2多元函数积分学

合集下载

实验2 多元函数积分学(基础实验)

实验2 多元函数积分学(基础实验)

项目三 多元函数微积分实验2 多元函数积分学(基础实验)实验目的掌握用Mathematica 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.基本命令1. 计算重积分的命令lntegrate 和NIntegrate 例如,计算dydx xy x ⎰⎰102, 输入Integrate[x*y^2,{x,0,1},{y,0,x}]则输出 151又如,计算dydx xy )sin(10102⎰⎰的近似值, 输入NIntegrate[Sin[x*y^2],{x,0,1},{y,0,1}] 则输出 0.160839注: Integrate 命令先对后边的变量积分.计算三重积分时,命令Integrate 的使用格式与计算二重积分时类似. 由此可见, 利用 Mathematica 计算重积分, 关键是确定各个积分变量的积分限. 2. 柱坐标系中作三维图形的命令CylindricalPlot3D使用命令Cylindricalplot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.使用命令Cylindricalplot3D 时,一定要把z 表示成r ,θ的函数. 例如,在直角坐标系中方 程22y x z +=是一旋转抛物面, 在柱坐标系中它的方程为2r z =. 因此,输入 CylindricalPlot3D[r^2,{r,0,2},{t,0,2Pi}] 则在柱坐标系中作出了该旋转抛物面的图形.3. 球面坐标系中作三维图形命令SphericalPlot3D使用命令SphericalPlot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.命令SphericalPlot3D 的基本格式为SphericalPlot3D[r[],θϕ, {}],,{},,,2121θθθϕϕϕ其中r[],θϕ是曲面的球面坐标方程, 使用时一定要把球面坐标中的r 表示成ϕ、θ的函数. 例如,在球面坐标系中作出球面,22222=++z y x 输入Sphericalplot3D[2,{u,0,pi},|v,0,2,pi|,plotpoints->40]则在球面坐标系中作出了该球面的图形. 4. 向量的内积用“.”表示两个向量的内积. 例如,输入 vecl={al,bl,cl} vec2={a2,b2,c2}则定义了两个三维向量, 再输入 vec1. vec2 则得到它们的内积a1a2+b1b2+c1c2实验举例计算重积分 例2.1 (教材 例2.1) 计算,2dxdy xy D⎰⎰其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.先作出区域D 的草图, 易直接确定积分限,且应先对x 积分, 因此, 输入 Integrate[x*y^2,{y,1,2},{x,2-y,Sqrt[y]}] 则输出所求二重积分的计算结果.120193例2.2 (教材 例2.2) 计算,)(22dxdy e Dy x⎰⎰+- 其中D 为.122≤+y x如果用直角坐标计算, 输入Clear[f,r];f[x,y]=Exp [-(x^2+y^2)];Integrate[f[x,y],{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]则输出为dx x 1Erf e 211x 2⎥⎦⎤⎢⎣⎡-π⎰--其中Erf 是误差函数. 显然积分遇到了困难.如果改用极坐标来计算, 也可用手工确定积分限. 输入Integrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出所求二重积分的计算结果eπ-π 如果输入NIntegrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出积分的近似值1.98587例2.3 (教材 例2.3) 计算dxdydz z y x)(22++⎰⎰⎰Ω, 其中Ω由曲面222y x z --=与22y=围成.xz+先作出区域Ω的图形. 输入g1=ParametricPlot3D[{Sqrt[2]*Sin[fi]*Cos[th],Sqrt[2]*Sin[fi]*Sin[th], Sqrt[2]*Cos[fi]},{fi,0,Pi/4},{th,0,2Pi}]g2=ParametricPlot3D[{z*Cos[t],z*Sin[t],z},{z,0,1},{t,0,2Pi}]Show[g1,g2,ViewPoint->{1.3,-2.4,1.0}]则分别输出三个图形(图2.1(a), (b), (c)).考察上述图形, 可用手工确定积分限. 如果用直角坐标计算, 输入 g[x_,y_,z_]=x^2+y^2+z;Integrate[g[x,y,z],{x,-1,1},{y,-Sqrt[1-x^2], Sqrt[1-x^2]},{z,Sqrt[x^2+y^2],Sqrt[2-x^2-y^2]}] 执行后计算时间很长, 且未得到明确结果.现在改用柱面坐标和球面坐标来计算. 如果用柱坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Cos[s],y->r*Sin[s]})*r,{r,0,1},{s,0,2Pi},{z,r,Sqrt[2-r^2]}]则输出π⎪⎪⎭⎫⎝⎛+-15281252 如果用球面坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Sin[fi]*Cos[t],y->r*Sin[fi]*Sin[t],z->r*Cos[fi]})*r^2*Sin[fi],{s,0,2Pi},{fi,0,Pi/4},{r,0,Sqrt[2]}]则输出π⎪⎪⎭⎫ ⎝⎛+-321662551这与柱面坐标的结果相同.重积分的应用例2.4 求由曲面()y x y x f --=1,与()222,y x y x g --=所围成的空间区域Ω的体积.输入Clear[f,g];f[x_,y_]=1-x -y;g[x_,y_]=2-x^2-y^2;Plot3D[f[x,y],{x,-1,2},{y,-1,2}] Plot3D[g[x,y],{x,-1,2},{y,-1,2}] Show[%,%%]一共输出三个图形, 最后一个图形是图2.1.首先观察到Ω的形状. 为了确定积分限, 要把两曲面的交线投影到Oxy 平面上输入 jx=Solve[f[x,y]==g[x,y],y] 得到输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-++→⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+-→22445121,445121x x y x x y为了取出这两条曲线方程, 输入 y1=jx[[1,1,2]] y2=jx[[2,1,2]] 输出为⎪⎭⎫ ⎝⎛-+-2445121x x⎪⎭⎫ ⎝⎛-++2445121x x再输入tu1=Plot[y1,{x,-2,3},PlotStyle->{Dashing[{0.02}]},DisplayFunction->Identity];tu2=Plot[y2,{x,-2,3},DisplayFunction->Identity]; Show[tu1,tu2,AspectRatio->1, DisplayFunction-> $DisplayFunction]输出为图2.2, 由此可见,1y 是下半圆(虚线),2y 是上半圆,因此投影区域是一个圆.设21y y =的解为1x 与2x ,则21,x x 为x 的积分限. 输入 xvals=Solve[y1==y2,x]输出为 ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→⎭⎬⎫⎩⎨⎧-→6121,6121x x 为了取出21,x x , 输入x1=xvals[[1,1,2]]x2=xvals[[2,1,2]]输出为()6121- ()6121+ 这时可以作最后的计算了. 输入V olume=Integrate[g[x,y]-f[x,y],{x,x1,x2},{y,y1,y2}]//Simplify 输出结果为 89π例2.5 (教材 例2.4) 求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 先调用软件包, 输入<<Graphics`ParametricPlot3D` 再输入CylindricalPlot3D[4-r^2,{r,0,2},{t,0,2 Pi}] 则输出图2.3.利用计算曲面面积的公式⎰⎰++=xyD y z dxdy z z S 221, 输入Clear[z,z1];z=4-x^2-y^2;z=Sqrt[D[z,x]^2+D[z,y]^2+1]输出为22441y x ++, 因此,利用极坐标计算. 再输入z1=Simplify[z/.{x->r*Cos[t],y->r*Sin[t]}]; Integrate[z1*r,{t,0,2 Pi},{r,0,2}]//Simplify则输出所求曲面的面积()π1717161+-例2.6 在Oxz 平面内有一个半径为2的圆, 它与z 轴在原点O 相切, 求它绕z 轴旋转一周所得旋转体体积.先作出这个旋转体的图形. 因为圆的方程是,422x z x =+它绕z 轴旋转所得的圆环面的方程为)(16)(222222y x z y x +=++,所以圆环面的球坐标方程是.sin 4φ=r 输入SphericalPlot3D[4 Sin[t],{t,0,Pi},{s,0,2 Pi},PlotPoints->30,ViewPoint->{4.0,0.54,2.0}]输出为图2.4.图2.4这是一个环面, 它的体积可以用三重积分计算(用球坐标). 输入 Integrate[r^2*Sin[t],{s,0,2 Pi},{t,0,Pi},{r,0,4 Sin[t]}] 得到这个旋转体的体积为216π计算曲线积分例2.7 (教材 例2.5) 求⎰Lds z y x f ),,(, 其中(),10301,,2y x z y x f ++=积分路径为L :,3,,22t z t y t x ===.20≤≤y注意到,弧长微元dt z y x ds t t t 222++=, 将曲线积分化为定积分,输入 Clear[x,y,z];luj={t,t^2,3t^2}; D[luj,t]则输出z y x ,,对t 的导数 }6,2,1{t t再输入ds=Sqrt[D[luj,t].D[luj,t]];Integrate[(Sqrt[1+30 x^2+10y]/.{x->t, y->t^2,z->3t^2})*ds,{t,0,2}]则输出所求曲线积分的结果:326/3.例2.8 (教材 例2.6) 求dr F L.⎰, 其中.20,sin cos 2)(,)2(356π≤≤+=++=t tj ti t r j xy x i xy F输入vecf={x*y^6,3x*(x*y^5+2)};vecr={2*Cos[t],Sin[t]};Integrate[(vecf.D[vecr,t])/.{x->2Cos[t],y->Sin[t]}, {t,0,2 Pi}]则输出所求积分的结果12π例2.9 求锥面0,222≥=+z z y x 与柱面x y x =+22的交线的长度.先画出锥面和柱面的交线的图形. 输入g1=ParametricPlot3D[{Sin[u]*Cos[v], Sin[u]*Sin[v], Sin[u]}, {u,0,Pi},{v,0,2Pi},DisplayFunction->Identity]; g2=ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],z}, {t,0,2Pi},{z,0,1.2}, DisplayFunction->Identity]; Show[g1,g2,ViewPoint->{1,-1,2},DisplayFunction->$DisplayFunction]输出为图2.5.输入直接作曲线的命令ParametricPlot3D[{Cos[t]^2,Cos[t]*Sin[t],Cos[t]},{t,-Pi/2,Pi/2}, ViewPoint->{1,-1,2},Ticks->False]输出为图2.6.为了用线积分计算曲线的弧长, 必须把曲线用参数方程表示出来. 因为空间曲线的投影曲线的方程为x y x =+22, 它可以化成t x 2cos =,,sin cos t t y =再代入锥面方程222z y x =+, 得[]().2/,2/cos ππ=∈=t t z因为空间曲线的弧长的计算公式是()()()⎰'+'+'=21222t t dt t z t y t x s ,因此输入Clear[x,y,z]; x=Cos[t]^2; y=Cos[t]*Sin[t]; z=Cos[t]; qx={x,y,z};Integrate[Sqrt[D[qx,t]. D[qx,t]]//Simplify, {t,-Pi/2,Pi/2}]输出为 2Elliptice[-1]这是椭圆积分函数. 换算成近似值. 输入 %//N 输出为3.8202计算曲面积分例2.10 (教材 例2.7) 计算曲面积分⎰⎰∑++dS zx yz xy )(, 其中∑为锥面22y x z +=被柱面x y x 222=+所截得的有限部分.注意到,面积微元dxdy z z dS y x 221++=, 投影曲线x y x 222=+的极坐标方程为,22,cos 2ππ≤≤-=t t r将曲面积分化作二重积分,并采用极坐标计算重积分.输入Clear[f,g,r,t];f[x_,y_,z_]=x*y+y*z+z*x; g[x_,y_]=Sqrt[x^2+y^2];mj=Sqrt[1+D[g[x,y],x]^2+D[g[x,y],y]^2]//Simplify; Integrate[(f[x,y,g[x,y]]*mj/.{x->r*Cos[t],y->r* Sin[t]})*r,{t,-Pi/2,Pi/2},{r,0,2Cos[t]}]则输出所求曲面积分的计算结果15264例2.11 计算曲面积分,333dxdy z dzdx y dydz x ++⎰⎰∑其中∑为球面2222a x y x =++的外侧.可以利用两类曲面积分的关系, 化作对曲面面积的曲面积分⎰⎰∑nds A .. 这里{}{}a z y x n z y x A /,,,,,333==. 因为球坐标的体积元素,sin 2θϕϕd drd r dv =注意到在球面∑上a r =, 取1=dr 后得到面积元素的表示式:().20,0sin 2πθπϕθϕθ≤≤≤≤=d d a ds把对面积的曲面即直接化作对θϕ,的二重积分. 输入Clear[A,fa,ds]; A={x^3,y^3,z^3}; fa={x,y,z}/a; ds=a^2*Sin[u];Integrate[(A.fa/.{x->a*Sin[u]*Cos[v],y->a*Sin[u]*Sin[v], z->a*Cos[u]})*ds//Simplify,{u,0,Pi}, {v,0,2Pi}]输出为855122πa如果用高斯公式计算, 则化为三重积分()d v z y x ⎰⎰⎰Ω++2223, 其中Ω为2222a z y x ≤++.采用球坐标计算, 输入<<Calculus`VectorAnalysis` 执行后再输入SetCoordinates[Cartesian[x,y,z]]; (*设定坐标系*) diva=Div[A]; (*求向量场的散度*)Integrate[(diva/.{x->r*Sin[u]*Cos[v],y->r*Sin [u]*Sin[v],z->r*Cos[u]})*r^2Sin[u],{v,0,2Pi}, {u,0,Pi},{r,0,a}]输出结果相同.实验习题 1. 计算⎰⎰-6/02/0.sin sin ππydydx x x y2. 计算下列积分的近似值: (1)();cos 022dydx y x ⎰⎰-ππ(2)().sin 1010dydx e xy ⎰⎰3. 计算下列积分 (1)();23012dydzdx z y e x x z xz x -⎰⎰⎰+- (2)⎰⎰1010.)arctan(dydx xy4. 交换积分次序并计算下列积分 (1)()d ydx y x x⎰⎰30922cos . (2) .20422dxdy e yx ⎰⎰5. 用极坐标计算下列积分: (1) ;10122dydx y x yx ⎰⎰+ (2) .13/3/22dxdy yx y y y ⎰⎰-+6. 用适当方法计算下列积分:(1)(),2/3222dv zy x z⎰⎰⎰Ω++ 其中Ω是由22y x z +=与1=z 围成;(2),)(224dv z y x++⎰⎰⎰Ω其中Ω是.1222≤++z y x7. 求()ds z y x f L⎰,,的近似值. 其中(),51,,33y x z y x f ++=,路径L :3/,2t y t x ==,.20,≤≤=t t z8. 求⎰L dr F ., 其中().0,sin cos ,121322π≤≤+=+++=t tj ti t r j y i x F 9. 用柱面坐标作图命令作出xy z =被柱面122=+y x 所围部分的图形,并求出其面积.86 10. 求曲面积分,22zdxdy y x⎰⎰∑其中∑为球面2222a z y x =++的下半部分的下侧.11. 求曲面积分⎰⎰∑++zdS y x ,其中∑为球面2222a z y x=++上)0(a h z <<≥的部分.。

《数学分析》(2)复习多元函数积分解读

《数学分析》(2)复习多元函数积分解读

数学分析(2)——多元函数积分学
四、第一类曲面积分的计算 计算方法:一投、二代、三变换
若曲面 : z z(x, y)
则 f ( x, y, z)dS
f [ x, y, z( x, y)] 1 zx2 zy2dxdy;
Dxy
类似还有两个公式.
练习
数学分析(2)——多元函数积分学
1. 计算 ( x y z)dS
S
其中为上半球面z R2 x 2 y2 .
2. 计算 ( x2 y2 z)dS, 为立体 x2 y2 z 1的边界.
数学分析(2)——多元函数积分学
五、第二类曲线积分的计算 格林公式
1.基本方法: 由积分曲线的表达式确定定积分的积分变量, 将积分曲线代入被积表达式, 定积分定限:起点对应下限,终点对应上限.
《数学分析》(2)复习
★ 多元函数积分学 ★
(课本 ch19,ch20,ch21,ch22)
考试要求
数学分析(2)——多元函数积分学
1.二重积分的计算(直角坐标,极坐标),二次积 分交换积分次序,三重积分的计算(直角坐标,柱面坐 标,球面坐标),利用对称性计算重积分
2.第一类曲线积分与第一类曲面积分的计算
2.利用格林公式
Q P
L
Pdx
Qdy
(
D
x
y
)dxdy
其中 L 是 D 的整个正向边界曲线.
技巧:不闭则补,出奇则挖
3.利用曲线积分与路径无关的条件
练习
数学分析(2)——多元函数积分学
1.已知 L 为圆周 x2y22y 上从原点 O 按逆时针方向到点 A(0,2) 的圆弧, 计算
I (ey sin x y)dx (1 ey cos x)dy. L

2多元函数积分学.docx

2多元函数积分学.docx

2.多元函数积分学K考试内容》(数学一)二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用K考试要求》(数学一)1 •理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。

3•理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

4.掌握计算两类曲线积分的方法。

5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。

会用高斯公式、斯托克斯公式计算曲面、曲线积分。

7.了解散度与旋度的概念,并会计算。

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

K考试要求』(数学二)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

K考试要求》(数学三)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

2.了解无界区域上较简单的广义二重积分及其计算。

K考试要求》(数学四)同数学三2.多元函数积分学K知识点概述H 2. 1二重积分基本概念:定义、基本性质计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区域;&型简单区域)一般变换法几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量2. 2三重积分基本概念:定义、基本性质计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域投影法(先定积分后二重积分)截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法儿何应用:体积物理应用:质量、质心、转动惯量、引力2. 3曲线积分第一类曲线积分基本概念:定义、基本性质计算方法:参数化法儿何应用:弧长物理应用:质量、质心、转动惯量、引力第二类曲线积分基本概念:定义、基本性质计算方法:参数化法曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形);全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系2. 4曲而积分第一类曲面积分基本概念:定义、基本性质计算方法:投影法(向xoy 平面投影;向yoz 平面投影;向zox 平面投影)儿何应用:曲面面积 物理应用:质量、质心、转动惯量、引力第二类曲面积分基本概念:定义、基本性质计算方法:有向投影法(各向投影;单向投影);化成第一类曲面积分;高斯公式;斯托克斯公式物理应用:通量第一类曲面积分与第二类曲面积分的联系K 典型例题一二重积分H例1 (91103)设D 是XOY 平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,®是D 在第 一象限部分,则 jjp (xy + cosxsin y)dxdy =()K 注》二重积分的对称性例2计算力dy,其中D 是由直线兀=-2,y = 0,y = 2以及曲线兀= -(2y- y 2所围成的平而区域K 注》平面区域的重心(质心)变式1计算Jjp(x+刃加/y,其中: 2以+》2 < y +1例3计算血(手+評如),,其中D :X 2 + y 2 </?2 (/?>0)注1极坐标法是计算二重积分的重要方法变式 1 计算 JJ^ln(x 2+ y 2 yixdy ,其中 D: x 2 + y 2 < 1 变式2计算吕-和如其中D :名+着「注2二重积分的轮换对称性变式3计算H (斗+其)必〃y ,其中D:x 2 + y 2<R 2 (/?>0) H D a 2 b 2(B) 2血 xydxdy (A)cosxsin ydxdy (C) (xy + cos x sin y)dxdy (D) 0x » 0, y 2 0上的正值连续函数例 4 (94103)计算 JJ D + xf(x 2 + y 2)]dxdy ,其中 D 由直线 y = x,y = -\,x = \ 围成,f 为连续函数 变式 1 (01306)计算 J.y [l +兀+〉)]dxdy ,其中 D 由直线 y = x.y =-l,x = 1^成 例 5(02107)计算 JJ 创曲{兀2,护}必労,其中 p = {(X5y ):o<x<l,O<y<l}变式 1 计算^D x 2dxdy ,其中 D: x 4 + y 4 < 1 变式 2 (95305)计算 jj /?2 min{x,y}e-^2^y 2)dxdy ,其中 M 为整个 xoy 平面 例6计算Z = J ■:必产号%‘注将二重积分化成二次积分计算时,确定积分次序是关键变式1计算心恥J 謬字变式2计算I = ff^sin y 2dxdy ,其中D 由y = x, y =五及Y 轴围成变式3计算/二J 診rj ; 了——dy , f\x)在[0, a ]连续u J(d-x)(x- y)例7设/(兀)在[0,1]上连续,证明J :闵:/(兀)/()曲=*[仃(兀)〃兀]2例 8 求在 D:x 2 + y 2 < y 9x>0上连续的 /(x,刃,使 /(x,y) = Jl-x 2一)2 一却需/仏*)dud\ 例9 (97306)求/(/),使得/⑴在[0,2)上连续,且满足方程 f ⑴=e 伽2 + 几2+严 <4,2 f(yx 2 + y 2)dxdy例]0 (00406)设 f(x,y)=<X "求 /(x, y)dxdy ,其中 D:x 2 + y 2 > 2x 0, 他变式 1 (05111)计算二重积分仏巩1 + %2 + y2]Jxdy ,其中 D :x 2 + y 2 < 72,x> 0, y > 0,[1 +兀2 +y2]表示不超过1 +兀2 + y2的最大整数变式4 (05204)计算血aj/(兀)+bj/(y) z/xdy ,其中 为常数,/(x)为£>:%2 + ^2 <4,变式 2 (05209)计算二重积分血| 兀 2+y2_i/dy,其中 D = {(x,y):O<x<l,O<y<l}K 典型例题一三重积分H例1 (88203)设有空间区域V1 : x 2 + y 2 + z 2 < /?2,z > 0 , V2 :x 2 + y 2 +z 2 < /?2,x>0, y >0,z>0,贝!J ()⑷ JJJy xdxdydz = 4川xdxdydz (B) JJ. ydxdydz = ydxdydz(0 zdxdydz = 4出” zdxdydz (D) xyzdxdydz = xyzdxdydz 注三重积分的对称性 例 2 计算 J%兀,其中 V : x 2 + y 2 + z 2 < /?2,x > 0,>?> 0,z > 0 (/? > 0)解一:投影法解二:截面法解三:柱坐标变换法解四:球坐标变换法,2 n 变式1用截面法计算出“如皿,其中V:^- + -p- + ^-<l,z>0变式 2 利用对称性计算^^x-dxdydz ,其中 V : x 2 + y 2 4- z 2 < /?2,z > 0 (7? > 0)dxdydz (l+|x| + |y| + |z|)3 例 4 计算 (x + y + z)dxdydz ,其中 V : 2以+3y2 + 么2 5 z注空间区域的重心(质心)变式 1 设 /⑴可导,V :以 +『2 + z2 w/2 , = /(x 2 +y2 + z^)dxdydz,求 F'(/) 例 6 (03112)设/(r)为正值连续函数,V(t):x 2 + y 2 + z 2 <t 2 , D(t):x 2 + y 2<r 2, 肛⑴ /X + y 2 + z2 Zdxdydz血初 f(x 2 + y 2)dxdy F ⑴ JJ D(Z) /(x 2 + y 2)dxdy (1)讨论F(f)在(0,+oo)内的单调性(2)证明(>0时,F(r)>-G(r)71 K 典型例题一曲线积分与曲面积分H例1计算#厶(2兀2+3y2)〃$ ,其中厶:兀2 + y2 = 2(兀+y)解一:参数化法 解二:利用曲线积分的对称性变式1计算+ yz + xz)d$ ,其中厶为球面兀2 +y2 +z2 =]与平面乂+y + z 二0的交线例3计算皿 其中 V:|x| + |y| + |z|<l例5设/⑴可导, /(0) = 0, V :兀2 + y2 + z2 5/2 求 Ii m+ y2 + z 2)dxdydz f_t f(x 2)dx变式2计算#/2ds ,其中厶为球面兀2 +歹2 + z2 =以与平面兀+ + z = 0的交线例2 计算(x2 + y)dS 9其中S: x2 + y2=a^fi<z< h.a > 0解一:投影法解二:利用曲面积分的对称性例3 (87103)计算(2xy-2y)dx4-(x2 -4x)dy,其中L:x2 + y2 =9取正向(逆时针方向)解一:参数化法解二:格林公式例4 (03110)己知平面区域£)= {(x,y):0<x<^, 0<y<7r},厶为其正向边界,试证(1 )彳厶壮sin yjy _ y^-sin x(}x = #厶壮-sin y dy - ye s^n X dx , ( 2 ) #厶xe sin ydy - >^_sin X dx > 2兀2解一:参数化法解二:格林公式例5 (97105)计算(z - y)dx + (x - z)dy 4- (x - y)dz ,其中L x2 + y2 = 1与平面x-y + z = 2的交线,从Z轴正向往Z轴负向看厶的方向是顺时针正向解-:参数化法解二:斯托克斯公式例6 (00106)计算i r Xdy~ycb",其中厶是以点(1,0)为中心,半径为R(R > 1)的圆周,JL 4兀2 +y2取逆时针方向例7 (98106)确定常数使在右半平面x>0上的向量A(x,y) = 2xy(x4 + y2)a i -x2(x4 + y2)a j为某二元函数u(x9y)的梯度,并求u(x9y)解一:曲线积分法解二:不定积分法变式1(05112)设函数0(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线厶上, 曲线积分£俠鑒身晋的值恒为同一常数。

04高数——多元函数积分学知识点速记

04高数——多元函数积分学知识点速记

多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。

若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。

2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。

若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。

高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。

多元函数积分学总结

多元函数积分学总结

多元函数积分学总结引言多元函数积分学是微积分的一个重要分支,研究的是多个变量的函数在特定区域上的积分计算和性质。

在实际问题中,我们经常需要求解多元函数的积分,以求得面积、体积、质量等物理量。

本文将对多元函数积分学的基本概念、计算方法和应用进行总结和介绍。

一、多元函数积分的基本概念1. 二重积分二重积分是多元函数积分学中最基本的概念之一。

它表示在二维平面上的一个有界区域上对函数进行积分。

二重积分的计算可以通过投影到坐标轴上的两个一元积分来实现。

根据积分区域的形状和函数性质的不同,二重积分可以分为类型I和类型II两种。

•类型I:积分区域为矩形、正方形或一般的可由直线分割成有限个矩形的区域。

•类型II:积分区域不属于类型I的情况,一般需要进行变量替换或极坐标转化来简化计算。

2. 三重积分三重积分是对三维空间内的函数进行积分。

它可以用于计算体积、质量、重心等与物体形状和密度有关的物理量。

三重积分的计算方法较为复杂,一般需要采用适当的坐标变换或者使用球坐标、柱坐标等不同坐标系下的积分公式来进行计算。

二、多元函数积分的计算方法1. Fubini定理Fubini定理是多元函数积分计算的基础定理之一。

它建立了二重积分和三重积分之间的关系,使得计算复杂多元函数积分时可以拆分为若干个简单的积分。

Fubini定理主要有两种形式:对于矩形区域上的二重积分,可以通过交换积分次序将其转化为两次一元积分。

对于空间区域上的三重积分,也可以利用类似的方法进行计算。

2. 极坐标和球坐标对于具有相关几何特性的问题,使用极坐标和球坐标可以简化多元函数积分的计算过程。

极坐标常用于计算平面上的二重积分,而球坐标常用于计算空间中的三重积分。

通过引入极坐标或球坐标的坐标变换,我们可以将原积分区域变换为一个更简单的形式,从而简化积分计算。

在实际应用中,灵活运用极坐标和球坐标可以大大提高计算效率。

三、多元函数积分的应用多元函数积分在物理学、工程学、经济学等领域有广泛的应用。

多元函数积分学

多元函数积分学

多元函数积分学是数学的一个分支,它是对多元函数进行积分的理论。

与一元函数积分学相比,它更加复杂,但它为我们研究物理学、工程学和其他自然科学问题提供了更强大的工具。

在本文中,我将介绍的一些基本理论,包括重积分、极坐标变换、格林公式等。

一、重积分重积分是的基本概念,它是对多元函数在某一区域上的积分。

重积分可以表示为Riemann积分或Lebesgue积分两种形式,具体形式与多元函数的性质有关。

在Riemann积分中,我们将区域分成有限个小区域,对每个小区域内的多元函数进行积分,最后将积分结果相加。

而在Lebesgue积分中,我们采用测度的概念,将多元函数的定义域分成不可数个小区域,在每个小区域上定义一个测度,对多元函数在每个小区域内的值进行加权积分,最后求出所有小区域上的积分和即为整个区域上的积分。

重积分在物理学和工程学中有着广泛的应用,例如计算物体的体积、求解场的强度等。

同时,重积分也是进一步研究多元函数性质的基础。

二、极坐标变换极坐标变换是一种将平面直角坐标系上的点表示为极径和极角的变换。

它可以将一些复杂的函数转化为简单的极坐标函数,使得对多元函数进行积分更加方便。

在极坐标系中,被积函数可以表示为一个积分项和一个积分域,积分项为正态函数,积分域为从 $0$ 到 $2\pi$ 的一个闭区间和一个在某个圆内部的有界区域,在这个有界区域上的积分相当于在平面直角坐标系上的二重积分。

因此,我们可以使用积分转化公式将多元函数在极坐标系中的积分转化为在平面直角坐标系中的二重积分。

极坐标变换在数学中有着广泛的应用。

例如,对于一个椭球体积的计算,使用极坐标变换可以将三维积分转化为二维积分,更加方便计算。

三、格林公式格林公式是中的一个重要定理,它是关于多元函数的一个等式,用于计算曲面积分和线积分之间的关系。

在平面上,格林公式是一个计算平面上曲线积分和面积的公式,它表明二元函数在解析条件下,其在一个闭合路径内的曲线积分等于该函数在这个区域内的面积积分。

微积分II(甲)多元函数积分学练习

微积分II(甲)多元函数积分学练习

微积分II (甲)多元函数积分学练习题一、二重积分 1.计算二重积分22d Dx yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.4.计算二重积分2,{(,)1,02}Dy xd D x y x y σ-=≤≤≤⎰⎰5.用极坐标计算Dσ⎰⎰,其中D 为{}22(,)|4,0,0x y x y x y +≤≥≥.6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心.二、三重积分 11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。

多元函数积分学

多元函数积分学
(3)规定
( 4)

(5)如果 是分段光滑的:
,则

(6)如果 是封闭曲线,特记为 。
所围成的区域。
解二:画出积分区域的草图。 因为 D虽然是 X----型区域,但由于在定限时,第一次积分的上、下限发生了一次
改变,故不得已对 D进行分块。(作图:用直线
将 D分成
其中,

于是,有

注意;由例 2可见,对此题,虽然两种积分次序都可行,但第二种显然更麻烦。我们说有些 时候,就不仅仅是麻烦的问题了,如果积分次序选得不合适,可能做不出来。请看下面的
解:(1)这里
。画出草图如右。
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为三块:
,则
其中,


于是,有:
例 9。对 (1)画出积分区域的草图;(2)更换积分次序。
解:(1)这里 记

。分别画
出草图如右。则
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为四块:
,所以,
3.由积分中值定理,知:
注意:(6)关于重积分的对称性 (i)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
为奇,则
=0;
关于 y(或 X)
(ii)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
关于 y(或 X)
为偶,则
(其中, 为 D的上(右)一半区域)。
三.二重积分的计算 (一)利用直角坐标计算二重积分
的上、下限; (三)。计算累次积分。 注意:选择积分次序的原则 (一)。选择的积分次序使积分区域 D尽可能的少分块,以简化计算过程。 (二)。第一次积分的上、下限表达式要简单,并且容易根据第一次计算的结果作第二 次积分。 (三)。确定上、下限是重积分的关键。

微积分II(甲)多元函数积分学练习解答

微积分II(甲)多元函数积分学练习解答

微积分II (甲)多元函数积分学练习题解答1.计算二重积分22d D x yσ⎰⎰,其中D 是由1,,2y x y x x ===所围成的闭区域. 解:222121x xDx xyd dx dy y σ=⎰⎰⎰⎰ ()231124x x dx =-=⎰ 2.计算二重积分Dxyd σ⎰⎰,其中D 是由直线2y y x ==、和2y x =所围成的闭区域.解:202yy Dxyd dy xydx σ=⎰⎰⎰⎰2234003338322y dy y ⎛⎫=== ⎪⎝⎭⎰ 3. 作出积分区域的图形,交换积分次序,计算10dy ⎰.解:21021)9x I dx ==⎰⎰4.计算二重积分2,{(,)Dy xd D x y x σ-=≤⎰⎰ 解: 12D D D =⋃(1D 是所有阴影部分面积)12222DD D y x d y x d y x d σσσ-=-+-⎰⎰⎰⎰⎰⎰()()2211222101x xdx x y dy dx y x dy --=-+-⎰⎰⎰⎰11424111146(22)2215x dx x x dx --=+-+=⎰⎰. 5.用极坐标计算Dσ⎰⎰,其中D 为{22(,)|4,0,0x y x y x y +≤≥≥.解:32233220cos cos =cos cos =4DDDr r rdrd r drd d r dr d r dr ππσθθθθθθθθ=⋅⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰6. 设D 为闭区域22{(,)|2}x y x y y +≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.2解:I=2sin 0(cos ,sin )d f r r rdr πθθθθ⎰⎰.7. 设D 为闭区域22{(,)|2,}x y x y x y x +≤≤,将二重积分(,)Df x y d σ⎰⎰化为极坐标下的累次积分.解:I=2cos 402(cos ,sin )d f r r rdr πθπθθθ-⎰⎰.8. 利用二重积分计算由曲面22z x y =+和平面1z =所围成的立体的体积. 解 设所求体积为V ,则有=V ()221Dxy d σ--⎰⎰,其中 (){}22,1D x y xy =+≤,于是=V ()()22211D Dxy d r rdrd σθ--=-⎰⎰⎰⎰=()212012d r rdr ππθ-=⎰⎰.9.求由三个坐标面和平面1=+y x 及抛物面z y x -=+622所围立体的体积. 解 设所求体积为V ,则有=V ()⎰⎰--Dd y xσ226,其中 (){}x y x y x D -≤≤≤≤=10,10,,于是=V ()⎰⎰--Dd y xσ226=()112206x dx xy dy ---⎰⎰()1323011766136x x x x dx ⎡⎤=--+--=⎢⎥⎣⎦⎰10.求由()π≤≤=x x y 0sin 与0=y 所围的均质薄板的质量中心. 解 设该薄板所在区域为D ,则 该均质薄板的面积为 0sin 2S xdx π==⎰,又有 sin 00x Dxd dx xdy πσπ==⎰⎰⎰⎰, 及sin 04x Dyd dx y dy ππσ==⎰⎰⎰⎰,由均质平面薄片的质量中心公式可得所求质量中心坐标为⎪⎭⎫⎝⎛8,2ππ.二、三重积分11. 求xydV Ω⎰⎰⎰,其中Ω为1x y +=,1z =与三个坐标面所围成的三棱柱体.解xydV Ω⎰⎰⎰111x dx dy xydz -=⎰⎰⎰=1100x dx xydy -⎰⎰()120111224x x dx =-=⎰. 12. 求()⎰⎰⎰Ω+++dV z y x 311,其中Ω为三个坐标面与平面1=++z y x 所围成的四面体.解 ()⎰⎰⎰Ω+++dV z y x 311()111300011x x y dx dy dz x y z ---=+++⎰⎰⎰ =()1121318821x dx x dy x y -⎡⎤-+⎢⎥++⎢⎥⎣⎦⎰⎰()1013115ln 2218828x dx x ⎡⎤⎛⎫=-+=-⎢⎥ ⎪+⎝⎭⎣⎦⎰. 13.计算下列三重积分⎰⎰⎰Ω+dV y x z 22 ,其中Ω由22z x y =+及平面1z =围成. 解 Ω在z xoy =平面上的投影区域为22{(,)1}x y x y +≤ 可用柱面坐标计算:221211122200012401224(1).21r r d r dr zdz r dr z r r dr πθπππΩ⎛⎫== ⎪⎝⎭=-=⎰⎰⎰⎰⎰⎰⎰⎰ 14. 计算,⎰⎰⎰ΩzdV 其中Ω是由球面4222=++z y x 与抛物面z y x 322=+所围成(在抛物面内的那一部分)的闭区域.解 球面4222=++z y x 与抛物面z y x 322=+的交线为2222243x y z x y z⎧++=⎪⎨+=⎪⎩ 从中解得两曲面交线为,1=z 223x y +=,Ω在xOy 面上的投影区域为:D ,30≤≤r πθ20≤≤,利用柱面坐标,对投影区域D 内任一点),,(θr 有2243r z r -≤≤, 所以I 23r DzdV rdrd θΩ==⎰⎰⎰⎰⎰⎰2203r d zdz πθ=⋅⎰⎰⎰π413=. 15.计算()d V z y x⎰⎰⎰Ω++222,其中Ω是球体1222≤++z y x .解()⎰⎰⎰⎰⎰⎰ΩΩ=++θϕρϕρd d d dV z y xsin 42222140004sin 5d d d ππθϕϕρρπ==⎰⎰⎰16. 计算球体22222a z y x ≤++在锥面22y x z +=上方部分Ω的体积.解 在球面坐标系中, :Ω,20a r ≤≤,40πϕ≤≤πθ20≤≤,故所求体积V ⎰⎰⎰Ω=dV 224sin d d d ππθϕρϕρ=⎰⎰⎰340)2sin 3d ππϕϕ=⋅⎰.)12(343a -=π 17.求由曲面)0(2222>=++a az z y x 及222z y x =+(含有z 轴部分)所围成空间的体积.解 在球面坐标下计算⎰⎰⎰⎰⎰⎰ΩΩ==θϕρϕρd d d dV V sin 222cos 24sin a d d d ππϕθϕϕρρ=⎰⎰⎰3334082cos sin 3a d a ππϕϕϕπ==⎰.18. 立体Ω是圆柱面122=+y x 内部, 平面2=z 下方, 抛物面221y x z --=上方部分, 其上任一点的密度与它到z 轴之距离成正比(比例系数为K ), 求Ω的质量m .解 据题意得,密度函数为,),,(22y x K z y x +=ρ所以.),,(22⎰⎰⎰⎰⎰⎰ΩΩ+==dV y x K dV z y x m ρ利用柱面坐标,先对z 积分,Ω在xOy 平面上投影域D 为},1),({22≤+=y x y x D故222212122001()r Dr m Kr rdrd dz K r drd dzK d r dr dzπθθθ-Ω-===⎰⎰⎰⎰⎰⎰⎰⎰⎰1220162(1)15KK r r dr ππ=+=⎰. 三、曲线积分19. 计算⎰Γxdl ,其中 Γ是由x y =和2x y = 围成的区域的整个边界。

多元函数积分学

多元函数积分学

多元函数积分学多元函数积分学是一门研究多元函数及其应用的数学分支。

这门学科涉及多变量函数的积分、定积分、无穷积分以及分析在多变量函数上的积分问题。

在多元函数积分学中,多元函数的定义以及它们的性质是基本的。

它们可以在任何给定的多元函数空间中定义,是多元函数积分学的基本概念和研究的重要内容。

多元函数积分学的主要任务是研究多变量函数的积分问题。

在多元函数积分学中,多变量函数积分可以分为定积分和无穷积分两类。

定积分是指在给定积分问题的多变量函数中求解积分,它一般包括一元函数积分、二元函数积分、多变量函数的积分和曲线的积分等。

它可以使用多种方法求解,比如高斯积分、梯形积分、拉斯维加斯积分以及蒙特卡罗积分等。

而无穷积分则是指在多变量函数中对积分域上的数学函数进行积分,它可以使用泰勒级数展开、拉普拉斯变换、拉格朗日变换等进行求解。

多变量函数积分与一元函数积分也有不同之处。

一元函数积分是指积分域上的一元函数,这是一种非常直观的概念,我们可以使用经典的定积分方法来解决一元函数的积分问题。

而多变量函数积分则不同,因为它需要考虑多变量函数的复杂性,在求解多变量函数积分时,我们需要考虑几何图形及其各种变换,这为求解多变量函数积分提出了新的问题。

另外,多变量函数积分学还涉及空间几何的概念,它的主要任务是研究多变量函数的空间性质,比如曲面的概念、曲面的法线、曲线的曲率等。

这些涉及空间几何的概念,可以帮助我们更深入地理解多元函数的积分过程,从而更加深入地研究多元函数积分的性质和特性。

多元函数积分学的研究主要是为了理解多变量函数的性质和特征,从而使用多元函数更好地描述现实中的现象和事物。

它也为研究多变量函数的更复杂的应用如无限维空间函数提供基础,比如用多元函数积分来研究抽象代数结构,研究计算机图形学相关的概念等。

因此,多元函数积分学是一门重要的学科,它是理解多元函数的性质和特征的基础。

它不仅为许多应用提供了理论依据,而且还可以帮助我们更深入地理解多元函数的性质和特征,从而更加深入地研究多元函数的积分和抽象代数结构。

高等数学-二元函数积分学

高等数学-二元函数积分学

8
1、曲顶主体的体积
第六章 多元函数积分学
上面的问题把所求量归结为和式的极限. 由于在物理、力学、几何和工程中 技术中,许多的物理量和几何量都可以用这样的和式的极限来表示,所 以 有 必 要研究这种和式的极限的一般形式,我们从上述从表达式中抽象出下面的二重积 分的定义.
9
2、二重积分的概念
第六章 多元函数积分学
定义 设 f (x, y) 是平面闭区域 D 上的有界函数,将 D 任意分割成 n 小块:
D1, D2, Dn ,记第 i 块的面积为 i (i 1, 2, .n) ,在第 i 块上任取一点 (xi , yi )
(见图 6-4),
y
图 6-4
n

i 1
f (xi , yi ) i ,取
max
1in
x2
y2
z2
1,
z0
即为区域 D 的边界曲线: 上半球面所对应的方程为
x2 y2 1.
z 1 x2 y2 .
D
f (x, y) 0 时,对应的二重积分是负值,故曲顶柱体的体积V 2、二重积分的概念
第六章 多元函数积分学
例 1 用二重积分表示上半球体 x2 y2 z2 1, z 0 的体积,并写出积分区域.
解 首先上半球体 x2 y2 z2 1与 xOy 面的交线
课前导读
作为一元函数的定积分有许多应用,但仍有许多问题无法处 理,比如,在定积分的应用中,我们计算了旋转体的体积、并作了 已知截面求体积. 但对一般形状的物体,用定积分求其体积就显 得困难.因此我们需要用二重积分来解决此类问题.
5
课前导读
在学习二重积分的时候,注意和定积分的相关概念之间的区别 与联系. 与定积分类似,二重积分的概念也是从实践中抽象出来的, 它是定积分的推广,其中的数学思想与定积分一样,也是一种“和式 的极限”. 所不同的是:定积分的被积函数是一元函数,积分范围是 一个区间;而二重积分的被积函数是二元函数,积分范围是平面上的 一个区域. 它们之间存在着密切的联系,二重积分可以通过定积分来 计算.

多元函数积分学总结

多元函数积分学总结

多元函数积分学总结引言多元函数积分学是微积分的重要分支,研究具有多个变量的函数的积分。

它在物理、工程、经济学等领域都有广泛的应用。

本文旨在总结多元函数积分学的基本概念、技巧和应用。

一、多重积分1.二重积分二重积分即对二元函数在一个有界区域上的积分。

它可以通过将区域分割成小的矩形,并在每个矩形中求函数值乘以该矩形的面积,再将所有矩形的面积相加而得到。

二重积分的计算可以使用极坐标、换元法等方法来简化计算过程。

2.三重积分三重积分即对三元函数在一个有界区域上的积分。

类似于二重积分,三重积分可以通过对区域进行分割,并在每个小的立体元中求函数值乘以立体元的体积,再将所有立体元的体积相加而得到。

三重积分的计算可以使用柱坐标、球坐标等方法来简化计算过程。

3.多重积分的性质–可加性:多重积分具有可加性,即对于函数的积分,可以将区域分割成多个子区域,分别在每个子区域上计算积分,再将这些积分相加。

–定积分的值与路径无关:对于连续函数,在一个闭合曲线上的积分与路径无关,只与路径所围成的区域有关。

二、重要定理1.Fubini定理Fubini定理是二重积分和三重积分的重要定理,它可以将多重积分转换为一重积分的形式,简化积分计算的过程。

2.Green公式和Stokes定理Green公式和Stokes定理是两个重要的向量积分定理。

它们描述了曲线积分和曲面积分与散度、旋度之间的关系。

3.Gauss公式Gauss公式是一个重要的体积积分定理,它表明了三维空间中的散度与体积分之间的关系。

这个定理在电磁学和流体力学中有广泛的应用。

三、应用实例1.质量和质心多重积分在质量和质心的计算中有广泛的应用。

通过将物体划分为无穷小的微元,可以通过多重积分计算物体的总质量和质心的位置。

2.引力和电场的计算在物理学中,多重积分可以用于计算引力和电场的作用。

通过计算物体上的质量或电荷在空间中的分布,可以使用多重积分来求解引力或电场的强度。

3.概率密度函数和统计分析在概率论和统计学中,概率密度函数描述了随机变量的概率分布。

考研数学二(多元函数积分学)模拟试卷22(题后含答案及解析)

考研数学二(多元函数积分学)模拟试卷22(题后含答案及解析)

考研数学二(多元函数积分学)模拟试卷22(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处( )A.△z=dz。

B.△z=fx’(x0,y0)△x+fy’(x0,y0)△y。

C.△z=fx’(x0,y0)dx+fy’(x0,y0)dy。

D.△z=dz+o(ρ)。

正确答案:D解析:由于z=f(x,y)在点(x0,y0)处可微,则△z=fx’(x0,y0)△x+fy’(x0,y0)△y+o(ρ)=dz+o(ρ),故选D。

知识模块:多元函数微积分学2.设函数z(x,y)由方程=0确定,其中F为可微函数,且F2’≠0,则=( ) A.x。

B.z。

C.一x。

D.一z。

正确答案:B解析:对已知的等式两边求全微分可得即正确选项为B。

知识模块:多元函数微积分学3.设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。

A.f’’(0)<0,g’’(0)>0。

B.f’’(0)<0,g’’(0)<0。

C.f’’(0)>0,g’’(0)>0。

D.f’’(0)>0,g’’(0)<0。

正确答案:A解析:由z=f(x)g(y),得而且=f(0)g’(0)=0,f(0)>0,g(0)<0,当f’’(0)<0,g’’(0)>0时,B2一AC<0,且A>0,此时z=f(x)g(y)在点(0,0)处取得极小值。

因此正确选项为A。

知识模块:多元函数微积分学4.设平面D由x+y=,x+y=1及两条坐标轴围成,I1=ln(x+y)3dxdy,I2=(x+y)3dxdy,I3=sin(x+y)3dxdy,则( )A.I1<I2<I3。

考研数学二(多元函数积分学)模拟试卷25(题后含答案及解析)

考研数学二(多元函数积分学)模拟试卷25(题后含答案及解析)

考研数学二(多元函数积分学)模拟试卷25(题后含答案及解析) 题型有:1.jpg />,其中区域,求f(x,y,z)的表达式.正确答案:设两端积分有而解得,即解析:本题考查三重积分的概念和计算.三重积分的结果为数值,令,再将等式两端进行积分,根据等式的右端项的特点,分别利用柱面坐标和先二后一法计算比较简单.知识模块:多元函数积分学3.计算正确答案:由已给的积分次序可画出Ω的图形(如图1-6-20),被积函数含有x2+y2,可用柱坐标计算.于是解析:本题考查三次积分的计算方法,先根据累次积分的上、下限找出三重积分的积分区域Ω并写成三重积分.再利用柱坐标计算.知识模块:多元函数积分学4.计算正确答案:利用球坐标计算.积分区域如图1-6-21,由于(x-1)2+x2+y2=1的球坐标方程为r=2cosφ.又z=1与(z-1)2+x2+y2=1的交线方程为故涉及知识点:多元函数积分学5.设f(x)连续,,其中Ω:0≤z≤h,x2+y2≤t2,求正确答案:则当t>0时,当t<0时,从而,故涉及知识点:多元函数积分学6.计算,其中L为x2+y2=ax(a>0)的下半部分.正确答案:解法1:设L:r(θ)=acosθ,-π/2≤θ≤0,且所以解法2:L的方程为令又所以解析:本题考查计算第一类曲线积分的方法,利用极坐标或参数方程计算.知识模块:多元函数积分学7.计算,其中为锥面螺线x=tcost,y=tsint,z=t上相应于t从0变到1的一段弧.正确答案:所以涉及知识点:多元函数积分学8.求正确答案:此题若直接选取参数方程计算,将会很麻烦,注意到积分曲线是x2+y2=1,而对弧长的曲线积分又可以利用对称性,故有下面的简单作法.涉及知识点:多元函数积分学9.计算,其中L为球面x2+y2+z2=R2与平面x+y+z=0的交线.正确答案:由于L具有轮换对称性,所以解析:本题考查利用轮换对称性计算第一类曲线积分的方法.知识模块:多元函数积分学10.计算,其中L是双纽线(x2+y2)=a(x2-y2)(a>0).正确答案:由对称性,有,其中L1为L在第一象限部分,将L1的方程化为极坐标方程,即r4=a2(r2cos2θ-r2sin2θ),r2=a2cos2θ,其中0≤θ≤π/4.又则解析:本题考查计算被积函数为分段函数的第一类曲线积分的方法,先利用对称性去掉绝对值,再利用极坐标计算.知识模块:多元函数积分学11.设曲线L是x2/3+y2/3=a2/3在第一象限内的一段,求L的长度s.正确答案:设L的参数方程为x=acos3t,y=asin3t,0≤t≤π/2.解析:考查第一类曲线积分的几何应用.知识模块:多元函数积分学12.计算∫Ly2dx,其中L为半径为a,圆心为原点,方向取逆时针方向的上半圆周.正确答案:解法1:设L的参数方程为x=acosθ,y=asinθ,θ:0→π.则解法2:设.则解法3:利用格林公式.如图1-6-22,解析:本题考查计算第二类曲线积分的方法.知识模块:多元函数积分学13.计算,其中是从点(1,1,1)到点(2,3,4)的直线段.正确答案:设的参数方程为x=t+1,y=2t+1,z=3t+1,t:0→1.则涉及知识点:多元函数积分学14.计算,其中L是由曲线x2+y2=2y,x2+y2=4y,所围成的区域的边界,按顺时针方向.正确答案:积分曲线如图1-6-23.设则从而解析:本题考查利用格林公式计算第二类曲线积分的方法.知识模块:多元函数积分学15.计算,其中L是从点A(-a,0)经上半椭圆到点B(a,0)的弧段.正确答案:不妨设a>b,并设C是点A(-a,0)经上半圆周x2+y2=a2(y≥0)到点B(a,0)的曲线(C’表示与C方向相反的曲线),由此可见,在L+C’所围成的区域D上P(x,y),Q(x,y)有一阶连续偏导数,且,应用格林公式有于是C的参数方程为x=acost,y=asint(t从π变到0),得因此所求的积分涉及知识点:多元函数积分学设16.验证它是某个二元函数u(x,y)的全微分;正确答案:设,则故当x2+y2≠0时,为某个二元函数的全微分.涉及知识点:多元函数积分学17.求出u(x,y);正确答案:求u(x,y)有三种方法.方法一:不定积分法,设,则从而,故φ’(y)=0,即φ(y)=C.于是方法二:凑全微分法故方法三:曲线积分法.因为与积分路径无关,取积分路径为A(1,1)经C(x,1)到B(x,y)的折线段,则由起点的任意性,涉及知识点:多元函数积分学18.计算正确答案:涉及知识点:多元函数积分学19.计算,其中L是用平面切为方体Ω={(x,y,z)|0≤x,y,z≤a}所得的切痕,从x轴正向看去为逆时针方向.正确答案:取S为平面上由L围成的边长是的正方形,方向向上,根据斯托克斯公式,得解析:本题考查利用斯托克斯公式计算空间曲线的第二类曲线积分的方法知识模块:多元函数积分学20.设闭曲线的方向与z轴正向满足右手法则,求曲线积分正确答案:于是解析:本题考查空间曲线的第二类曲线积分的计算方法知识模块:多元函数积分学21.计算,其中S为锥面被柱面x2+y2=2x所截得的部分.正确答案:解析:本题考查计算第一类曲面积分的方法.知识模块:多元函数积分学22.计算,其中∑为立体的边界曲面正确答案:设∑=∑1+∑2,其中则涉及知识点:多元函数积分学23.计算,其中∑:x2+y2=z2(0≤z≤1)表面正确答案:由于∑关于xOz,yOz平面对称,由故涉及知识点:多元函数积分学24.计算,其中:x2+y2+z2=a2正确答案:解法1:利用对称性,记∑1为上半球面.则解法2:因∑关于x,y,z具有轮换对称性,有涉及知识点:多元函数积分学25.计算,其中∑的方程为|x|+|y|+|z|=1.正确答案:显然∑关于三个坐标平面都对称,而被积函数关于x,y,z都是偶函数,故其中∑1:x+y+z=1即z=1-x-y,Dxy:x+y≤1,x≥0,y≥0.则涉及知识点:多元函数积分学26.计算,其中t>0.正确答案:因为时f(x,y,z)=0,所以只需计算x2+y2+z2=t2在的上面部分求曲面积分即可.设涉及知识点:多元函数积分学27.曲面z-=13-x2-y2将球面x2+y2+z2=25分成三部分,求这三部分曲面面积之比.正确答案:曲面z=13-x2-y2与球面x2+y2+z2=25的交线方程为这两条曲线将球面依次分割为S1,S2,S3三部分,其面积分别记为A1,A2,A3.其中,则又S3的方程为.则从而A2=4π·52-10π-20π=70π.因此这三部分面积之比为A1:A2:A3=10π:70π:20π=1:7:2.解析:本题考查第一类曲面积分的几何应用.知识模块:多元函数积分学28.求抛物面壳的质量,此抛物面壳的面密度为z正确答案:由于,则解析:本题考查第一类曲面积分的物理应用.知识模块:多元函数积分学29.曲面∑为锥面z2=x2+y2(0≤z≤1)的下侧,计算.正确答案:取下侧,Dxy:x2+y2≤1.则解析:本题考查第二类曲面积分的计算方法.知识模块:多元函数积分学30.计算,其中∑为上半球面在柱面x2+y2=x内的上侧.正确答案:(1)∑在yOz面投影区域Dyz:y2≤z2(1-z2)(0≤z≤1).(2)∑在xOz面的投影域为Dzx.∑右:(3)∑在xOy面的投影域Dxy:x2+y2≤x,故,.解析:本题考查利用单面投影法计算第二类曲面积分的方法.知识模块:多元函数积分学31.计算,其中∑为z=x2+y2在第一卦限中0≤z≤1部分的上侧.正确答案:利用高斯公式,补三个平面;∑1:z=1取下侧;∑2:x=0取前侧;∑3:y=0取右侧,则∑+∑1+∑2+∑3为封闭曲面.取内侧.如图1-6-24所示.由高斯公式,解析:本题考查利用高斯公式计算第二类曲面积分.知识模块:多元函数积分学32.设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)正确答案:由∑的任意性,有f(x)+xf’(x)-xf(x)-e2x=0,整理得故涉及知识点:多元函数积分学。

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)

专升本高等数学二(多元函数积分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.化二重积分f(x,y)dxdy为极坐标下的二次积分,其中D由y=x2及y=x围成,正确的是( )A.∫0dθ∫0tanθf(rcosθ,rsinθ)rdrB.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrC.∫0dθ∫0tanθsecθf(rcosθ,rsinθ)rdrD.∫0dθ∫0tanθcscθf(rcosθ,rsinθ)rdr正确答案:C解析:由题意可得直角坐标系下的D可表示为:0≤x≤1,x2≤y≤x,令x=rcos θ,y=rsinθ,则0≤θ≤,0≤r≤tanθsecθ,则二重积分可表示为f(rcosθ,rsinθ)rdr,故选C.知识模块:多元函数积分学2.若D={(x,y)|a2≤x2+y2≤4a2,(a>0)},则二重积分dxdy= ( )A.3πa2B.πa3C.πa2D.πa3正确答案:D解析:=∫02πdθ∫a2ar2dr=πa3.知识模块:多元函数积分学3.区域D为( )时,dxdy=2.A.|x|≤1,|y|≤1B.|x|+|y|≤1C.0≤x≤1,0≤y≤2xD.0≤x2+y2≤2正确答案:B解析:由二重积分的性质知=SD=2,可求得A的面积SD=4,B的面积SD=2×2×=2,C的面积SD=2×1×=1,D的面积SD==2π,故选B.知识模块:多元函数积分学4.设L为抛物线x一1=y2一2y上从点A(1,0)到点B(1,2)的一段弧,则∫L(ey+x)dx+(xey一2y)dy= ( )A.e一1B.e+1C.e2一5D.e2+5正确答案:C解析:=ey,所以积分与路径无关,原积分路径可以改为沿着x=1从A点到B点,则∫L(ey+x)dx+(xey-2y)dy=∫02(ey一2y)dy=(ey一y2)|02=e2一5,故选C.知识模块:多元函数积分学5.设L是y=x2上从点(0,0)到点(1,1)之间的有向弧,则∫L(x3一y)dx一(x+siny)dy= ( )A.B.C.D.正确答案:B解析:=一1,所以积分与路径无关,则可把积分看成先所以积分∫L(x3-y)dx—(x+siny)dy=∫01x3dx+∫01-(1+siny)dy=(-1+cos1)一(0+1)=cos1—.知识模块:多元函数积分学6.已知闭曲线L:x2+y2=4,则对弧长的曲线积分(4x2+4y2一6)ds= ( )A.40πB.12πC.6πD.4π正确答案:A解析:令x=2cost,y=2sint,则(4x2+4y2一6)ds=∫02π10dt=∫02π20dt=40π.知识模块:多元函数积分学填空题7.比较积分I1=(x+y)7dσ与I2=(x+y)8dσ的大小,其中D由Ox轴、Oy轴及直线x+y=1围成,则________.正确答案:I1≥I2解析:在区域D内可知x+y≤1,所以在区域D上(x+y)7≥(x+y)8(等号仅在x+y=1处取得),故(x+y)7dσ≥(x+y)8dσ,即I1≥I2.知识模块:多元函数积分学8.设=4π,这里a>0,则a=________.正确答案:a=4解析:=aπ=4π,所以a=4.知识模块:多元函数积分学9.设I=交换积分次序,则有I=________.正确答案:∫04dx∫x24xf(x,y)dy解析:I=∫016dy的积分区域为D={(x,y)|0≤y≤16,}={(x,y)|0≤x≤4,x2≤y≤4x},所以I=∫04dx∫x24xf(x,y)dy.知识模块:多元函数积分学10.化二次积分I=∫02dx为极坐标下的二次积分,则I=_______.正确答案:I=dθ∫02secθcosr.rdr解析:因积分区域D={(x,y)|0≤x≤2,x≤y≤}={(x,y)|1≤tan θ≤,0≤rcosθ≤2)}={(θ,r)|,0≤r≤2secθ},所以I=dθ∫02secθcosr.Rdr 知识模块:多元函数积分学11.设D:|x|≤1,|y|≤1,且[f(x,y)+2]dσ=________.正确答案:9解析:=1+2×2×2=9.知识模块:多元函数积分学12.设a>0,f(x)=g(x)=而D表示全平面,则I=f(x)g(y—x)dxdy=________.正确答案:a2解析:I=f(x)g(y—x)dxdy=a2dxdy=a2∫01dx∫xx+1dy=a2∫01[(x+1)一x]dx=a2.知识模块:多元函数积分学13.若L为圆周曲线x2+y2=a2,方向为逆时针方向,则曲线积分2xdy 一3ydx=_______.正确答案:5πa2解析:L围成的平面图形的面积SD=πa2,则5dxdy=5SD=5πa2.知识模块:多元函数积分学14.设L为x2+y2=1逆时针方向,则xy2dy-x2ydx=_______.正确答案:解析:xy2dy一x2ydx=y2一(-x2)dxdy=∫02πdθ∫01r2.rdr=.知识模块:多元函数积分学15.设L:y=x2(0≤x≤),则∫Lxds=_______.正确答案:解析:由于L由方程y=x2(0≤x≤)给出,因此∫Lxds=.知识模块:多元函数积分学解答题16.交换积分次序∫12dx∫xf(x,y)dy.正确答案:因积分区域D={(x,y)|1≤x≤2,≤y≤x}={(x,y)|≤x≤2}+{(x,y)|1≤y≤2,y≤x≤2},所以原式=+∫12dy∫y2f(x,y)dx.涉及知识点:多元函数积分学17.求(x3+y)dxdy,其中D是由曲线y=x2与直线y=1所围成的有界平面区域.正确答案:由于积分区域D关于y轴对称,因此x3dxdy=0.记D1为区域D在第一象限的部分,则=2∫01dx∫x21ydy=∫01(1-x4)dx=.所以(x3+y)dxdy=.涉及知识点:多元函数积分学18.计算|xy|dσ,其中D由x轴,y+x=1和y—x=1围成.正确答案:如图5—5所示,D:0≤y≤1,y一1≤x≤1一y,故|xy|d σ=∫01dy∫y-10(-xy)dx+∫01dy∫01-yxydx=∫01dy+∫01dy=∫01y(y-1)2dy=.涉及知识点:多元函数积分学19.计算(x2一y2)dxdy,D是闭合区域:0≤y≤sinx,0≤x≤π.正确答案:(x2一y2)dxdy=∫0πdx∫0sinx(x2一y2)dy=∫0π(x2sinx一sin3x)dx=(-x2cosx)|0π+2∫0πxcosxdx一∫0πsinxdx—∫0πcos2xdcosx=π2一.涉及知识点:多元函数积分学20.计算sin(x2+y2)dσ,其中D:≤x2+y2≤π.正确答案:涉及知识点:多元函数积分学21.计算(xey+x2y2)dxdy,其中D是由y=x2,y=4x2,y=1围成.正确答案:因D关于y轴对称,且xey是关于x的奇函数,x2y2是关于x 的偶函数,则I=xeydxdy+x2y2dxdy=0+x2y2dxdy,I=2∫01dy x2y2dx=2∫01y2dy=.涉及知识点:多元函数积分学22.计算二重积分,其中D是由y2=2x,x=1所围成的平面区域.正确答案:如图5—8所示,D={(x,y)|≤x≤1},所以,涉及知识点:多元函数积分学23.计算,其中D:x2+y2≤x.正确答案:改写积分区域D为:(x-)2+y2≤.如图5—11所示,因积分区域为圆,故选择极坐标系下计算二重积分.涉及知识点:多元函数积分学24.计算∫L(exsiny-2y)dx+(excosy-2)dy,其中L为上半圆周(x-a)2+y2=a2(y≥0)沿逆时针方向.正确答案:取L1为y=0(x:0→2a),则L+L1为封闭曲线,其所围区域D为半圆面,则由格林公式(exsiny一2y)dx+(excosy一2)dy=(excosy—excosy+2)dσ=πa2=πa2.因此,原积分=πa2一∫L1(exsiny一2y)dx+(excosy一2)dy=πa2一[∫02a(ex.sin0-2.0)dx+0]=πa2一0=πa2.涉及知识点:多元函数积分学25.计算对坐标的曲线积分I=∫L(x+y一1)dx+(x—y+1)dy,其中L是曲线y=sinx上由点0(0,0)到点A(,1)的一段弧.正确答案:令P(x,y)=x+y一1,Q(x,y)=x—y+1.因为,所以积分与路径无关.引入点B(,0),则I=(x+y一1)dx+(x—y+1)dy+(x+y一1)dx+(x—y+1)dy=.涉及知识点:多元函数积分学26.计算(x+y)ds,其中L为连接点O(0,0),A(1,0),B(0,1)的闭折线.正确答案:如图5-15,涉及知识点:多元函数积分学。

多元函数积分学

多元函数积分学

多元函数积分学总结多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。

❖ 几何意义:曲顶柱体的体积❖ 性质:线性性质、可加性、单调性、估值性质、中值定理 ❖ 计算方式:x 型、y 型、极坐标(22y x +)❖ 常见计算类型:① 选择积分顺序:能积分、少分块② 交换积分顺序:确定积分区域→交换积分顺序→开始积分③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。

④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 ❖ 了解“积不出来函数”:dx x ⎰)cos(2、dx e x ⎰-2、dx x ⎰ln 1、dx xx⎰sin ❖ 概率积分例题展示 证明22π=⎰∞+-dx ex证:令=)(x f 2x e-① 易证)()(x f x f -=⇒)(x f 为偶函数⇒212=⎰+∞-dx exdx ex2⎰+∞∞--(奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ⎰-2为“积不出来函数”,所以改变我们所求目标函数dx e x2⎰+∞∞--的形式令=w dx ex2⎰+∞-412=w •dx e x 2⎰+∞∞--41=dxdx e x x⎰⎰+∞∞-+-+∞∞-)(22(了解“积不出来函数”,增强目标意识,适当转化目标函数形式)③ 令其中一个x 变成y ,构造22y x + 2w 41=dxdy e y x⎰⎰+∞∞-+-+∞∞-)(22④ 将θcos r x =,θsin r y =带入上一步的2w 易得),0(+∞∈r ,)2,0(π∈θ 2w =θdrd e r r ⎰⎰-+∞•π20241=⎰⎰+∞-•π2002θd dr er r2021212dr e r •=⎰+∞-π2021212lim dr e br b •=⎰-+∞→π)1(21212lim --=-+∞→b b e ππ41==⇒w 2π 即220π=⎰∞+-dx e x成立(极坐标系⇔直角坐标系,选择合适的积分次序将二重积分⇔二次积分,了解广义定积分)(此类积分为概率积分 bdt e bdx et bxπ211022⎰⎰∞+-∞+-==)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.多元函数积分学〖考试内容〗(数学一)二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用〖考试要求〗(数学一)1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

4.掌握计算两类曲线积分的方法。

5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。

会用高斯公式、斯托克斯公式计算曲面、曲线积分。

7.了解散度与旋度的概念,并会计算。

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

〖考试要求〗(数学二)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

〖考试要求〗(数学三)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

2.了解无界区域上较简单的广义二重积分及其计算。

〖考试要求〗(数学四)同数学三2. 多元函数积分学〖知识点概述〗2.1 二重积分基本概念:定义、基本性质计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区域; 型简单区域)一般变换法几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量2.2 三重积分基本概念:定义、基本性质计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域投影法(先定积分后二重积分)截面法(先二重积分后定积分)柱坐标法; 球坐标法; 一般变换法几何应用:体积物理应用:质量、质心、转动惯量、引力2.3 曲线积分第一类曲线积分基本概念:定义、基本性质计算方法:参数化法几何应用:弧长物理应用:质量、质心、转动惯量、引力第二类曲线积分基本概念:定义、基本性质计算方法:参数化法曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数; 场论基本概念与计算格林公式(平面曲线积分); 斯托克斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系2.4 曲面积分第一类曲面积分基本概念:定义、基本性质计算方法:投影法(向xoy 平面投影;向yoz 平面投影;向zox 平面投影) 几何应用:曲面面积 物理应用:质量、质心、转动惯量、引力第二类曲面积分基本概念:定义、基本性质计算方法:有向投影法(各向投影;单向投影); 化成第一类曲面积分;高斯公式; 斯托克斯公式物理应用:通量第一类曲面积分与第二类曲面积分的联系〖典型例题—二重积分〗例1(91103)设D 是XOY 平面上以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 在第一象限部分,则dxdy y x xy D )sin cos (+⎰⎰=( )(A )ydxdy x D sin cos 21⎰⎰ (B )dxdy xy D ⎰⎰12(C )dxdy y x xy D )sin cos (41⎰⎰+(D )0〖注〗 二重积分的对称性例2 计算dxdy y D ⎰⎰,其中D 是由直线2,0,2==-=y y x 以及曲线22y y x --=所围成的平面区域〖注〗平面区域的重心(质心)变式1计算dxdy y x D )(⎰⎰+,其中12:22+≤+y y x D例3计算dxdy by a x D 2)(⎰⎰+,其中222:R y x D ≤+)0(>R 注1 极坐标法是计算二重积分的重要方法变式1计算dxdy y x D ⎰⎰+)ln(22,其中1:22≤+y x D变式2 计算dxdy by a x D ⎰⎰--22221,其中1:2222≤+b y a x D 注2 二重积分的轮换对称性变式3 计算dxdy by a x D )(2222⎰⎰+,其中222:R y x D ≤+)0(>R变式4 (05204)计算dxdy y f x f y f b x f a D ⎰⎰++)()()()(,其中b a ,为常数,)(x f 为4:22≤+y x D ,0,0≥≥y x 上的正值连续函数例4 (94103) 计算dxdy y x xf y D ⎰⎰++)](1[22,其中D 由直线1,1,=-==x y x y 围成,f 为连续函数变式1 (01306)计算dxdy xe y Dy x ]1[)(2122⎰⎰++,其中D 由直线1,1,=-==x y x y 围成 例5(02107) 计算dxdy e D y x ⎰⎰},max{22,其中}10,10:),{(≤≤≤≤=y x y x D变式1计算dxdy x D ⎰⎰2,其中1:44≤+y x D变式2(95305)计算dxdy e y x R y x ⎰⎰+-222)(},min{,其中2R 为整个xoy 平面 例6计算dy y y dx I x x ⎰⎰=sin 1注 将二重积分化成二次积分计算时,确定积分次序是关键变式1 计算dy yy dx I x ⎰⎰-=00sin ππ 变式2 计算dxdy y I D ⎰⎰=2sin ,其中D 由π==y x y ,及Y 轴围成变式3 计算dy y x x a y f dx I x a⎰⎰--'=00))(()(,)(x f '在],0[a 连续 例7 设)(x f 在]1,0[上连续,证明⎰⎰⎰=102110])([21)()(dx x f dy y f x f dx x 例8求在0,:22≥≤+x y y x D 上连续的),(y x f ,使⎰⎰---=Ddudv v u f y x y x f ),(81),(22π 例9 (97306) 求)(t f ,使得)(t f 在),0[+∞上连续,且满足方程 dxdy y x f e t f t y x t )21()(22442222++=⎰⎰≤+π 例10 (00406)设⎩⎨⎧≤≤≤≤=其他0,0 ,21,),(2x y x y x y x f ,求d x d y y x f D ⎰⎰),(,其中x y x D 2:22≥+ 变式1 (05111) 计算二重积分dxdy y x xy D ⎰⎰++]1[22,其中0,0,2:22≥≥≤+y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数变式2 (05209) 计算二重积分dxdy y x D ⎰⎰-+|1|22,其中}10,10:),{(≤≤≤≤=y x y x D 〖典型例题—三重积分〗例1 (88203)设有空间区域0,:22221≥≤++z R z y x V ,0,0,0,:22222≥≥≥≤++z y x R z y x V ,则( )(A)⎰⎰⎰⎰⎰⎰=214V V xdxdydz xdxdydz (B) ⎰⎰⎰⎰⎰⎰=214V V ydxdydz ydxdydz (C) ⎰⎰⎰⎰⎰⎰=214V V zdxdydz zdxdydz (D) ⎰⎰⎰⎰⎰⎰=214V V xyzdxdydz xyzdxdydz注 三重积分的对称性例2 计算⎰⎰⎰V xyzdxdydz ,其中0,0,0,:2222≥≥≥≤++z y x R z y x V )0(>R 解一:投影法 解二:截面法 解三:柱坐标变换法 解四:球坐标变换法 变式1用截面法计算⎰⎰⎰V zdxdydz ,其中0,1:222222≥≤++z c z b y a x V 变式2 利用对称性计算⎰⎰⎰V dxdydz x 2,其中0,:2222≥≤++z R z y x V )0(>R 例3 计算⎰⎰⎰+++V z y x dxdydz 3|)|||||1(,其中1|||||:|≤++z y x V 例4 计算⎰⎰⎰++V dxdydz z y x )(,其中z z y x V ≤++22232:注 空间区域的重心(质心)例5 设)(t f 可导,0)0(=f ,2222:t z y x V ≤++求⎰⎰⎰+++→V t dxdydz z y x f t )(1lim 22240π变式1设)(t f 可导,2222:t z y x V ≤++, ⎰⎰⎰++=V dxdydz z y x f t F )()(222,求)(t F ' 例6 (03112) 设)(t f 为正值连续函数,2222:)(t z y x t V ≤++,222:)(t y x t D ≤+,⎰⎰⎰⎰⎰+++=)(22)(222)()()(t D t V dxdy y x f dxdydz z y x f t F ,dxx f dxdyy x f t G t t t D ⎰⎰⎰-+=)()()(2)(22 (1) 讨论)(t F 在),0(+∞内的单调性(2)证明0>t 时,)(2)(t G t F π> 〖典型例题—曲线积分与曲面积分〗例1 计算ds y x L )32(22+⎰,其中)(2:22y x y x L +=+解一:参数化法 解二:利用曲线积分的对称性变式1计算ds xz yz xy L ⎰++)(,其中L 为球面1222=++z y x 与平面0=++z y x 的交线 变式2计算ds x L ⎰2,其中L 为球面2222a z y x =++与平面0=++z y x 的交线 例2 计算⎰⎰+S dS y x )(2,其中0,0,:222>≤≤=+a h z a y x S解一:投影法 解二:利用曲面积分的对称性例3(87103)计算dy x x dx y xy L )4()22(2-+-⎰,其中9:22=+y x L 取正向(逆时针方向) 解一:参数化法 解二:格林公式例4 (03110) 已知平面区域}0 ,0:),{(ππ≤≤≤≤=y x y x D ,L 为其正向边界,试证(1)dx ye dy xe dx ye dy xe x L y x L y sin sin sin sin -=-⎰⎰--,(2)2sin sin 2π≥--⎰dx ye dy xe x L y 解一:参数化法 解二:格林公式例 5 (97105)计算dz y x dy z x dx y z L )()()(-+-+-⎰,其中L 是122=+y x 与平面2=+-z y x 的交线,从Z 轴正向往Z 轴负向看L 的方向是顺时针正向解一:参数化法 解二:斯托克斯公式例6 (00106)计算⎰+-L y x ydx xdy 224,其中L 是以点)0,1(为中心,半径为)1(>R R 的圆周,取逆时针方向例7 (98106) 确定常数a ,使在右半平面0>x 上的向量j y x x i y x xy y x A a a )()(2),(24224+-+=为某二元函数),(y x u 的梯度,并求),(y x u 解一:曲线积分法 解二:不定积分法变式1(05112)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰+L xydydx y 422)(ϕ的值恒为同一常数。

相关文档
最新文档