DS证据理论改进方法综述 - 副本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D -S 证据推理改进方法综述1
1.概述:
D-S 证据理论是首先由Dempster [1]提出,并由Shafer [2]进一步发展起来的一种不确定推理理论,已广泛用于信息融合和不确定推理等领域,具有坚实的数学基础,能在不需要先验概率的情况下,以简单的推理形式,得出较好的融合结果,为不确定信息的表达和合成提供了自然而强有力的方法。文献[9]中,介绍了D-S 证据理论的基本理论, 其中包括辨识框架(frame of discernment )、焦元(focal elenment )、基本概率分配函数BPA (basic probability assignment)、信任函数Bel (Belief function)、似然函数Pl (Plausibility function),证据组合(evidence combination) 等概念,并且详细推导了多个证据组合概率分配函数,通过一个空中目标识别的例子清晰易懂的分析了将D-S 证据组合理论用于数据融合的思路和处理算法。任何融合算法都不具有绝对意义上的普遍性,只能在某些条件满足的情况下适用。D-S 证据理论存在的问题是,当处理冲突证据时,因组合规则中的归一化过程会出现违背常理的结论。下面例子说明了这一情况:
例1.识框架为},,{C B A =Θ,有两个证据的基本概率分配为:
99
.0)(,01.0)(,0)(:
0)(01.0)(,99.0)(:22221111======C m B m A m S C m B m A m S ,
组合证据 .9900.0,1)(,0)()(====k B m C m A m 虽然21m m ,
对命题B 的支持程度都很低,但融合结果仍然认为B 为真,这显然是有悖常理的。k 是衡量用于融合的各个证据
之间冲突程度的系数,当1→k ,即证据高度冲突时,归一化过程中,组合规则将矛盾信息完全忽略,在数学上引出不合常理问题。为解决此问题,人们提出了许多不同的改进方法,通过修改证据及改进组合规则,优化融合结果。
2.研究现状:
2.1 基于经典D-S 证据理论的改进方法总结分析:
Yager [4]提出改进方法,即不忽略冲突信息,而是将其重新分配,式为:
)
()()()
()(Φ+Θ=ΘΘ
⊆∀=⋂⋂⋂m m m A A m A m Y Y (1)
Θ为辨识框架,Φ为空集。把冲突认为成是对客观世界的无知部分,将冲突信息全部划分
给整个辨识框架, 即未知项,等待新的证据再做判断,符合认知逻辑。 以例1给定条件, 由Yager 公式组合可得:
.9999.0)(,0)(,0001.0)(,0)(,9999.0)(=Θ====Φ⋂Y Y Y Y m C m B m A m m
该融合结果避免了出现违反常理的判断,但当有多个新证据源加入时,比如证据源等同于
1S ,都相当支持A ,合成的结果表示为:1)(,0)(,0)()(→Θ→==Y Y Y Y m B m C m A m 。
由此,出现“一票否决”的现象,即便是绝大多数证据源支持A ,仅有一个证据源否定A, 则
1自然科学基金项目(编号:60343002)
融合结果就否定A 。
针对此问题,文献[11]提出一种改进方法,认为冲突信息有一部分可以利用,而不是全部分配给未知项,可利用的成分取决于所定义的证据可信度函数。其中定义的k ~
反映了证据两两之间的冲突程度的平均程度,区别于D-S 理论中的k 反映证据总体上冲突程度,有时尽管证据在总体冲突较大,但k ~
并不大,因为此时除少数证据外,大部分证据之间的冲突并
不是很大,这样结果较合理。引入证据可信度定义k
e ~
-=ε,证据对A 的平均支持度定义:
∑==n
i i A m n A q 1
)(1)(,n 为证据源个数。新的组合规则为:
)1()()()()(1)
()
1()()()(0
)(εεεε-⋅+Θ⋅⋅+Θ=Θ⋅⋅+--=⋅⋅+==Φ⋂⋂⋂k q k m m A q k k
A m k A q k A m A m m s s (2) )(A m s 第一项的
k
A m -⋂1)
(正是D-S 证据组合公式。因此上式实际上是一个加权和的形式,当k 较小时,即证据冲突较小,第一项起主要作用,合成结果近似于D-S 合成结果。当0=k ,等同。当1~
→k 时,即证据高度冲突时,合成结果主要由第二项)(A q ⋅ε决定,即由证据可
信度及证据对A 的平均支持度决定。
)(Θs m 中第三项表现了当冲突k 增大或证据可信度ε减小时,都会使未知程度增加。这些表达都是较合理的,但有个问题是k
e ~
-=ε的定义有一定
的主观因素。鉴于此,文献[12]提出一种更有效的组合规则,以
)
1()()()
()(εεε-⋅+Θ⋅⋅=Θ⋅⋅=k q k f A q k A f (3)
代替式(2)中各项,其中,)()(A q k A f ⋅=, 如此,证据冲突概率按各个命题的平均支持程度加权进行分配,具有明确合理的物理意义。
Jousselme [3]提出证据距离及两个证据源之间的相似度概念。其研究思想为:证据之间的距离在某种意义上反映证据的支持程度,两者的距离越小,说明它们判断越接近。而且,之间相似的证据越多,说明证据的判断越接近事物的本质,证据源的整体可信度越高。基于这种思想,文献[10]通过定义证据源的两个特征因素:群体可信度C 和单个证据源可信度i c ,对前面两种组合规则进行改进,为:
)
1()()()()
)(()()()(1
C m m m c A m C m A m A m n
i i i -⋅Φ+Θ=Θ⋅⋅⋅Φ+=⋂=⋂∑ (4)