第9讲-纳米材料在生物医学领域的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用纳米材料开发的新型药物输送系统 由一种内含 药物的纳米球组成的, 纳米球外面有一种保护性涂 层 ,可在血液中循环而不会受到人体免疫系统的攻 击 ,如果使其具备识别癌细胞的能力 ,就可直接将 药物送到癌变部位 ,而不会对健康组织造成损害。
用纳米技术制造的“芯片实验室”可对血液和病 毒进行检测 ,几分钟即可获得检测结果。
纳米生物学和纳米医学
现代生物学和现代医学的不断发展: 其研究内容已从细胞,染色体等微米尺度 的结构深入到更小的层次,进入到单个分 子甚至分子内部的结构。这些极其微细的 分子结构的特征尺寸大多在0.l- 100nm之 间,属于纳米技术的尺度范围。
因此,研究这些纳米尺度的分子结构 和生命现象的学科,就是纳米生物学和纳 米医学。
用纳米级微颗粒(超顺磁性氧化铁超微颗粒脂 质体)应用于诊断早期肝癌,可以发现直径 3 mm以下的肝肿瘤 , 对肝癌的早期诊断、早期 治疗有着十分重要的意义。
纳米抗菌药物以及创伤贴、溃疡贴等,对大肠 杆菌、金黄色葡萄球菌等致病微生物均有强烈 的抑制和杀灭作用, 同时还具有广谱、亲水、 环保等多种性能。
生物学和医学的研究内容
组织和生物 细胞和器官 染色体
单个分子
分子内部的结构
生命由纳米水平的生物分子为中 心构成构造体,再由这些构造体聚集 起来,相互作用,发挥各自的功能, 从而形成生命现象。
生物学的重要内容
DNA分子的结构和复制: DNA之所以能起
遗传作用,是与它的分子结构有密切关系的。
DNA结构
什么是 基因 ?
现代遗传学家认为,基因是DNA分子上 具有遗传效应的特定核苷酸序列的总称, 是具有遗传效应的DNA分子片段。
基因位于染色体上,并在染色体上呈 线性排列。基因不仅可以通过复制把遗传 信息传递给下一代,还可以使遗传信息得 到表达。人类只有一个基因组,大约有5- 10万个基因。
什么是人类 基因组计划 ?
在人工器官外面涂上纳米粒子可预防移植后的排 异反应。
纳米生物学的研究集中在五个方面 :
1)利用纳米技术来解决和研究生物学问题。研究细胞内
部各种细胞器的结构和功能、细胞内部、细胞内外之间以及
整个生物体的物质、能量和信息交换; 2)在纳米尺度上获取生命信息 ,特别是细胞内的各种
信息。用扫描质子探针测定细胞膜和wk.baidu.com胞器表面的元素成
分的信息,用微感器和纳米传感器获取各种生化反应的化学 信息和电化学信息。
纳米生物学 (nanobiology)
1)在纳米尺度上, 应用生物学原理和新兴的纳米 技术来研究和解决生物学问题:了解生物大分子 的精细结构及其与功能的联系(这也是整个现代 生物学发展的基础)。 2)利用生物大分子制造分子器件,模仿和制造类 似生物大分子的分子机器。
关键词:纳米尺度,生物学问题,分子器件
很多个脱氧核苷酸聚合成为DNA。
DNA的空间结构:规则的双螺旋结构
DNA的复制:边解旋边复制
步骤: 第一步,利用细胞提供的能量,在解旋梅的作用 下,把双链解开,成为解旋; 第二步,以解开的每段为模板,以周围环境中游 离的脱氧核苷酸为原料,按照碱基互补配对原则, 合成子链; 第三步,随着解旋过程的进行,新合成的子链不 断延伸,同时每条子链与其相对应的母链相互盘 缠成螺旋结构,形成新的 DNA分子。
纳米材料在医药领域的应用现状
纳米级粒子使药物在人体内的传输更为 方便 ,用数层纳米粒子包裹的智能药物进 入人体后可主动搜索并攻击特定细胞或 修补损伤组织。
“纳米生物导弹”:将抗肿瘤药物连接在磁性 超微粒子上 ,定向杀死癌细胞。 “纳米机器人” :进入人的血管和心脏中 ,完 成医生不能完成的血管修补等“细活”,必要时 还可用它直接进行治疗。
3)脑功能的研究。破译人类的记忆、思维、语言和学习这
些高级神经功能和人脑的信息处理功能。
4)仿生学的研究。最具诱惑力的纳米机器人。 5)纳米结构自组装的研究。利用生物大分子制造分子器件 ,
模仿和制造类似生物大分子的分子机器。
纳米医学
医学:研究人体疾病发生的内在原因并进 行恰当治疗的一门学科。
纳米技术与医学的结合
美国科学家于1985年率先提出的,旨在阐 明人类基因组30亿个碱基对的序列,发现所有 人类基因并搞清其在染色体上的位置,破译人 类全部遗传信息,使人类第一次在分子水平上 全面地认识自我。
该计划于1990年正式启动,这一价值30亿 美元的计划的目标是,为30亿个碱基对构成的 人类基因组精确测序,从而最终弄清楚每种基 因制造的蛋白质及其作用。
DNA:脱氧核糖核酸,一种高分子化合物,
组成它的基本单位是脱氧核苷酸。
1个脱氧核苷酸=1分子磷酸+1分子脱氧核 糖+1分子含氮碱基组成的。
组成脱氧核苷酸的四种含氮碱基构成四种不
同的脱氧核苷酸:
腺嘌呤(A)
腺嘌呤脱氧核苷酸
鸟嘌呤(G)
鸟嘌呤脱氧核苷酸
胞嘧啶(C)
胞嘧啶脱氧核苷酸
胸腺嘧啶(T)
胸腺嘧啶脱氧核苷酸
纳米技术将带给医学一场前所未有的技术革 命。 “纳米”不仅意味着空间尺度,更重要的 是提供了一种对医学的全新认识方法和实践方法 。 纳米医学将大幅度提高人类健康和保健的水平, 使人们能够真正做到延年益寿。
纳米医学将在以下五个方面得到突破和应用:
(l)在分子的水平上认识和理解病变的机理 (2)大幅度提高医学诊断和疾病检测的精度 (3)纳米医用机器人与可控的体内显微手术 (4)攻克和杀死癌细胞和病毒的特效药物 (5)基因治疗
生命现象中的纳米结构 蛋白质、DNA、RNA和病
毒,都在1-100nm的尺度范围。
生命现象中的“纳米机械” 细胞中的细胞器。
“纳米车间”和“纳米工厂” 细胞和植物的光
合作用。
纳米科技的完美典范:结构精确的遗传基因序列
的自组装排列;神经系统的信息传递和反馈等。
生物合成和生物过程已成为启发和制造新的 纳米结构的源泉。
纳米材料在生物医学领域的应用
1 纳米生物学和纳米医学概述 2 纳米生物材料 3 纳米给药系统与纳米药物载体 4 纳米医学的突破和应用 5 纳米生物工程
1 纳米生物学和纳米医学概述
从DNA碱基对(纳米尺度)到细胞(微米尺度) 的尺度变化
概述:纳米医学和生物学
----- 纳米技术中另一个重要分支领域
相关文档
最新文档