器的单色器和出射狭缝, 使得到达检测器的光能量大为提高
– 提高了仪器的灵敏度
– 在整个测量范围内分辨率是一个常数,不 随波长变化而改变。
– 采用了高响应的检测器,大大提高了光谱 的时间响应。
是红外光谱应用中最重要的部分 红外光谱常采用波数(v)作单位:
(cm 1 )
1
( m 1 )
104
8 红外光谱与拉曼光谱
高聚物分子中的各种化学键或基团, 如C-C,C=C,C-O,C=O,O-H,N-H、苯 环等
它们会吸收不同频率的红外辐射而 产生特征的红外吸收光谱:
– 因此利用红外光谱可以鉴定这些化学 键或基团的存在。
9 红外光谱与拉曼光谱
红外光谱作为“分子指纹”被广泛地 用于分子结构的基础研究和化学组 成的研究上。
依据分子红外光谱的
– 吸收谱带频率的位置、强度、形状以 及吸收谱带和温度、聚集态、溶剂等 的关系
便可确定分子的空间构型,求出化 学键的力常数、键长和键角等。
10 红外光谱与拉曼光谱
16.1 .1红外光谱的基本原理
因此对于微量样品的测定、分辨近似 结构、测量瞬态过程以及与色谱仪联 机使用等均提供了极为有利的条件。
27 红外光谱与拉曼光谱
2.制样技术
– 红外光谱要求样品厚度:
Hale Waihona Puke 定性分析10-30μm;定量分析从几个微米到毫米以上。
– 在测试过程中,要保证透光度应在 15% -70%的范围内。
样品过厚,许多主要的谱带都吸收到顶, 彼此连成一片,看不出准确的波数位置 和精细结构;
20 红外光谱与拉曼光谱
16.1.2 实验设备及实验技术
1.红外光谱仪
– 目前红外光谱仪可分为两大类:
利用分光原理制成的色散型红外光谱仪
– 根据分光元件的不同,色散型红外光谱仪 又分为 • 棱镜型 • 和光栅型两种。
利用干涉调频原理制成的傅里叶变换红 外光谱仪。
21 红外光谱与拉曼光谱
色散型红外光谱仪
发射波谱 发射光谱 荧光光谱 磷光光谱
3 红外光谱与拉曼光谱
波谱技术中的关键是检测组成材料的 各种微粒在辐射条件下的特征能态的 跃迁。
分子的总能量由以下几项组成:
– 电子的能量(E电); – 振动能量(E振); – 转动能量(E转); – 平动能量(E平);
分子吸收电磁波辐射时的能量的变化
ΔE= ΔE电+ΔE振+ ΔE转+ ΔE平
– 是利用分光原理制成的 – 其主要部分是带有色散元件的单色器,
因而叫作分光光度计。 – 红外分光光度计主要由三大部分组成:
光源、 单色器 和记录系统。
22 红外光谱与拉曼光谱
红外分光光度计的缺点:
– 由于色散元件将复色光分成单色光,经 出射狭缝进入检测器,所以:
1. 使到达检测器的光强大大减弱 2. 时间响应也较长 3. 仪器的分辨率和灵敏度随着波长不断改
样品过薄,许多中等强度和弱的谱带由
于吸收太弱,在谱图上只有一个模糊的
红外光谱与拉轮曼光廓谱 ,失去谱图的特征。
28
干涉条纹的影响:
– 干涉条纹与光谱迭加一起:
将使谱带变形 特别对定量分析的精确度影响较大
– 在长波区域影响更为突出。
29 红外光谱与拉曼光谱
消除干涉条纹的方法有:
– ①样品表面粗糙化,可以在粗糙的物 体表面做膜,也可以做膜后用砂纸将 样品一侧或两侧打毛;
1.电磁辐射与物质分子的相互作 用
E=hv ΔE=hν0 – 由于被物质吸收而产生的光强度按其
频率的分布称为吸收光谱。
11 红外光谱与拉曼光谱
2、双原子分子的振动模型
re
12 红外光谱与拉曼光谱
F=-KΔr 由于 F=ma
如果双原子运动是谐振运动,那么就可以 把它考虑为匀速运动的物体在其直径上的 投影运动,则位移和时间的关系为:
4 红外光谱与拉曼光谱
分子振动光谱
– 红外: 是一种吸收光谱
对低对称性的分子,易产生偶极矩的变 化,红外光谱有强谱带,这对于极性分 子或取代基团分析有利。
– 拉曼光谱: 是一种散射光谱
对于高对称性的分子,易产生诱导偶极 距的变化,拉曼光谱有强谱带,这对于 非极性分子或取代基团的分析有利。
在研究高聚物结构的对称性方面, 红外和拉曼光谱两者相互补充。