风力发电原理论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电的基本原理

1 引言

风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。

2 风力发电基本理论知识

2.1 风能的计算公式

空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为

其中:单位时间质量流量m=ρAV

在实际中,

式中:

P W—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W;

C p—叶轮的风能利用系数;

m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0;

e—发电机效率,一般为0.70—0.98;

ρ—空气密度,kg/m3;

A—风力发电机叶轮旋转一周所扫过的面积,m2;

V—风速,m/s。

2.2 贝茨(Betz)理论

第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建

立的。

贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。

通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为

式中:

P max—风轮所能产生的最大功率;

ρ—空气密度,kg/m3;

A—风力发电机叶轮旋转一周所扫过的面积,m2;

V—风速,m/s。

这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的。

将式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率

式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。

能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593。

2.3 温度、大气压力和空气密度

通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。

式中:ρ—空气密度,kg/m3;

h—当地大气压力,Pa;

t —温度,℃。

从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。

2.4 风轮直径与扫掠面积

风轮直径是风轮旋转时的外圆直径,用D 表示。风轮直径大小决定了风轮扫掠面积的大小以及叶片的长度,是影响机组容量大小和机组性价比的主要因素之一。

根据贝茨理论,风轮从自然风中获取的功率为:

312P P SC ρυ=

式中: 2

4D S π=

S 为风轮的扫掠面积,D 增加,则其扫掠面积与D 2成比例增加,其获取的风功率也相应增加。

2.5 轮毂高度

风轮高度是指风轮轮毂中心离地面的高度,是风电机组设计时要考虑的一个重要参数。

由于风剪切特性,离地面越高,风速越大,具有的风能也越大,因此大型风电机组的发展趋势是轮毂高度越来越高。但是轮毂高度增加,所需要的塔架高度也相应增加,当塔架高度达到一定水平时,设计、制造、运输和安装等方面都将产生新的问题,也导致风电机组成本相应增加。

2.6 叶片数

组成风轮的叶片个数,用B 表示。

选择风轮叶片数时要考虑风电机组的性能和载荷、风轮和传动系统的成本、风力机气动噪声及景观效果等因素。

图 2.6.1

采用不同的叶片数,对风电机组的气动性能和结构设计都将产生不同的影响。风轮的风能转换效率取决于风轮的功率系数

图 2.6.2

多叶片风车的最佳叶尖速比较低,风轮转速可以很慢,因此也称为慢速风轮。当然多叶片风轮由于功率系数很低,因而很少用于现代风电机组。

现代水平轴风电机组风轮的功率系数比垂直轴风轮高,其中三叶片风轮的功率系数最高,其最大功率系数约为0.47,对应叶尖速比约为7;双叶片和单叶片风轮的风能转换效率略低,其最大功率系数对应的叶尖速比也高于三叶片风轮,即在相同风速条件下,叶片数越少,风轮最佳转速越高,因此有时也将单叶片和双叶片风轮称为高速风轮。

风轮的作用是将风能转换成推动风轮旋转的机械转矩。衡量风轮转矩性能重要参数:

转矩系数:功率系数除以叶尖速比。转矩系数决定了传动系统中主轴及齿轮

箱的设计。现代并网风电机组希望转矩系数小,以降低传动系统的设计费用。

图 2.6.3

叶片数越多,最大转矩系数值也越大,对应的叶尖速比也越小,表明起动转矩越大。

三叶片风轮的性能比较好,目前,水平轴风电机组一般采用两叶片或三叶片风轮,其中以三叶片风轮为主。我国安装投运的大型并网风电机组几乎全部采用三叶片风轮。叶片数量减少,将使风轮制造成本降低,但也会带来很多不利的因素,在选择风轮叶片数时要综合考虑。两叶片风轮上的脉动载荷大于三叶片风轮。另外,由于两叶片风轮转速高,在旋转时将产生较大的空气动力噪声,对环境产生不利影响,而且风轮转速快视觉效果也不好。

风轮实度:风轮叶片总面积与风轮扫掠面积的比值,常用于反映风轮的风能转换性能。

风轮的叶片数多,风轮的实度大,功率系数比较大,但功率曲线较窄,对叶尖速比的变化敏感。叶片数减小,风轮实度下降,其最大功率系数相应降低,但功率曲线也越平坦,对叶尖速比变化越不敏感。

2.7 风轮转速、叶尖速比

叶尖速比为风轮叶片尖端线速度与风速之比,是描述风电机组风轮特性的一个重要的无量纲量。

r w R

λυ∞=

对于特定的风轮形式,其功率系数与叶尖速比的关系曲线确定,形状如同一个山包。在某一叶尖速比值处,功率系数达到最大值,此时,风轮吸收的风能最多,对应的叶尖速比值称为最佳叶尖速比。

风电机组风轮的一个主要设计目标是尽可能多地吸收风能,因此在低于额定

相关文档
最新文档