配合物的结构
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如在 Ni(CN)53-晶体中, TBP与SP构型共存。 说明其能量相近
在这两种极端的立体构型之间存在着一系列畸变的 中间构型。
-
6、 六配位化合物
对于过渡金属, 这是最普遍 且最重要的配位数。其几何 构型通常是相当于6个配位 原子占据八面体或变形八面 体的角顶。
一种非常罕见的六配位配合
物是具有三棱柱的几何构型,
提出了配位键,并用它来解释配合物的形成,
主
创立了配位学说。
ቤተ መጻሕፍቲ ባይዱ
结束了当时无机化学界对配合物的模糊认识, 为后来电子理论在化学上的应用以及配位化
要
学的形成开了先河。
成 和化学家汉奇共同建立了 解释无机化学领域中立体效应
就 氮元素的立体化学。
引起的许多现象,为立体无机 化学奠定了扎实的基础。
-
1897年,由Werner提出来立体化学相关的概念,他根据异 构体的数目,用化学方法确定了配位数为6的配合物具有八 面体的结构,配合物为4的配合物有四面体结构和平面正方 形结构两种。但是在那个时代,由于条件的限制,用于研 究化合物配位构型的主要手段是化学分析、分子量的测定、 电导、旋光,靠测定化合物异构体数目和性质等。研究最 多的是配位数为4和6的化合物。其配合物的配体大多数是 无机和饱和的有机分子或离子,能与中心原子之间通过孤 对电子生成配位键。 随着科学技术的发展,X-射线衍射和各种近代波谱用于结 构分析,特别是二十世纪五十年代后,高速大型计算机的 出现,大多数复杂分子结构得到了确定。
-
• 配体对配位数的影响 • 配体电荷:配体负电荷增加,一方面增加
中心阳离子对配体的吸引力,但同时也增 加了配体间的斥力,但相比之下,配体之 间的排斥作用为主要因素,因此总的结果 为配位数减小。 Ⅳ • 配体体积:配体体积越大,则中心离子周 围可容纳的配体数越少,配位数减小。 [AlF6]3-,[AlCl4]- 其中 F离子的半径小于 Cl离子的半径
第二章 配合物的立体化学
-
维尔纳(Alfred Werner),瑞士化学家。生于 法国米卢斯。12岁就在家中的车库内建立了一 个小小的化学实验室。1889年获瑞士苏黎世工 业学院工业化学学士学位,1892年任苏黎世综 合工业学院讲师。1893年任苏黎世大学副教授, 1895年晋升为教授。1909年兼任苏黎世化学研 维尔纳 (1866-1919 ) 究所所长。1913年获诺贝尔化学奖 。
之所以罕见是因为在三棱柱
构型中配位原子间的排斥力
比在三方反棱柱构型中要大。
如果将一个三角面相对于相
对的三角面旋转60º, 就可将
三棱柱变成三方反棱柱的构
型。
-
八面体Oh
三棱柱 D3h
八面体变形的一种最普通的 形式是四方形畸变, 包括八 面体沿一个四重轴压缩或者 拉长的两种变体。
5、 配位数为5的配合物
(初为罕见, 大量五配位中间体,促进了五配位化 学的发展) 配位构型:
四方锥 (square pyramid, SP)
C4v 如BiF5
三角双锥 (trigonal bipyramid, TBP) D3h 如Fe(CO)5
-
TBP与SP无明显能量差别, 其决定因素尚未搞清。
-
2-1影响中心原子的配位数因素
中心原子对配位数的影Ⅱ响:
a)一般而言,中心离子电荷越高,吸引配位的能力越强,配位 数也越大。例如,金属铂有两种价Pt(Ⅳ)和Pt(Ⅱ)。形成 配合物时,高价态的Pt(Ⅳ)的配位数通常是6,[PtCl6]2-;低 价态的Pt(Ⅱ)的配位数通常Ⅳ为4 ,如[PtCl4]2-. b)中心原子半径越大,其周围可以容纳的配体就多,配位数也 就越大。例如Al3+半径大于B3+,他们的氟配合物分别是[AlF6]3和[BF4]-.但若半径太大,则影响其与配体结合,有时配位数反 而降低。
一般非过渡元素的四配位化合物都是四面体构型。这是因 为采取四面体空间排列, 配体间能尽量远离, 静电排斥作用最小 、能量最低。但当除了用于成键的四对电子外, 还多余两对电子 时, 也能形成平面正方形构型, 此时, 两对电子分别位于平面的上 下方, 如XeF4就是这样。
过渡金属的四配位化合物既有四面体形, 也有平面正方形, 究竟采用哪种构型需考虑下列两种因素的影响。
(1) 配体之间的相互静电排斥作用; (2) 配位场稳定化能的影响(见后)。
一般地,当4个配体与不含有d8电子构型的过渡金属离子或 原子配位时可形成四面体构型配合物。
而d8组态的过渡金属离子或原子一般是形成平面正方形配合 物, 但具有d8组态的金属若因原子太小, 或配体原子太大, 以致不 可能形成平面正方形时, 也可能形- 成四面体的构型。
-
2、配位数为2的配合物
中心原子的电子组态: d10 例如:Cu(I), Ag(I), Au(I), Hg(II)
配位构型: 直线型 (linear) D∞h
eg. [Ag(NH3)2]+ 分子构型:直线形小分子 : [Ag(NH3)2]+,HgX2,
无限长链聚合结构:AgCN, AuI
-
AgSCN
1、配位数为1的配合物 配位数为1,2,3的配合物数量很少。配位数为1的配合物一
般是在气相中存在的离子对。目前发现的两个含一个单齿配体 的配合物,2,4,6-triphenylphenylcopper(2,4,6-三苯基苯基酮)和 2,4,6-triphenylphenylsilver(2,4,6-三苯基苯基银)。这事实上是一 个有机金属化合物,中心原子与一个大体积单齿配体键合。
S
S
Ag C
Ag
N
N
Ag C
S
AuI
I
I
AuAuAu
I
AgCN
A C g N A C N g
-
3、配位数为3的配合物
中心离子: Cu(I), Hg(II) , Pt(0)
配位构型:
平面三角形 D3h 三角锥形 C3v T形
[HgI3]-,Pt(PPh3)3
-
4、四配位化合物
四配位是常见的配位, 包括 平面正方形和四面体 两种构型。
-
外界条件的影响
a)配体浓度:一般而言,增加配体的浓度,有利 于形成高配位数的配合物。 b)温度:温度越高,配位数降低。 c)空间位阻:位阻越大则配位数小。
综上所述,影响配位数的因素是复杂的,但一般 地讲,在一定范围的条件下,某中心离子有一个 特征的配位数。
-
2-2 配位数与配合物的结构
一、低配位配合物
在这两种极端的立体构型之间存在着一系列畸变的 中间构型。
-
6、 六配位化合物
对于过渡金属, 这是最普遍 且最重要的配位数。其几何 构型通常是相当于6个配位 原子占据八面体或变形八面 体的角顶。
一种非常罕见的六配位配合
物是具有三棱柱的几何构型,
提出了配位键,并用它来解释配合物的形成,
主
创立了配位学说。
ቤተ መጻሕፍቲ ባይዱ
结束了当时无机化学界对配合物的模糊认识, 为后来电子理论在化学上的应用以及配位化
要
学的形成开了先河。
成 和化学家汉奇共同建立了 解释无机化学领域中立体效应
就 氮元素的立体化学。
引起的许多现象,为立体无机 化学奠定了扎实的基础。
-
1897年,由Werner提出来立体化学相关的概念,他根据异 构体的数目,用化学方法确定了配位数为6的配合物具有八 面体的结构,配合物为4的配合物有四面体结构和平面正方 形结构两种。但是在那个时代,由于条件的限制,用于研 究化合物配位构型的主要手段是化学分析、分子量的测定、 电导、旋光,靠测定化合物异构体数目和性质等。研究最 多的是配位数为4和6的化合物。其配合物的配体大多数是 无机和饱和的有机分子或离子,能与中心原子之间通过孤 对电子生成配位键。 随着科学技术的发展,X-射线衍射和各种近代波谱用于结 构分析,特别是二十世纪五十年代后,高速大型计算机的 出现,大多数复杂分子结构得到了确定。
-
• 配体对配位数的影响 • 配体电荷:配体负电荷增加,一方面增加
中心阳离子对配体的吸引力,但同时也增 加了配体间的斥力,但相比之下,配体之 间的排斥作用为主要因素,因此总的结果 为配位数减小。 Ⅳ • 配体体积:配体体积越大,则中心离子周 围可容纳的配体数越少,配位数减小。 [AlF6]3-,[AlCl4]- 其中 F离子的半径小于 Cl离子的半径
第二章 配合物的立体化学
-
维尔纳(Alfred Werner),瑞士化学家。生于 法国米卢斯。12岁就在家中的车库内建立了一 个小小的化学实验室。1889年获瑞士苏黎世工 业学院工业化学学士学位,1892年任苏黎世综 合工业学院讲师。1893年任苏黎世大学副教授, 1895年晋升为教授。1909年兼任苏黎世化学研 维尔纳 (1866-1919 ) 究所所长。1913年获诺贝尔化学奖 。
之所以罕见是因为在三棱柱
构型中配位原子间的排斥力
比在三方反棱柱构型中要大。
如果将一个三角面相对于相
对的三角面旋转60º, 就可将
三棱柱变成三方反棱柱的构
型。
-
八面体Oh
三棱柱 D3h
八面体变形的一种最普通的 形式是四方形畸变, 包括八 面体沿一个四重轴压缩或者 拉长的两种变体。
5、 配位数为5的配合物
(初为罕见, 大量五配位中间体,促进了五配位化 学的发展) 配位构型:
四方锥 (square pyramid, SP)
C4v 如BiF5
三角双锥 (trigonal bipyramid, TBP) D3h 如Fe(CO)5
-
TBP与SP无明显能量差别, 其决定因素尚未搞清。
-
2-1影响中心原子的配位数因素
中心原子对配位数的影Ⅱ响:
a)一般而言,中心离子电荷越高,吸引配位的能力越强,配位 数也越大。例如,金属铂有两种价Pt(Ⅳ)和Pt(Ⅱ)。形成 配合物时,高价态的Pt(Ⅳ)的配位数通常是6,[PtCl6]2-;低 价态的Pt(Ⅱ)的配位数通常Ⅳ为4 ,如[PtCl4]2-. b)中心原子半径越大,其周围可以容纳的配体就多,配位数也 就越大。例如Al3+半径大于B3+,他们的氟配合物分别是[AlF6]3和[BF4]-.但若半径太大,则影响其与配体结合,有时配位数反 而降低。
一般非过渡元素的四配位化合物都是四面体构型。这是因 为采取四面体空间排列, 配体间能尽量远离, 静电排斥作用最小 、能量最低。但当除了用于成键的四对电子外, 还多余两对电子 时, 也能形成平面正方形构型, 此时, 两对电子分别位于平面的上 下方, 如XeF4就是这样。
过渡金属的四配位化合物既有四面体形, 也有平面正方形, 究竟采用哪种构型需考虑下列两种因素的影响。
(1) 配体之间的相互静电排斥作用; (2) 配位场稳定化能的影响(见后)。
一般地,当4个配体与不含有d8电子构型的过渡金属离子或 原子配位时可形成四面体构型配合物。
而d8组态的过渡金属离子或原子一般是形成平面正方形配合 物, 但具有d8组态的金属若因原子太小, 或配体原子太大, 以致不 可能形成平面正方形时, 也可能形- 成四面体的构型。
-
2、配位数为2的配合物
中心原子的电子组态: d10 例如:Cu(I), Ag(I), Au(I), Hg(II)
配位构型: 直线型 (linear) D∞h
eg. [Ag(NH3)2]+ 分子构型:直线形小分子 : [Ag(NH3)2]+,HgX2,
无限长链聚合结构:AgCN, AuI
-
AgSCN
1、配位数为1的配合物 配位数为1,2,3的配合物数量很少。配位数为1的配合物一
般是在气相中存在的离子对。目前发现的两个含一个单齿配体 的配合物,2,4,6-triphenylphenylcopper(2,4,6-三苯基苯基酮)和 2,4,6-triphenylphenylsilver(2,4,6-三苯基苯基银)。这事实上是一 个有机金属化合物,中心原子与一个大体积单齿配体键合。
S
S
Ag C
Ag
N
N
Ag C
S
AuI
I
I
AuAuAu
I
AgCN
A C g N A C N g
-
3、配位数为3的配合物
中心离子: Cu(I), Hg(II) , Pt(0)
配位构型:
平面三角形 D3h 三角锥形 C3v T形
[HgI3]-,Pt(PPh3)3
-
4、四配位化合物
四配位是常见的配位, 包括 平面正方形和四面体 两种构型。
-
外界条件的影响
a)配体浓度:一般而言,增加配体的浓度,有利 于形成高配位数的配合物。 b)温度:温度越高,配位数降低。 c)空间位阻:位阻越大则配位数小。
综上所述,影响配位数的因素是复杂的,但一般 地讲,在一定范围的条件下,某中心离子有一个 特征的配位数。
-
2-2 配位数与配合物的结构
一、低配位配合物