(完整版)等差数列前n项和教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n项和(第一课时)教学设计
【教学目标】
一、知识与技能
1.掌握等差数列前n项和公式;
2.体会等差数列前n项和公式的推导过程;
3.会简单运用等差数列前n项和公式。
二、过程与方法
1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;
2. 通过公式的运用体会方程的思想。
三、情感态度与价值观
结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】
等差数列前n项和公式的推导和应用。
【教学难点】
在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】
多媒体软件,电脑
【教学过程】
一、明确数列前n项和的定义,确定本节课中心任务:
本节课我们来学习《等差数列的前n项和》,那么什么叫数列的
前n项和呢,对于数列{a n}:a1,a2,a3,…,a n,…我们称a1+a2+a3+…
+a n为数列{a n}的前n项和,用s n表示,记s n=a1+a2+a3+…+a n,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现
问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱?
即: S100=1+2+3+······+100=?
著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
特点:首项与末项的和:1+100=101,
第2项与倒数第2项的和:2+99 =101,
第3项与倒数第3项的和:3+98 =101,
· · · · · ·
第50项与倒数第50项的和:50+51=101,
于是所求的和是:101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为相同数的乘法运算大大提高效率。
高斯的方法很妙,如果等
差数列的项数为奇数时怎么办呢?
探索与发现1:假如让你计算从第一人到第21人的钱数,高
斯的首尾配对法行吗?
即计算S21=1+2+3+ ······ +21的值,在这个过程中让学生发现当
项数为奇数时,首尾配对出现了问题,通过动画演示引导帮
助学生思考解决问题的办法,为引出倒序相加法做铺垫。
把“全等三角形”倒置,与原图构成平行四边形。
平行四边形中的每行宝石的个数均为21个,共21行。
有什么启发? 1 + 2 + 3 + …… +20 +21 21 + 20 + 19 + …… + 2 +1
S 21=1+2+3+…+21=(21+1)×21÷2=231
这个方法也很好,那么项数为偶数这个方法还行吗?
探索与发现2:第5人到12人一共有多少钱数?
学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学们自主探究一下(老师演示动画帮助学生) S 8=5+6+7+8+9+10+11+12=
682
)
125(8=+⨯
【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否可行。
从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加的思想和方法!
好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下面这个等差数列的前n 项和?
问题2:等差数列1,2,3,…,n, … 的前n 项和怎么求呢? 解:(根据前面的学习,请学生自主思考独立完成)
【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基础。
至此同学们已经掌握了倒序相加法,相信大家可以推导更一般的等差数列前n 项和公式了。
问题3:对于一般的等差数列{a n }首项为a 1,公差为d ,如何推导它的前n 项和s n 公式呢?
123(1)(1)(2)2
1
2(1)(1)(1)
(1)2
n n n n
n s n n s n n n s n n n n n s =+
+++-+=+-+-+++∴=++++
+++=
即求n s =a 1+a 2+a 3+……+a n =
1
231211121(2)
(1) a a a a a a a a a a a S a a a S n n n n n n n n n +==+=+=++++=+++=---
∴(1)+(2)可得:2)(1n n a a n S +=
∴2
)
(1n n a a n S +=
公式变形:将d n a a n )1(1-+=代入可得:d n n na S n 2
)
1(1-+
= 【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一般等差数列的前n 项和公式,从而完成本节课的中心任务。
在这个过程中放手让学生自主推导,同时也复习等差数列的通项公式和基本性质。
三、公式的认识与理解:
1、根据前面的推导可知等差数列求和的两个公式为:
2
)
(1n n a a n S +=
(公式一)
d n n na a a n S n n 2
)
1(2)(11-+=+=
(公式二) 探究: 1、(1)相同点: 都需知道a 1与n;
(2)不同点: 第一个还需知道a n ,第二个还需知道d; (3)明确若a 1,d,n,a n 中已知三个量就可求S n 。
2、两个公式共涉及a 1, d, n, a n ,S n 五个量,“知三”可“求二”。
2、探索与发现3:等差数列前n 项和公式与梯形面积公式有什么联系?
用梯形面积公式记忆等差数列前 n 项和公式,这里对图形进行了割、补两种处理,对应
着等差数列 n 项和的两个公式.,请学生联想思考总结来有助于记忆。
【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆 四、公式应用、讲练结合 下面我们来看两个例题: 1.例题1:
2000年11月14日教育部下发了<<关于在中小学实施“校校通”工程的通知>>.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网. 据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
解:设从2001年起第n 年投入的资金为a n ,根据题意,数列{a n }是一个等差数列,其中 a 1=500, d=50
那么,到2010年(n=10),投入的资金总额为7250502
9
105001010=⨯⨯+
⨯=s 答: 从2001年起的未来10年内,该市在“校校通”工程中的总投入是7250万元。
【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。
2.例题2:
已知一个等差数列{a n }的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n 项和的公式吗? 解:
法1:由题意知 31010=s ,122020=s
代入公式d n n na s n 2
)
1(1++
=错误!未找到引用源。
得: ⎩⎨⎧=+=+1220
19020310451011d a d a 错误!未找到引用源。
解得41=a ,6=d
n n n n n s n +=⨯++
=2362
)
1(4 法2:由题意知
31010=s ,122020=s
代入公式2
)
(1n n a a n s +=
错误!未找到引用源。
得: 3102)(1010110=+⨯=
a a s ,12202
)
(2020120=+⨯=a a s
即① 62101=+a a ,② 122201=+a a ②-①得, 60 101020==-d a a ,故 6 =d 由62101=+a a 得62921=+d a 故41=a
26)1(1-=-+=n d n a a n
n n a a n s n n +=+=
2132
)
(
【设计意图】掌握并能灵活应用公式并体会方程的思想方法。
3.练一练:
有了两个公式,请同学们来练一练,看谁做的快做的对!
课本46页习题2.3 A 组1,2题
【设计意图】熟悉并强化公式的理解和应用,进一步巩固“知三求二”。
五、归纳总结 分享收获:(活跃课堂气氛,鼓励学生大胆发言,培养总结和表达能力) 1、倒序相加法求和的思想及应用; 2、等差数列前n 项和公式的推导过程; 3、掌握等差数列的两个求和公式2)(1n n a a n s +=
,d n n na s n 2
)
1(1-+=; 4、前n 项和公式的灵活应用及方程的思想。
………… 六、作业布置: (一)书面作业: A 组3,4,5 (二)课后思考:
思考:等差数列的前n 项和公式的推导方法除了倒序相加法还有没有其它方法呢? 【设计意图】通过布置书面作业巩固所学知识及方法,同时通过布置课后思考题来延伸知识
拓展思维。
附:板书设计。