七年级数学下册 7.2探索平行线的性质同步训练(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2 探索平行线的性质
知识点 1 平行线的三个性质
1.如图7-2-1,直线a∥b,∠1=50°,那么∠2的度数是( )
图7-2-1
A.50°B.60°
C.70°D.80°
2.2018·秦淮区期中如图7-2-2,已知AB∥CE,∠A=110°,则∠ADE的大小为( )
图7-2-2
A.110° B.100° C.90° D.70°
3.教材习题7.2第2题变式如图7-2-3,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为( )
图7-2-3
A.108° B.82° C.72° D.62°
4.2018·随州如图7-2-4,在平行线l1,l2之间放置一块三角尺,三角尺的锐角顶点A,B分别在直线l1,l2上.若∠1=65°,则∠2的度数是( )
图7-2-4
A.25° B.35° C.45° D.65°
5.2018·杭州如图7-2-5,直线a∥b,直线c与直线a,b分别交于点A,B,若∠1=45°,则∠2=________.
图7-2-5
6.2018·重庆A卷如图7-2-6,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.
图7-2-6
7.如图7-2-7,已知AB∥DC,AD∥BC,则∠B与∠D相等吗?为什么?
图7-2-7
知识点 2 平行线的性质与判定的综合运用
8.如图7-2-8,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2的度数为( )
图7-2-8
A.70° B.90° C.110° D.80°
9.如图7-2-9,∠B=∠ADE,∠DEC=110°,则∠C=________°.
图7-2-9
10.如图7-2-10,∠1=∠2,∠3=100°,则∠4=________°.
图7-2-10
11.填空:如图7-2-11,因为∠1=∠2(已知),
所以________∥________(________________),
所以∠BCD=∠________(________________).
因为AE⊥BC(已知),
所以∠BEA=________(____________),
所以∠BCD=________(等量代换).
图7-2-11
12.如图7-2-12,已知∠1=∠2,∠C=∠D,试说明:∠A=∠F.
图7-2-12
【能力提升】
13.2018·泸州如图7-2-13,直线a∥b,直线c与a,b分别交于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )
图7-2-13
A.50° B.70° C.80° D.110°
14.2018·泰兴期末如图7-2-14,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED的度数为________°.
图7-2-14
15.如图7-2-15,已知AD∥BE,∠A=∠E,则∠1与∠2相等吗?为什么?
图7-2-15
16.如图7-2-16,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.
图7-2-16
17.如图7-2-17,点A,B分别在直线CM,DN上,CM∥DN.
(1)如图①,连接AB,则∠CAB+∠ABD=______°;
(2)如图②,点P1是直线CM,DN内部的一个点,连接AP1,BP1,求∠CAP1+∠AP1B+∠P1BD 的度数;
(3)如图③,点P1,P2是直线CM,DN内部的两个点,连接AP1,P1P2,P2B,求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度数;
(4)若按以上规律,猜想并直接写出∠CAP1+∠AP1P2+…+∠P5BD的度数(不必写出过程).
图7-2-17
答案详解详析
1.A [解析] 因为直线a∥b,
所以∠1=∠2.
因为∠1=50°,
所以∠2=50°.故选A.
2.A [解析] 由AB∥CE,得∠A=∠ADE,又∠A=110°,则∠ADE=110°.
3.C [解析] 根据∠1的对顶角与∠2是同旁内角,由a∥b可知它们互补,即可求得∠2的度数.
4.A
5.135°[解析] 由直线a∥b,考虑∠1的同位角与∠2互补,则有∠2=180°-∠1=135°.
6.解:因为∠EFG=90°,∠E=35°,
所以∠FGH=180°-∠EFG-∠E=55°.
因为GE平分∠FGD,AB∥CD,
所以∠FHG=∠HGD=∠FGH=55°,
所以∠FHF=180°-∠FHG=125°,
所以∠EFB=180°-∠EHF-∠E=20°.
7.解:∠B=∠D.理由:因为AB∥DC(已知),
所以∠B+∠C=180°(两直线平行,同旁内角互补).
因为AD∥BC(已知),
所以∠D+∠C=180°(两直线平行,同旁内角互补),
所以∠B=∠D(同角的补角相等).
8.A [解析] 因为a⊥c,b⊥c,所以a∥b,
所以∠1=∠3.
因为∠2=∠3,∠1=70°,
所以∠2=∠1=70°.
故选A.
9.70 [解析] 因为∠B=∠ADE,所以DE∥BC.
因为∠DEC=110°,
所以∠C=180°-110°=70°.
10.80
11.AE CD内错角相等,两直线平行BEA两直线平行,同位角相等90°垂直的定义90°
12.解:因为∠1=∠2,所以BD∥CE,
所以∠C+∠CBD=180°.
因为∠C=∠D,所以∠D+∠CBD=180°,
所以AC∥DF,所以∠A=∠F.
13.C [解析] 直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.
14.114 [解析] 根据平行线的性质求出∠CAB的度数,根据角平分线的定义求出∠EAB 的度数,根据平行线的性质求出∠AED的度数即可.
15.解:∠1=∠2.理由如下:
因为AD∥BE(已知),
所以∠A+∠ABE=180°(两直线平行,同旁内角互补).
因为∠A=∠E(已知),
所以∠ABE+∠E=180°(等量代换),
所以DE∥AC(同旁内角互补,两直线平行),
所以∠1=∠2(两直线平行,内错角相等).
16.解:答案不唯一,如可添加的条件为CF∥BE.
理由:因为AB∥CD,所以∠BCD=∠CBA.
因为CF∥BE,
所以∠FCB=∠EBC,所以∠1=∠2.
或添加的条件为CF,BE分别为∠BCD,∠CBA的平分线.
理由:因为AB∥CD,所以∠BCD=∠CBA.
又因为CF,BE分别为∠BCD,∠CBA的平分线,所以∠1=∠2.
17.解:(1)180
(2)如图①,过点P1作平行于CM的平行线EP1,则EP1∥CM∥DN.
因为EP1∥CM,所以∠AP1E+∠CAP1=180°.因为EP1∥DN,所以∠EP1B+∠P1BD=180°,