高三物理 专题复习 《电场与磁场的理解》(含答案解析)

合集下载

2019高考物理题分类汇编06电场和磁场解析版

2019高考物理题分类汇编06电场和磁场解析版

2019高考物理题分类汇编06电场和磁场解析版1.【2019年全国Ⅰ】如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则A. P和Q都带正电荷B. P和Q都带负电荷C. P带正电荷,Q带负电荷D. P带负电荷,Q带正电荷【答案】D【解析】解:由图可知,两小球均在电场力和库仑力的作用下保持平衡;由于库仑力为相互作用,大小相等、方向相反;故两小球受到的电场力也一定方向相反;因此两小球一定带异种电荷,则P球所受库仑力向右,Q球所受库仑力向左。

匀强电场方向水平向右,故正电荷受电场力向右,其受库仑力一定向左,故Q带正电荷,P带负电荷,故D正确,ABC错误。

故选:D。

明确两小球均受电场力和库仑力作用而处于平衡状态,根据库仑力和电场力的方向进行分析,从而明确两球的电性。

本题考查带电小球在电场力的作用下处于平衡状态的分析,关键是明确电场力和库仑力的方向特点,同时注意共点力平衡条件的应用是解题的关键。

2.【2019年全国Ⅰ】如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接。

已知导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为A. 2FB.C.D. 0【答案】B【解析】解:由已知条件可知MLN边的有效长度与MN相同,等效后的电流方向也与MN相同,边MLN的电阻等于边MN的电阻的两倍,两者为并联关系,设MN中的电流大小为I,则MLN中的电流为,设MN的长为L,由题意知:,所以边MLN所受安培力为:,方向与MN边所受安培力的方向相同,,故B正确,ACD错误。

故有:合故选:B。

先由已知条件可知MLN边的有效长度与MN相同,等效后的电流方向也与MN相同,先根据并联电路的电阻关系得出电流关系,再由即可分析MLN边所受安培力,由力的合成即可求得线框LMN所受安培力的大小。

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案
高中物理电场与磁场的讲解
一、电场
1.电场的概念
电场是指由具有电荷体所制造出来的力场,它的作用可以在一定范围内对周围的电荷体施加力,它可以描述两个或更多电荷之间的作用情况。

2.电场的特性
a)电场是可以传播的,它可以在没有任何介质时进行传播,所以它具有很强的传播能力;
b)电场是无形的,它不受任何物质的影响,它只存在于某个地点或某个空间;
c)电场是大小可变的,电荷量越大,电场强度也就越大。

3.电场的表示
在实际应用中,电场的大小可以用电场强度E来表示,电场的方向可以用电场矢量F来表示,这俩合起来就是电场的完整表示。

二、磁场
1.磁场的概念
磁场是由蕴含电流的物体或磁体产生的力场,它可以描述两个或更多磁体之间的相互作用情况。

2.磁场的特性
a)磁场也像电场一样是可以传播的,但它只能在以磁性介质为媒介时才可以传播,磁场的传播能力不如电场的传播能力;
b)磁场同样也是无形的,磁场也只存在于某个特定的空间;
c)磁场是可以变化的,它的强度与磁场中的电流量成正比。

3.磁场的表示
磁场的大小可以用磁场强度B来表示,磁场的方向可以用磁力矢量H来表示,这两者合起来就是磁场的完整表示。

三、考题
1.如何计算电场强度?
答:电场强度E可以用以下公式来计算:E=q/(4πεr2),其中q 是周围电荷量,ε是真空介电常数,r是电场与电荷体之间的距离。

2.磁场强度和电流的关系是什么?
答:磁场的强度B与电流量I成正比。

通过实验可以证明,当电流量I增大一倍时,磁场强度B也增大一倍。

具体的关系可以用B=μ0I表示,其中μ0为真空磁导率。

2022年高考物理大二轮专题复习讲学稿:专题六 第1讲 电场与磁场的理解 Word版含答案

2022年高考物理大二轮专题复习讲学稿:专题六 第1讲 电场与磁场的理解 Word版含答案

第1讲电场与磁场的理解课标卷高考命题分析年份题号·题型·分值模型·情景题眼分析难度2021年Ⅰ卷15题·选择题·6分匀强电场中电场线与等势面电场力所做的负功相等易Ⅱ卷18题·选择题·6分磁场指南针易2022年Ⅰ卷14题·选择题·6分平行板电容器基本规律易Ⅱ卷15题·选择题·6分带电粒子在点电荷的电场中的运动轨迹点电荷的电场线特点易Ⅲ卷15题·选择题·6分静电场的等势面等势面的特点易2021年Ⅰ卷19题·选择题·6分安培定则、安培力、左手定则磁场的叠加中20题·选择题·6分电势φ与距离r的关系图象识图力量中Ⅱ卷21题·选择题·6分电动机原理:安培力安培力的方向变化状况分析难Ⅲ卷18题·选择题·6分磁场叠加a点处的磁感应强度为零中21题·选择题·6分匀强电场中电场强度与电势差的关系、电势、电势能等分法中24题·计算题·12分磁场中的圆周运动画出轨迹、几何关系中1.对电场强度的三个公式的理解(1)E =F q是电场强度的定义式,适用于任何电场.电场中某点的场强是确定值,其大小和方向与摸索电荷q 无关,摸索电荷q 充当“测量工具”的作用.(2)E =k Q r2是真空中点电荷所形成的电场的打算式,E 由场源电荷Q 和场源电荷到某点的距离r 打算. (3)E =U d是场强与电势差的关系式,只适用于匀强电场.留意:式中d 为两点间沿电场方向的距离. 2.电场能的性质(1)电势与电势能:φ=E p q. (2)电势差与电场力做功:U AB =W ABq=φA -φB . (3)电场力做功与电势能的变化:W =-ΔE p . 3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面. (2)电场线越密的地方,等差等势面也越密.(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力肯定做功. 4.带电粒子在磁场中的受力状况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用.磁场对运动电荷的作用力叫洛伦兹力. (2)洛伦兹力的大小和方向:其大小为F =qvB sin θ,留意:θ为v 与B 的夹角.F 的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向. 5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功.1.本部分内容的主要争辩方法有: (1)抱负化模型.如点电荷;(2)比值定义法.电场强度、电势的定义方法是定义物理量的一种重要方法;(3)类比的方法.电场和重力场的比较;电场力做功与重力做功的比较;带电粒子在匀强电场中的运动和平抛运动的类比.2.静电力做功的求解方法:(1)由功的定义式W =Fl cos α来求;(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W =-ΔE p ;(3)利用W AB =qU AB 来求.3.争辩带电粒子在电场中的曲线运动时,接受运动合成与分解的思想方法;带电粒子在组合场中的运动实际是类平抛运动和匀速圆周运动的组合,一般类平抛运动的末速度就是匀速圆周运动的线速度.高考题型1 对电场性质的理解例1 (多选)(2021·山东省模拟)如图1所示,实线为三个电荷量相同的带正电的点电荷Q 1、Q 2、Q 3的电场线分布,虚线为某摸索电荷从a 点运动到b 点的轨迹,则下列说法正确的是( )图1A .b 点的电场强度比a 点的电场强度大B .该摸索电荷从a 点到b 点的过程中电场力始终做负功C .该摸索电荷从a 点到b 点的过程中电势能先增加后削减D .该摸索电荷从a 点到b 点的过程中动能先增加后削减 答案 AC解析 依据电场线的疏密程度表示电场强度的大小可知,b 点的电场强度比a 点的电场强度大,选项A 正确;该摸索电荷从a 点到b 点的过程中,电场力供应其做曲线运动的合外力,且电场力方向指向曲线凹处,与速度方向的夹角先是钝角后变成锐角,即电场力先做负功后做正功,摸索电荷的电势能先增加后削减,依据功能关系可知,摸索电荷的动能先削减后增加,选项C 正确,B 、D 错误.1.电场线:假想线,直观形象地描述电场中各点场强的强弱及方向,曲线上各点的切线方向表示该点的场强方向,曲线的疏密程度表示电场的强弱. 2.电势凹凸的比较(1)依据电场线方向,沿着电场线方向,电势越来越低;(2)将带电量为+q 的电荷从电场中的某点移至无穷远处电场力做功越多,则该点的电势越高; (3)依据电势差U AB =φA -φB ,若U AB >0,则φA >φB ,反之φA <φB . 3.电势能变化的推断(1)依据电场力做功推断,若电场力对电荷做正功,电势能削减;反之则增加.即W =-ΔE p .(2)依据能量守恒定律推断,电场力做功的过程是电势能和其他形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动能相互转化,而总和应保持不变,即当动能增加时,电势能削减.1.(多选)(2021·河南焦作市二模)如图2所示,是由电荷量分别为+6q 和-q 的两个点电荷组成的一个电荷系统,其中A 、B 是两点电荷所在位置,N 、P 、Q 是AB 连线上的三点,N 点的电场强度为零.若规定无限远处的电势为零,则下列说法正确的是( )图2A .图中左侧A 点为+6q 的点电荷B .P 点场强大于Q 点场强C .P 点电势高于Q 点电势D .N 点的电势大于零 答案 CD2.(多选)(2021·全国卷Ⅰ·20)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r 的关系如图3所示.电场中四个点a 、b 、c 和d 的电场强度大小分别为E a 、E b 、E c 和E d .点a 到点电荷的距离r a 与点a 的电势φa 已在图中用坐标(r a ,φa )标出,其余类推.现将一带正电的摸索电荷由a 点依次经b 、c 点移动到d 点,在相邻两点间移动的过程中,电场力所做的功分别为W ab 、W bc 和W cd .下列选项正确的是( )图3A .E a ∶E b =4∶1B .E c ∶E d =2∶1C .W ab ∶W bc =3∶1D .W bc ∶W cd =1∶3答案 AC解析 由题图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,依据点电荷的场强公式E =kQ r 2可知,E a E b =r b 2r a 2=41,E c E d =r d 2r c 2=41,故A 正确,B 错误;电场力做功W =qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =11,故C 正确,D 错误. 3.(多选)(2021·北京房山区模拟)如图4,一点电荷固定于O 点,两虚线圆均以O 为圆心,两实线分别为带电粒子M 和N 单独在电场中运动的轨迹,a 、b 、c 、d 、e 为轨迹和虚线圆的交点.已知M 粒子带正电荷,不计粒子重力.下列说法正确的是( )图4A .a 点电势比d 点的电势高B .M 在b 点的动能小于它在a 点的动能C .N 在d 点的电势能等于它在e 点的电势能D .N 在从c 点运动到d 点的过程中克服电场力做功 答案 BC解析 由M 粒子的运动轨迹可知,M 粒子受到的是吸引力,可知点电荷带负电,电场线从无穷远指向该点电荷,依据顺着电场线方向电势渐渐降低,可知a 点电势比d 点的电势低,故A 错误.a 点的电势低于b 点的电势,而正电荷在电势高处电势能大,因此M 在b 点的电势能大于它在a 点的电势能,依据能量守恒定律知,M 粒子的动能和电势能之和保持不变,则M 在b 点的动能小于它在a 点的动能,故B 正确.e 、d 两点在同一等势面上,电势相等,则N 在d 点的电势能等于它在e 点的电势能,故C 正确.N 粒子受到了排斥力作用,N 在从c 点运动到d 点的过程中电场力做正功,故D 错误.高考题型2 电场矢量合成问题例2 (多选)(2021·齐鲁名校模拟)如图5所示,P 为直角三角形OMN 的OM 边上的一点,∠NMP =∠MNP =30°,PG 垂直于MN ,M 、P 两点固定着两个点电荷,固定于P 点的是电荷量大小为Q 的负电荷.已知N 点的电场强度沿NO 方向,则( )图5A .M 点电荷带正电,电荷量为3QB .M 点电荷带正电,电荷量为33Q C .G 点的电势高于O 点的电势D .将一正的点电荷沿斜边从M 点移到N 点,静电力先做正功后做负功 答案 ACD解析 设PN 距离为r ,M 处的电荷量为q ,Q 产生的电场强度与q 产生的电场强度在N 处的叠加方向沿NO ,作出矢量合成的平行四边形,由正弦定理kQ r 2sin 120°=kq (3r )2sin 30°,得q =3Q ,由矢量合成图知q 带正电,A 对.由电势叠加的代数和可知G 点的电势高于O 点的电势,画出Q 和q 电场线的大致分布,可知将一正点电荷沿直线从M 移到N 点,静电力先做正功后做负功.1.娴熟把握常见电场的电场线和等势面的画法.2.对于简单的电场场强、电场力合成时要用平行四边形定则.3.电势的凹凸可以依据“沿电场线方向电势降低”或者由离正、负场源电荷的距离来确定. 4.电势的叠加为标量的代数加法.4.(2021·山东济南一中模拟)如图6,a 、b 、c 、d 分别是一个菱形的四个顶点,∠abc =120°.现将三个等量的正点电荷+Q 分别固定在a 、b 、c 三个顶点上,下列说法正确的有( )图6A .d 点电场强度的方向由d 指向OB .O 点电场强度的方向由d 指向OC .d 点的电场强度大于O 点的电场强度D .d 点的电场强度小于O 点的电场强度 答案 D解析 由电场的叠加原理可知,O 、d 点电场方向都由O 指向d ,故A 、B 错误;设菱形的边长为x ,依据公式E =k Q r 2分析可知三个点电荷在d 点产生的场强大小E 相等,由电场的叠加可知,d 点的场强大小为E d =2k Q x 2,O 点的场强大小为E O =4k Qx2,可见,d 点的电场强度小于O 点的电场强度,即E d <E O ,故C 错误,D 正确.5.(多选)(2021·陕西汉中市4月模拟)如图7所示,有四个等量异种点电荷,放在正方形的四个顶点处.A 、B 、C 、D 为正方形四个边的中点,O 为正方形的中心,下列说法正确的是( )图7A .A 、C 两个点的电场强度方向相反B .O 点电场强度等于零C .将一带正电的摸索电荷从B 点沿直线移动到D 点,电场力做功为零 D .O 点的电势低于A 点的电势 答案 CD高考题型3 带电粒子在有界磁场中的临界、极值问题例3 (2021·全国卷Ⅲ·24)如图8,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在x ≥0 区域,磁感应强度的大小为B 0;x <0区域,磁感应强度的大小为λB 0(常数λ>1).一质量为m 、电荷量为q (q >0)的带电粒子以速度v 0从坐标原点O 沿x 轴正向射入磁场,此时开头计时,当粒子的速度方向再次沿x 轴正向时,求(不计重力)图8(1)粒子运动的时间; (2)粒子与O 点间的距离.答案 (1)πm B 0q (1+1λ) (2)2mv 0B 0q (1-1λ)解析 (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 02R 1①qλB 0v 0=m v 02R 2②粒子速度方向转过180°时,所需时间t 1为t 1=πR 1v 0③粒子再转过180°时,所需时间t 2为t 2=πR 2v 0④联立①②③④式得,所求时间为t =t 1+t 2=πm B 0q (1+1λ)(2)由几何关系及①②式得,所求距离为d =2(R 1-R 2)=2mv 0B 0q (1-1λ)1.解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,查找临界点,确定临界状态,依据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系. 2.粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.6.(多选)(2021·甘肃省模拟)如图9所示,在一等腰三角形ACD 区域内有垂直纸面对外的匀强磁场,磁场的磁感应强度大小为B .一质量为m 、电荷量为q 的带正电粒子(不计重力)从AC 边的中点O 垂直于AC 边射入该匀强磁场区域,若该三角形的两直角边长均为2l ,则下列关于粒子运动的说法中正确的是( )图9A .若该粒子的入射速度为v =qBlm,则粒子肯定从CD 边射出磁场,且距点C 的距离为l B .若要使粒子从CD 边射出,则该粒子从O 点入射的最大速度应为v =2qBlmC .若要使粒子从AC 边射出,则该粒子从O 点入射的最大速度应为v =qBl 2mD .该粒子以不同的速度入射时,在磁场中运动的最长时间为m πqB答案 ACD解析 若该粒子的入射速度为v =qBl m ,由Bqv =m v 2r解得r =l ,依据几何关系可知,粒子肯定从CD 边距C 点为l 的位置离开磁场,故A 正确;v =Bqrm,因此半径越大,速度越大,依据几何关系可知,若要使粒子从CD 边射出,则使粒子轨迹与AD 边相切时速度最大,则由几何关系可知,最大半径肯定大于2l ,故B 错误;若要使粒子从AC 边射出,则该粒子从O 点入射的最大半径为l2,因此最大速度应为v =qBl2m,故C 正确;粒子在磁场中做匀速圆周运动的周期为2πmBq,依据几何关系可知,粒子在磁场中运动的最大圆心角为180°,故最长时间为m πqB,故D 正确. 7.(多选)(2021·黑龙江虎林市模拟)如图10,一粒子放射源P 位于足够大绝缘板AB 的上方d 处,能够在纸面内向各个方向放射速率为v 、电荷量为q 、质量为m 的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力,已知粒子做圆周运动的半径大小恰好为d ,则( )图10A .能打在板上的区域长度是2dB .能打在板上的区域长度是(3+1)dC .同一时刻放射出的带电粒子打到板上的最大时间差为7πd6vD .同一时刻放射出的带电粒子打到板上的最大时间差为πqd6mv答案 BC解析 以磁场方向垂直纸面对外为例,打在极板上粒子轨迹的临界状态如图所示:依据几何关系知,带电粒子能到达板上的长度l =(1+3)d ,故A 错误,B 正确; 在磁场中运动时间最长和最短的粒子运动轨迹示意图如图所示:由几何关系知,最长时间t 1=34T最短时间t 2=16T又有粒子在磁场中运动的周期T =2πr v =2πdv;依据题意:t 1-t 2=Δt联立解得:Δt =712T =7πd6v,故C 正确,D 错误.若磁场方向垂直纸面对里,可得出同样的结论.题组1 全国卷真题精选1.(2022·全国卷Ⅱ·15)如图11,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则( )图11A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b 答案 D解析 由库仑定律F =kq 1q 2r 2可知,粒子在a 、b 、c 三点受到的电场力的大小关系为F b >F c >F a ,由a =Fm,可知a b >a c >a a .依据粒子的轨迹可知,粒子Q 与场源电荷P 的电性相同,二者之间存在斥力,由c →b →a 整个过程中,电场力先做负功再做正功,且|W ba |>|W cb |,结合动能定理可知,v a >v c >v b ,故选项D 正确.2.(多选)(2021·新课标全国Ⅱ·18)指南针是我国古代四大创造之一.关于指南针,下列说法正确的是( ) A .指南针可以仅具有一个磁极B .指南针能够指向南北,说明地球具有磁场C .指南针的指向会受到四周铁块的干扰D .在指南针正上方四周沿指针方向放置始终导线,导线通电时指南针不偏转 答案 BC3.(2021·新课标全国Ⅰ·15)如图12,直线a 、b 和c 、d 是处于匀强电场中的两组平行线,M 、N 、P 、Q 是它们的交点,四点处的电势分别为φM 、φN 、φP 、φQ .一电子由M 点分别运动到N 点和P 点的过程中,电场力所做的负功相等.则( )图12A .直线a 位于某一等势面内,φM >φQB .直线c 位于某一等势面内,φM >φNC .若电子由M 点运动到Q 点,电场力做正功D .若电子由P 点运动到Q 点,电场力做负功 答案 B解析 电子带负电荷,电子由M 点分别运动到N 点和P 点的过程中,电场力所做的负功相等,有W MN =W MP <0,而W MN =qU MN ,W MP =qU MP ,q <0,所以有U MN =U MP >0,即φM >φN =φP ,匀强电场中等势线为平行的直线,所以NP 和MQ 分别是两条等势线,有φM =φQ ,故A 错误,B 正确;电子由M 点到Q 点过程中,W MQ =q (φM -φQ )=0,电子由P 点到Q 点过程中,W PQ =q (φP -φQ )>0,故C 、D 错误. 题组2 各省市真题精选4.(2022·江苏单科·3)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图13所示.容器内表面为等势面,A 、B 为容器内表面上的两点,下列说法正确的是( )图13A .A 点的电场强度比B 点的大 B .小球表面的电势比容器内表面的低C .B 点的电场强度方向与该处内表面垂直D .将检验电荷从A 点沿不同路径移到B 点,电场力所做的功不同 答案 C解析 由电场线的疏密表示电场强度大小可知,A 点的电场强度比B 点的小,A 项错误;沿电场线的方向电势渐渐降低,B 项错误;容器的内表面为一等势面,内表面处各点场强的方向与等势面垂直,C 项对;容器内表面为等势面,在等势面上移动电荷,电场力不做功,D 项错误.5.(2021·山东理综·18)直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图14所示.M 、N 两点各固定一负点电荷,一电荷量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )图14 A.3kQ4a2,沿y 轴正向 B.3kQ4a2,沿y 轴负向 C.5kQ4a 2,沿y 轴正向 D.5kQ4a2,沿y 轴负向 答案 B解析 因正电荷Q 在O 点时,G 点的场强为零,则可知两负电荷在G 点形成的电场的合场强与正电荷Q 在G 点产生的场强等大反向,大小为E 合=k Q a 2;若将正电荷移到G 点,则正电荷在H 点的场强为E 1=k Q (2a )2=kQ4a 2,因两负电荷在G 点的场强与在H 点的场强等大反向,则H 点的合场强为E =E 合-E 1=3kQ4a 2,方向沿y 轴负向,故选B.6.(多选)(2021·四川理综·7)如图15所示,S 处有一电子源,可向纸面内任意方向放射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与直线SO 的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面对外的匀强磁场,磁感应强度B =2.0×10-4T .电子质量m =9.1×10-31kg ,电量e =-1.6×10-19C ,不计电子重力.电子源放射速度v =1.6×106m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则( )图15A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm 答案 AD解析 电子在磁场中运动,洛伦兹力供应向心力:evB =mv 2R ,R =mv Be =4.55×10-2m =4.55 cm =L 2,θ=90°时,击中板的范围如图甲所示,l =2R =9.1 cm ,选项A 正确.θ=60°时,击中板的范围如图乙所示,l <2R =9.1 cm ,选项B 错误.θ=30°时,如图丙所示,l =R =4.55 cm ,当θ=45 °时,击中板的范围如图丁所示,l >R (R =4.55 cm),故选项D 正确,C 错误.专题强化练1.(2021·齐鲁名校联考)相隔肯定距离的电荷或磁体间的相互作用是怎样发生的?这是一个曾经使人感到困惑、引起猜想且有过长期争辩的科学问题.19世纪以前,不少物理学家支持超距作用的观点.英国的迈克尔·法拉第于1837年提出了电场和磁场的概念,解释了电荷之间以及磁体之间相互作用的传递方式,打破了超距作用的传统观念.1838年,他用电力线(即电场线)和磁力线(即磁感线)形象地描述电场和磁场,并解释电和磁的各种现象.下列对电场和磁场的生疏,正确的是( ) A .法拉第提出的磁场和电场以及电场线和磁感线都是客观存在的B .处在电场中的电荷肯定受到电场力,在磁场中的通电导线肯定受到安培力C .电场强度为零的地方电势肯定为零,电势为零的地方电场强度也为零D .通电导线与通电导线之间的相互作用是通过磁场发生的答案 D解析 电场和磁场都是客观存在的特殊物质,而电场线和磁感线是为了形象地描述电场和磁场而引入的虚拟的曲线,实际中并不存在,故A 错误;处在电场中的电荷肯定受到电场力,在磁场中的通电导线不肯定受到安培力,当通电导线与磁场平行时就不受安培力,故B 错误;电场强度与电势无关,电场强度为零的地方电势不肯定为零,电势为零的地方电场强度也不肯定为零,故C 错误;依据磁场的性质可知,通电导线与通电导线之间的相互作用是通过磁场发生的.2.(多选)(2021·全国卷Ⅰ·19)如图1,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反.下列说法正确的是( )图1A .L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B .L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为1∶1∶ 3D .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为3∶3∶1 答案 BC3.(2021·山东泰安市一模)如图2,+Q 为固定的正点电荷,虚线圆是其一条等势线.两电荷量相同但质量不相等的粒子,分别从同一点A 以相同的速度v 0射入,轨迹如图中曲线,B 、C 为两曲线与圆的交点.a B 、a C 表示两粒子经过B 、C 时的加速度大小,v B 、v C 表示两粒子经过B 、C 时的速度大小.不计粒子重力,以下推断正确的是( )图2A .aB =aC v B =v C B .a B >a C v B =v C C .a B >a C v B <v CD .a B <a C v B >v C答案 C4.(多选)(2021·全国卷Ⅲ·21)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图3所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是( )图3A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV 答案 ABD解析 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf 的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V3.6 cm=2.5 V/cm ,故选项A 正确;由于Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确.5.(2021·全国卷Ⅲ·18)如图4,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面对里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零,假如让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )图4 A .0 B.33B 0 C.233B 0 D .2B 0 答案 C解析 如图甲所示, P 、Q 中的电流在a 点产生的磁感应强度大小相等,设为B 1,由几何关系可知,B 1=33B 0.假如让P 中的电流反向、其他条件不变时,如图乙所示,由几何关系可知,a 点处磁感应强度的大小B a =B 02+B 合2.又B 合=B 1,则B a =233B 0 ,故选项C 正确,A 、B 、D 错误.6.(多选)如图5所示,在等量异种电荷形成的电场中,画一正方形ABCD ,对角线AC 与两点电荷连线重合,两对角线交点O 恰为电荷连线的中点.下列说法中正确的是( )图5A .A 点的电场强度等于B 点的电场强度 B .A 、C 两点的电场强度相同,电势不相同C .把握一电子由B 点沿B →O →D 路径移至D 点,电势能不变D .把握一电子由C 点沿C →O →A 路径移至A 点,电场力对其先做负功后做正功 答案 BC解析 由等量异种电荷的电场线分布可知,A 点的电场强度大于B 点的电场强度,A 选项错误;A 、C 两点的电场强度相同,电势不相同,B 选项正确;把握一电子由B 点沿B →O →D 路径至D 点,B →O →D 是等势面,电势能不变,C 选项正确;把握一电子由C 点沿C →O →A 路径至A 点,电场力对其始终做正功,D 选项错误. 7.(2021·河南安阳市二模)如图6甲所示半径为R 的均匀带正电球体,A 、B 为过球心O 的直线上的两点,且OA =2R ,OB =3R ;球体的空间产生球对称的电场,场强大小沿半径方向分布状况如图乙所示,图中E 0已知,E -r 曲线下O ~R 部分的面积等于2R ~3R 部分的面积,则下列说法正确的是( )图6A .A 点的电势低于B 点的电势 B .A 点的电场强度小于B 点的电场强度C .从球面到A 点的电势差小于AB 两点间的电势差D .带电量为q 的正电荷沿直线从A 点移到B 点的过程中,电场力做功12E 0Rq答案 D解析 球体带正电,电场线向外,故A 点电势高于B 点电势,由图乙知E A >E B ,故A 、B 错误;据U =Ed 知,图象面积表示电势差,则球面到A 的电势差大于AB 两点间的电势差,故C 错误;因O ~R 部分的面积等于2R ~3R 部分的面积,则U AB =12E 0R ,电场力做功W =qU AB =12E 0Rq ,故D 正确.8.(2021·山东烟台市模拟)已知一个无限大的金属板与一个点电荷之间的空间电场分布与等量异种电荷之间的电场分布类似,即金属板表面各处的电场强度方向与板面垂直.如图7所示,MN 为无限大的不带电的金属平板,且与大地连接,现将一个电荷量为+Q 的点电荷置于板的右侧,图中a 、b 、c 、d 是以点电荷+Q 为圆心的圆上的四个点,四点的连线构成一内接正方形,其中ab 连线与金属板垂直,则下列说法正确的是( )图7A .b 点电场强度与c 点电场强度相同B .a 点电场强度与d 点电场强度相同C .a 点电势等于d 点电势D .将一摸索电荷从a 点沿直线ad 移到d 点的过程中,摸索电荷电势能始终保持不变 答案 C解析 点电荷与无限大金属板间电场线如图所示,可知b 点电场强度与c 点电场强度、a 点电场强度与d 点电场强度都是大小相等,方向不同,故A 、B 错误;因a 点与d 点在同一等势面,a 点电势等于d 点电势,故选项C 正确;但将摸索电荷从a 点沿直线ad 移到d 点的过程中,电势能并非始终保持不变,故D 错误.9.(2021·福建龙岩市3月质检)以无穷远处的电势为零,在电荷量为q 的点电荷四周某点的电势可用φ=kq r计算,式中r 为该点到点电荷的距离,k 为静电力常量.两电荷量大小均为Q 的异种点电荷固定在相距为L 的两点,如图8所示.现将一质子(电荷量为e )从两点电荷连线上的A 点沿以电荷+Q 为圆心、半径为R 的半圆形轨迹ABC 移到C 点,质子从A 移到C 的过程中电势能的变化状况为( )图8 A .增加2kQeL 2-R 2 B .增加2kQeRL 2-R 2C .削减2kQeRL 2+R 2D .削减2kQeL 2+R 2答案 B解析 A 点的电势为:φA =k-Q L -R +k Q R ,C 点的电势为:φC =k -Q L +R +k QR,则A 、C 间的电势差为:U AC =φA -φC =-2kQR L 2-R 2.质子从A 移到C ,电场力做功为 W AC =eU AC =-2kQeR L 2-R 2<0,所以质子的电势能增加2kQeRL 2-R 2.10.(2021·江西九江市二模)如图9,A 是带电量为+Q 、半径为R 的球体且电荷均匀分布(均匀分布电荷的绝缘球体在空间产生对称的电场,场强大小只和到球心的距离有关).B 为带电量为+q 的带电体,可看作点电荷,已检测到c 点的场强为零,d 点与c 点到球心O 的距离都为r ,B 到c 点距离也为r ,那么只把带+q 的带电体移到e 点,则d 点场强大小为( )。

高中物理高考真题解析(含答案)-电场和磁场的基本性质

高中物理高考真题解析(含答案)-电场和磁场的基本性质

第7讲电场和磁场的基本性质一、单项选择题1.(2014·宿迁市高三摸底考试)不带电导体P置于电场中,其周围电场线分布如图3-7-17所示,导体P表面处的电场线与导体表面垂直,a、b为电场中的两点,则()图3-7-17A.a点电场强度小于b点电场强度B.a点电势低于b点的电势C.负检验电荷在a点的电势能比在b点的大D.正检验电荷从a点移到b点的过程中,电场力做正功解析电场线密集的地方场强大,则a点电场强度大于b点电场强度,选项A错误;沿电场线方向电势降低,则a点电势高于P点电势,P点电势高于b点电势,选项B错误;负检验电荷在电势较高的地方电势能较小,选项C 错误;正检验电荷在电势较高的地方电势能较大,正检验电荷从a点移到b 点的过程中,电势能减小,电场力做正功,选项D正确.答案 D2.航母舰载机的起飞一般有两种方式:滑跃式(辽宁舰)和弹射式.弹射起飞需要在航母上安装弹射器,我国国产航母将安装电磁弹射器,其工作原理与电磁炮类似.用强迫储能器代替常规电源,它能在极短时间内释放所储存的电能,由弹射器转换为飞机的动能而将其弹射出去.如图3-7-18所示是电磁弹射器简化原理图,平行金属导轨与强迫储能器连接,相当于导体棒的推进器ab跨放在平行导轨PQ、MN上,匀强磁场垂直于导轨平面,闭合开关S,强迫储能器储存的电能通过推进器释放,使推进器受到磁场的作用力平行导轨向前滑动,推动飞机使飞机获得比滑跃起飞时大得多的加速度,从而实现短距离起飞的目标.对于电磁弹射器,下列说法正确的是(不计一切摩擦和电阻消耗的能量) ()图3-7-18A.强迫储能器上端为正极B.导轨宽度越大,飞机能获得的加速度越大C.强迫储能器储存的能量越多,飞机被加速的时间越长D.飞机的质量越大,离开弹射器时的动能越大解析由左手定则可判断,通过ab的电流方向为由b到a,所以强迫储能器上端为负极,A错误;ab所受安培力F=BIL与其有效长度成正比,故导轨宽度越大,推进器ab受到的安培力越大,飞机能获得的加速度越大,B正确;强迫储能器储存的能量越多,飞机能获得的动能越大,但加速时间受滑轨长度、飞机获得的加速度等影响,若滑轨长度一定,加速度越大,加速时间越短,C错误;由能量的转化和守恒定律可知,飞机离开弹射器时的动能取决于强迫储能器储存的能量,D错误.答案 B3.(2014·武汉市调研考试)将等量的正、负电荷分别放在正方形的四个顶点上(如图3-7-19所示).O点为该正方形对角线的交点,直线段AB通过O点且垂直于该正方形,OA>OB,以下对A、B两点的电势和场强的判断,正确的是()图3-7-19A.A点场强小于B点场强B.A点场强大于B点场强C.A点电势等于B点电势D.A点电势高于B点电势解析由电荷的对称分布关系可知AB直线上的电场强度为0,所以选项AB 错误;同理将一电荷从A移动到B电场力做功为0,AB电势差为0,因此A 点电势等于B点电势,选项C正确,D错误;因此答案选C.答案 C4.(2014·山东名校高考冲刺卷二)如图3-7-20所示,a、b是x轴上关于O点对称的两点,c、d是y轴上关于O点对称的两点,a、b两点上固定一对等量异种点电荷,带正电的检验电荷仅在电场力的作用下从c点沿曲线运动到d点,以下说法正确的是()图3-7-20A.将检验电荷放在O点时受到的电场力为零B.检验电荷由c点运动到d点时速度先增大后减小C.c、d两点电势相等,电场强度大小相等D.检验电荷从c运动到d的过程中,电势能先减少后增加解析由带正电荷的检验电荷的轨迹可判断出a处为负电荷,b处为正电荷,检验电荷从c到d的过程中,速度先减小后增大,电势能先增加后减少,选项B、D均错;电荷在O点受到的电场力不为零,选项A错;根据等量异种电荷电场的分布及对称性可知选项C 正确.答案 C5.(2014·河北省衡水中学调研)如图3-7-21甲所示,真空中有一半径为R 、电荷量为+Q 的均匀带电球体,以球心为坐标原点,沿半径方向建立x 轴.理论分析表明,x 轴上各点的场强随x 变化关系如图乙所示,则 ( )图3-7-21A .x 2处场强大小为kQ x 22B .球内部的电场为匀强电场C .x 1、x 2两点处的电势相同D .假设将试探电荷沿x 轴移动,则从x 1移到R 处和从R 移到x 1处电场力做功相同解析 引入带正电的试探电荷q ,所受的库仑力F =k Qq r 2,根据场强定义式E=F q ,求得x 2处的场强为E =kQ x 22,选项A 正确;由图乙知球内部随着x 的增加场强逐渐增大,选项B 错误;引入带正电的试探电荷q ,由图乙知在x 1处受到的电场力沿着x 轴正方向,在向x 2运动过程中,电场力做正功,电势能减小,选项C 错误;将试探电荷沿x 轴移动,则从x 1移到R 处电场力做正功,而从R 移到x 1处电场力做负功,选项D 错误.答案 A6.如图3-7-22所示,甲图中电容器的两个极板和电源的两极相连,乙图中电容器充电后断开电源.在电容器的两个极板间用相同的悬线分别吊起完全相同的小球,小球静止时悬线和竖直方向的夹角均为θ,将两图中的右极板向右平移时,下列说法正确的是 ( )图3-7-22A.甲图中夹角减小,乙图中夹角增大B.甲图中夹角减小,乙图中夹角不变C.甲图中夹角不变,乙图中夹角不变D.甲图中夹角减小,乙图中夹角减小解析甲图中的电容器和电源相连,所以电容器两极板间的电压不变,当极板间的距离增大时,根据公式E=Ud可知,板间的电场强度减小,电场力减小,所以悬线和竖直方向的夹角将减小.当电容器充电后断开电源,电容器的极板所带的电荷量不变.根据平行板电容器的电容公式C=εr S4πkd,极板间的电压U=QC=4πkdQεr S,极板间的电场强度E=Ud=4πkQεr S,当两个极板电荷量不变、距离改变时,场强与两板间距离无关,故乙图中夹角不变,B正确.答案 B二、多项选择题7.(2014·扬州市高三第一学期期末检测)两个不规则带电导体间的电场线分布如图3-7-23所示,已知导体附近的电场线均与导体表面垂直,a、b、c、d 为电场中几个点,并且a、d为紧靠导体表面的两点,以无穷远为零电势点,则()图3-7-23A.场强大小关系有E b>E cB.电势大小关系有φb>φdC.将一负电荷放在d点时其电势能为负值D.将一正电荷由a点移到d点的过程中电场力做正功解析由电场线的疏密表征电场强度的大小可知,E b<E c,A错;沿着电场线方向电势降低,达到静电平衡状态的导体是等势体,可知φb>φd,B对;由于a点电势高于d点电势,将一正电荷由a点移到d点的过程中电场力做功W=q(φa-φd)为正功,D对;由于无穷远处为零电势点,故d点电势为负,负电荷放在d点时其电势能为正,C错.答案BD8.如图3-7-24所示,实线为电视机显像管主聚焦电场中的等势面.a、b、c、d为圆上的四个点,则下列说法中正确的是()图3-7-24A.a、b、c、d四点电势不等,但电场强度相同B.一电子从b点运动到c点,电场力做的功为0.6 eVC.若一电子从左侧沿中心轴线穿越电场区域,将做加速度先增加后减小的加速直线运动D.一束电子从左侧平行于中心轴线进入电场区域,将会从右侧平行于中心轴线穿出解析a、b、c、d四点电势不等,但电场强度大小相等,方向不相同,选项A错误;一电子从b点运动到c点,电场力做的功为e(0.80-0.20)V=0.6 eV,选项B正确;若一电子从左侧沿中心轴线穿越电场区域,将做加速度先增加后减小的加速直线运动,选项C正确;一束电子从左侧平行于中心轴线进入电场区域,从右侧空出时将散开,选项D错误.答案BC9.如图3-7-25所示,在直线MN下方存在着垂直于纸面向里的匀强磁场,磁感应强度为B.放置在直线MN上P点的离子源,可以向磁场区域纸面内的各个方向发射出质量为m、电荷量为q的负离子,速率都为v.对于那些在纸面内运动的离子,下列说法正确的是图3-7-25A.离子射出磁场的点Q(图中未画出)到P的最大距离为m v qBB.离子距离MN的最远距离为2m v qBC.离子在磁场中的运动时间与射入方向有关D.对于沿同一方向射入磁场的离子,射入速率越大,运动时间越短解析如图所示,垂直于MN射入的离子,在射出磁场时其射出点Q离P点最远,且最远距离等于轨道半径的2倍,即2m vqB,A错;平行MN且向N侧射入的离子在磁场中运动时距离MN有最远距离PP′,且为轨道半径的2倍,B对;离子在磁场中的运动的周期相同,运动时间由圆弧对应的圆心角决定,而圆心角由离子射入磁场的方向决定,因此运动时间与射入方向有关,C对;对于沿同一方向射入的离子,运动时间由射入方向和运动周期决定,而运动周期与速率无关,故运动时间与速率无关,D错.答案BC三、非选择题10.(2014·福建卷,20)如图3-7-26,真空中xOy平面直角坐标系上的ABC三点构成等边三角形,边长L=2.0 m.若将电荷量均为q=+2.0×10-6 C的两点电荷分别固定在A、B点,已知静电力常量k=9.0×109 N·m2/C2,求:图3-7-26(1)两点电荷间的库仑力大小;(2)C点的电场强度的大小和方向.解析(1)根据库仑定律,A、B两点间的库仑力大小为:F=k q2L2①代入数据得:F=9.0×10-3 N②(2)A、B点电荷在C点产生的场强大小相等,均为:E1=k qL2③A、B两点电荷形成的电场在C点的合场强大小为:E=2E1cos 30°④代入数据得E=7.8×103 N/C方向沿y轴正方向⑤答案(1)9.0×10-3 N(2)7.8×103 N/C方向沿y轴正方向11.(2014·南昌市调研考试)如图3-7-27所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,坐标系内有A、B两点,其中A点坐标为(6 cm,0),B点坐标为(0,3 cm),坐标原点O处的电势为0,点A处的电势为8 V,点B处的电势为4 V.现有一带电粒子从坐标原点O处沿电势为0的等势线方向以速度v=4×105m/s射入电场,粒子运动时恰好通过B点,不计粒子所受重力,求:图3-7-27(1)图中C 处(3 cm,0)的电势;(2)匀强电场的场强大小;(3)带电粒子的比荷q m .解析 (1)设C 处的电势为φC因OC =CA所以φO -φC =φC -φA所以φC =φO +φA 2=0+82 V =4 V(2)BC 连线为等势线,电场强度方向与等势线BC 垂直设∠OBC =θ OB =L = 3 cm因tan θ=OC L =33,则θ=60° 由U =Ed ,得E =U d =U BO L sin θ=43×32×10-2 V/m =83×102 V/m(3)带电粒子做类平抛运动⎩⎪⎨⎪⎧ L cos θ=v t L sin θ=12qE m t 2 q m =2v 2sin θEL cos 2 θ=2×(4×105)2×3283×102×3×10-2×14 C/kg =2.4×1011 C/kg所以带电粒子的比荷为2.4×1011 C/kg.答案 (1)4 V (2)83×102 V/m(3)2.4×1011 C/kg12.如图3-7-28甲所示,比荷qm=k的带正电的粒子(可视为质点),以速度v0从A点沿AB方向射入长方形磁场区域,长方形的长AB=3L,宽AD=L.取粒子刚进入长方形区域的时刻为0时刻,垂直于长方形平面的磁感应强度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),粒子仅在洛伦兹力的作用下运动.图3-7-28(1)若带电粒子在通过A点后的运动过程中不再越过AD边,要使其恰能沿DC 方向通过C点,求磁感应强度B0及其磁场的变化周期T0为多少?(2)要使带电粒子通过A点后的运动过程中不再越过AD边,求交变磁场磁感应强度B0和变化周期T0的乘积B0T0应满足什么关系?解析(1)带电粒子在长方形区域内做匀速圆周运动,设粒子运动轨迹半径为R,周期为T,则可得R=m v0qB0=v0kB0,T=2πmqB0=2πkB0每经过一个磁场的变化周期,粒子的末速度方向和初速度方向相同,如图所示,要使粒子恰能沿DC方向通过C点,则经历的时间必须是磁场周期的整数倍,有:AB方向,3L=n×2R sin θDC方向,L=n×2R(1-cos θ)解得cos θ=1(舍去),cos θ=1 2所以θ=60°,R=L n即B 0=n v 0kL ,T 0=2πL 3n v 0(n =1、2、3…). (2)当交变磁场周期取最大值而粒子不再越过AD 边时运动情形如图所示由图可知粒子在第一个12T 0时间内转过的圆心角θ=5π6则T 0≤56T ,即T 0≤56 ·2πm qB 0≤5π3kB 0所以B 0T 0≤5π3k .答案 (1)n v 0kL 2πL 3n v 0(n =1、2、3…) (2)B 0T 0≤5π3k。

高考高考物理二轮复习专题训练:电场与磁场的理解

高考高考物理二轮复习专题训练:电场与磁场的理解

电场与磁场的理解一、选择题1.某平面区域内一静电场的等势线分布如图中虚线所示,相邻的等势线电势差相等,一负电荷仅在静电力作用下由a 运动至b ,设粒子在a 、b 两点的加速度分别为a a 、b a ,电势分别为a ϕ、b ϕ,该电荷在a 、b 两点的速度分别为a v 、b v ,电势能分别为p a E 、p b E ,则( )A .a b a a >B .b a v v >C .p p a b E E >D .a b ϕϕ>2.某静电场方向平行于x 轴,x 轴上各点电场强度随位置的变化关系如图所示,规定x 轴正方向为电场强度正方向。

若取x 0处为电势零点,则x 轴上各点电势随位置的变化关系可能为( )A .B .C .D .3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。

下列说法正确的是( ) A .电场强度的大小为2.5V/cmB .坐标原点处的电势为2VC .电子在a 点的电势能比在b 点的小7eVD .电子从b 点运动到O 点,电场力做功为16eV4.如图,空间中存在着水平向右的匀强电场,现将一个质量为m ,带电量为q +的小球在A 点以一定的初动能k E 竖直向上抛出,小球运动到竖直方向最高点C 时的沿场强方向位移是0x ,动能变为原来的一半(重力加速度为g ),下列说法正确的是( )A .场强大小为22mgqB .A 、C 竖直方向的距离为0x 的2倍C .小球从C 点再次落回到与A 点等高的B 点时,水平位移是02xD .小球从C 点落回到与A 点等高的B 点时,电场力做功大小为2k E5.如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为圆的两条直径,60aOc ∠=︒。

将一电荷量为q 的正点电荷从a 点移到b 点,电场力做功为W (0W >);若将该电荷从d 点移到c 点,电场力做功也为W 。

高考物理 电场与磁场有答案解析

高考物理 电场与磁场有答案解析

高考物理电场与磁场有答案解析1.(多选)如图1所示为不等量的异种点电荷电场线的分布情况,两点电荷的电荷量相差越大,电荷附近电场线的疏密差别也越大。

图中的虚线是两点电荷连线的中垂线,a、b是中垂线上的两点,根据电场线分布图判断,下列说法正确的是()图1A.同一电子在a、b两点所受的库仑力的大小关系为F a>F bB.a、b两点的电场强度方向均平行于点电荷连线向左C.a、b两点的电势相等D.正试探电荷在a点的电势能大于其在b点的电势能解析从图中可以看出,a点电场线比b点电场线密,因此a点的电场强度比b 点的电场强度大,根据F=Eq可知,同一电子在a点所受的库仑力较大,选项A 正确;在不等量异种电荷形成的电场中,a、b两点的电场强度方向均斜向左上方,与点电荷连线不平行,选项B错误;将正试探电荷由a点移到b点过程中,电场力对试探电荷做正功,其电势能减小,则a点电势高于b点电势,选项C 错误,D正确。

答案AD2.一新型电磁船的船体上安装了用于产生强磁场的超导线圈,在两船舷之间装有电池,导电的海水在安培力作用下即可推动该船前进。

如图2是电磁船的简化原理图,其中MN和PQ是与电池相连的导体棒,MN、PQ、电池与海水构成闭合回路,且与船体绝缘,要使该船水平向左运动,则超导线圈在NMPQ所在区域产生的磁场方向是()图2A.竖直向上B.竖直向下C.水平向左D.水平向右解析由电源、海水构成的闭合回路可知海水中电流的方向是从MN指向PQ,根据左手定则可知磁场方向竖直向下时海水受到的力水平向右,海水反作用于船体的力水平向左,符合题意。

选项B正确。

答案 B3.如图3所示,在绝缘的水平地面上有一水平向右的匀强电场,带正电荷的滑块P在电场中向左运动,当它经过H点时动能为E k1=300 J,当它经过B点时具有的动能为E k2=100 J。

若该过程中滑块克服摩擦力做的功为90 J,那么滑块的电势能增加了()图3A.100 JB.200 JC.110 JD.400 J解析滑块从H点运动到B点,由动能定理得-W电-W摩=ΔE k,代入数据得-W电-90 J=-200 J,解得W电=110 J,故选项C正确。

【试卷】高中物理复习专题之电场含习题及答案

【试卷】高中物理复习专题之电场含习题及答案

高考总复习选修3—1:电场一、主要内容本章内容可以分为两个部分:电场力的性质和电场能的性质。

其中前三节为电场力的性质包括:电荷、库仑定律、电场、电场力、电场强度、电场线。

第四、第五、第六节为电场能的性质包括:电势、电势差、电场力功、静电感应、电容器、电容的定义和平行板电容器电容的决定条件等基本概念。

其中电场强度与电势差的关系是电场能和电场力性质的桥梁,而带电粒子在电场中的运动规律是运动学与电场结合的一个专题。

二、基本方法本章涉及到的基本方法有:1、运用电场线、等势面几何方法形象化地描述电场的分布(这是解决问题的关键)2、将运动学动力学(牛顿第二定律)的规律和能量观点(特别是动能定理和电场力做功与电势能的关系)应用到电场中,分析解决带电粒子在电场中的运动问题、解决导体静电平衡的问题。

本章对能力的具体要求是:概念准确(真正理解各个概念千万不能乱套公式)、懂得规律的成立条件适用的范围。

从规律出发进行逻辑推理,把相关知识融会贯通灵活处理物理问题(学会过程分析与受力分析的具体应用)三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:不善于运用电场线、等势面为工具,将抽象的电场形象化后再对电场的场强、电势进行具体分析;对相关概念特别是电势和电势差的概念不能真正理解、对静电平衡内容理解有偏差;在运用力学规律解决电场问题时操作不规范等。

四、知识点解读1、库仑定律:(1)、内容(2)、表达式(3)、适用条件(4)、关于库仑定律的一些似是而非的说法。

备注:高考物理考试说明关于理解能力的说明:理解能力理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚地认识概念和规律的表达形式(包括文字表述和数学表达);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。

例题、在运用公式F=kQ1Q2/r2计算库仑力时,所应注意的下列事项中,正确的是()(A)只能用于点电荷在真空中的相互作用 (B)静电力常量k=9.0×10-9Nm2/C2(C)点电荷如带负电,计算库仑力时应将“-”号代入公式中(D)当两点电荷间的距离r→0时,它们之间的库仑力等于无穷大典型习题1、库仑定律与电荷守恒定律结合例题、在真空中,有两个点电荷,它们之间的静电力为F.如果将一个电荷的电荷量增大为原来的3倍,将它们之间的距离减小为原来的1/3,它们之间的静电力大小等于()(A) F(B)9F(C)27F(D) F/9高考真题:(2011海南).三个相同的金属小球1.2.3.分别置于绝缘支架上,各球之间的距离远大于小球的直径。

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场 附答案解析

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场  附答案解析

2025年⾼考⼈教版物理⼀轮复习阶段复习练(四)—电场和磁场(附答案解析)1.(2024·⼭西晋城市第⼀中学期中)如图甲所⽰,计算机键盘为电容式传感器,每个键下⾯由相互平⾏、间距为d的活动⾦属⽚和固定⾦属⽚组成,两⾦属⽚间有空⽓间隙,两⾦属⽚组成⼀个平⾏板电容器,如图⼄所⽰。

其内部电路如图丙所⽰,则下列说法正确的是( )A.按键的过程中,电容器的电容减⼩B.按键的过程中,电容器的电荷量增⼤C.按键的过程中,图丙中电流⽅向从a流向bD.按键的过程中,电容器间的电场强度减⼩2.(2023·⼴东深圳市期末)如图所⽰,将⼀轻质矩形弹性软线圈ABCD中A、B、C、D、E、F 六点固定,E、F为AD、BC边的中点。

⼀不易形变的长直导线在E、F两点处固定,现将矩形绝缘软线圈中通⼊电流I1,直导线中通⼊电流I2,已知I1≪I2,长直导线和线圈彼此绝缘。

则稳定后软线圈⼤致的形状可能是( )3.(多选)如图甲所⽰,为特⾼压输电线路上使⽤六分裂阻尼间隔棒的情景。

其简化如图⼄,间隔棒将6条输电导线分别固定在⼀个正六边形的顶点a、b、c、d、e、f上,O为正六边形的中⼼,A点、B点分别为Oa、Od的中点。

已知通电导线在周围形成磁场的磁感应强度与电流⼤⼩成正⽐,与到导线的距离成反⽐。

6条输电导线中通有垂直纸⾯向外、⼤⼩相等的电流,其中a导线中的电流对b导线的安培⼒⼤⼩为F,则( )A.A点和B点的磁感应强度相同B.其中b导线所受安培⼒⼤⼩为FC.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向下D.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向上4.(2024·江苏常州市检测)如图所⽰,ABCD为真空中⼀正四⾯体区域,M和N分别为AC边和AD边的中点,A处和C处分别有等量异种点电荷+Q和-Q。

则( )A.B、D处电场强度⼤⼩相等,⽅向不同B.电⼦在M点的电势能⼩于在N点的电势能C.将⼀试探正电荷从B沿直线BD移动到D静电⼒做正功D.将位于C处的电荷-Q移到B处时M、N点电场强度⼤⼩相等5.(2024·河南周⼝市期中)如图所⽰,在竖直平⾯内有⽔平向左的匀强电场,在匀强电场中有⼀根长为L的绝缘细线,细线⼀端固定在O点,另⼀端系⼀质量为m的带电⼩球。

电场与磁场专题(2024高考真题及解析)

电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。

高考物理电磁学知识点之磁场解析含答案

高考物理电磁学知识点之磁场解析含答案

高考物理电磁学知识点之磁场解析含答案一、选择题1.在磁感应强度大小为0B 的匀强磁场中,两长直导线P 和Q 平行于纸面固定放置。

在两导线中通有图示方向电流I 时,纸面内与两导线等距离的a 点处的磁感应强度为零。

下列说法正确的是( )A .匀强磁场方向垂直纸面向里B .将导线Q 撤去,a 点磁感应强度为032BC .将导线P 撤去,a 点磁感应强度为012B D .将导线Q 中电流反向,a 点磁感应强度为02B2.如图所示,有abcd 四个离子,它们带等量的同种电荷,质量不等.有m a =m b <m c =m d ,以不等的速度v a <v b =v c <v d 进入速度选择器后有两种离子从速度选择器中射出,进入B 2磁场,由此可判定( )A .射向P 1的是a 离子B .射向P 2的是b 离子C .射到A 1的是c 离子D .射到A 2的是d 离子3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B 和2B 。

一带正电粒子(不计重力)以速度v 从磁场分界线MN 上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN 成60 角,经过t 1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( )A .ω1∶ω2=1∶1B .ω1∶ω2=2∶1C .t 1∶t 2=1∶1D .t 1∶t 2=2∶14.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。

已知重力加速度为g ,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 5.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B 。

高考物理电磁学知识点之磁场解析含答案(4)

高考物理电磁学知识点之磁场解析含答案(4)

高考物理电磁学知识点之磁场解析含答案(4)一、选择题1.如图所示,在水平放置的光滑绝缘杆ab上,挂有两个相同的金属环M和N.当两环均通以图示的相同方向的电流时,分析下列说法中,哪种说法正确()A.两环静止不动 B.两环互相远离C.两环互相靠近 D.两环同时向左运动2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间4.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B。

一边长为L、电阻为R的单匝正方形导体线圈abcd,水平向右运动到图示位置时,速度大小为v,则()A.ab边受到的安培力向左,cd边受到的安培力向右B.ab边受到的安培力向右,cd边受到的安培力向左C.线圈受到的安培力的大小为22 2B L vRD.线圈受到的安培力的大小为22 4B L vR5.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。

工作原理如图所示,将患者血管置于磁感应强度为B的匀强磁场中,测出管壁上MN两点间的电势差为U,已知血管的直径为d,则血管中的血液流量Q为()A.πdUBB.π4dUBC.πUBdD.π4UBd6.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。

当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、φ2。

2020物理高考备考专题《电场、磁场的基本性质》(附答案解析版)

2020物理高考备考专题《电场、磁场的基本性质》(附答案解析版)

专题六电场、磁场的基本性质本专题主要是综合应用动力学方法和功能关系解决带电粒子在电场和磁场中的运动问题.这部分的题目覆盖的内容多,物理过程多,且情景复杂,综合性强,常作为理综试卷的压轴题.高考对本专题考查的重点有以下几个方面:①对电场力的性质和能的性质的理解;②带电粒子在电场中的加速和偏转问题;③带电粒子在磁场中的匀速圆周运动问题;④带电粒子在电场和磁场的组合场中的运动问题;⑤带电粒子在电场和磁场的叠加场中的运动问题;⑥带电粒子在电场和磁场中运动的临界问题.知识点一、对电场强度的理解及计算电场强度三个表达式的比较知识点二、电场的基本性质知识点三、带电粒子在电场中的运动1.带电粒子在电场中的直线运动带电粒子沿与电场线平行的方向进入电场,带电粒子将做加(减)速运动.2.带电粒子在匀强电场中的偏转(1)研究条件:带电粒子垂直于电场方向进入匀强电场.(2)处理方法:类似于平抛运动,应用运动的合成与分解的方法处理.①沿初速度方向做匀速直线运动,运动时间t=lv0.②沿电场力方向,做匀加速直线运动.知识点四、带电粒子在磁场中的运动高频考点一对电场性质的理解例1、(2019·新课标全国Ⅲ卷)如图,电荷量分别为q和–q(q>0)的点电荷固定在正方体的两个顶点上,a、b是正方体的另外两个顶点。

则A.a点和b点的电势相等B.a点和b点的电场强度大小相等C.a点和b点的电场强度方向相同D.将负电荷从a点移到b点,电势能增加【答案】BC【解析】由几何关系,可知b的电势大于a的电势,故A错误,把负电荷从a移到b,电势能减少,故D错误;由对称性和电场的叠加原理,可得出a、b的合电场强度大小、方向都相同,故B、C正确。

【举一反三】(2018年全国Ⅰ卷)图中虚线a、b、c、d、f代表匀强电场内间距相等的一组等势面,已知平面b上的电势为2 V。

一电子经过a时的动能为10 eV,从a到d的过程中克服电场力所做的功为6 eV。

高中物理 磁场与电场例题详解(含答案)

高中物理 磁场与电场例题详解(含答案)

第八章电场一、三种产生电荷的方式:1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;4、电荷的基本性质:能吸引轻小物体;二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

三、元电荷:一个电子所带的电荷叫元电荷,用e表示。

1、e=1.6×10-19c; 2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。

电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2 (k=9.0×109N.m2/kg2) 2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力;五、电场:电场是使点电荷之间产生静电力的一种物质。

1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案
高中物理电场和磁场是两个相关的物理概念,物理上它们在日常生活中都起着重要的作用。

本文将通过对电场和磁场的讲解以及对部分考题的讲解,来加深大家对它们的了解,以及准备参加高中物理考试的学生可以更好地练习和复习这两个概念。

一、电场
电场是指在一定空间中存在电势差所造成的能量影响,也就是说,它使电荷粒子在其中产生位置变化,并能够决定电荷粒子行为的能量场。

电场的强度和方向也会根据周围的环境及电荷粒子之间的距离而发生变化。

二、磁场
磁场是指在一定空间中存在磁势差所造成的能量影响,也就是说,它使磁性物质在其中产生位置变化,并能够决定磁性物质行为的能量场。

磁场的强度和方向也会根据周围的环境及磁力粒子之间的距离及其速度而发生变化。

三、考题
1.关于电场,下列说法正确的是()
A. 电场是指电势差造成的能量场
B. 电场的强度不随周围环境的变化而变化
C. 电场的方向随着周围的环境及电荷粒子之间的距离而发生变化
D. 电场只影响电荷粒子的行为
答案:A、C。

高考物理二轮复习题:电场和磁场

高考物理二轮复习题:电场和磁场

高考物理(电场和磁场)二轮习题含答案一、选择题。

1、(双选)质谱仪是用来分析同位素的装置,如图为质谱仪的示意图,其由竖直放置的速度选择器和偏转磁场构成。

由三种不同粒子组成的粒子束以某速度沿竖直向下的方向射入速度选择器,该粒子束沿直线穿过底板上的小孔O 进入偏转磁场,最终三种粒子分别打在底板MN 上的P 1、P2、P 3三点,已知底板MN 上下两侧的匀强磁场方向均垂直纸面向外,且磁感应强度的大小分别为B 1、B 2,速度选择器中匀强电场的电场强度大小为E 。

不计粒子的重力以及它们之间的相互作用,则( )A .速度选择器中的电场方向向右,且三种粒子均带正电B .三种粒子的速度大小均为E B 2C .如果三种粒子的电荷量相等,则打在P 3点的粒子质量最大D .如果三种粒子的电荷量均为q ,且P 1、P 3的间距为Δx ,则打在P 1、P 3两点的粒子质量差为qB 1B 2Δx E2、如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0 D .2B 03、(多选)如图所示,在某空间的一个区域内有一直线PQ 与水平面成45°角,在PQ 两侧存在垂直于纸面且方向相反的匀强磁场,磁感应强度大小均为B 。

位于直线上的a点有一粒子源,能不断地水平向右发射速率不等的相同粒子,粒子带正电,电荷量为q,质量为m,所有粒子运动过程中都经过直线PQ上的b点,已知ab=d,不计粒子重力及粒子相互间的作用力,则粒子的速率可能为()A.2qBd6m B.2qBd4m C.2qBd2m D.3qBdm4、(双选)如图所示,绝缘中空轨道竖直固定,圆弧段COD光滑,对应圆心角为120°,C、D两端等高,O为最低点,圆弧圆心为O′,半径为R;直线段AC,HD粗糙,与圆弧段分别在C、D端相切;整个装置处于方向垂直于轨道所在平面向里、磁感应强度为B的匀强磁场中,在竖直虚线MC左侧和ND右侧还分别存在着场强大小相等、方向水平向右和向左的匀强电场。

高考物理考点名师讲义【专题5】电场与磁场(含答案).

高考物理考点名师讲义【专题5】电场与磁场(含答案).

高考定位本专题知识是高考的重点和难点,常考知识内容:①电场强度、磁感应强度;②电场的基本性质;③磁场的基本性质;④带电粒子在电磁场中的运动.高考命题趋势:对电场强度、电势、电场力做功与电势能变化的关系、磁场的基本概念、安培力的应用等知识多以选择题的形式考查;带电粒子在电场、磁场中的运动与控制,与牛顿运动定律、功能关系相结合,多以计算题的形式考查.考题1对电场性质的理解例1(单选)(2014·山东·19)如图1所示,均匀带正电薄球壳,其上有一小孔A.已知壳内的场强处处为零;壳外空间的电场与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样.一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA方向射出.下列关于试探电荷的动能E k与离开球心的距离r的关系图象,可能正确的是()图1审题突破试探电荷的动能E k与离开球心的距离r的关系根据动能定理列式,分析图象斜率的意义.解析 壳内场强处处为零,试探电荷在壳内运动时动能不变,排除选项C 、D ;假设试探电荷在匀强电场中由静止开始运动,由动能定理可得,Fr =E k ,则E kr =F ,E k 图象的斜率数值上等于电场力的大小,距离球壳越远试探电荷所受电场力越小,图象的斜率越小,正确选项为A. 答案 A1.(单选)(2014·重庆·3)如图2所示为某示波管的聚焦电场,实线和虚线分别表示电场线和等势线.两电子分别从a 、b 两点运动到c 点,设电场力对两电子做的功分别为W a 和W b ,a 、b 点的电场强度大小分别为E a 和E b ,则( )图2A .W a =W b ,E a >E bB .W a ≠W b ,E a >E bC .W a =W b ,E a <E bD .W a ≠W b ,E a <E b 答案 A解析 因a 、b 两点在同一等势线上,故U ac =U bc ,W a =eU ac ,W b =eU bc ,故W a =W b .由题图可知a 点处电场线比b 点处电场线密,故E a >E b .选项A 正确.2.真空中存在一点电荷产生的电场,其中a 、b 两点的电场强度方向如图3所示,a 点的电场方向与ab 连线成60°,b 点的电场方向与ab 连线成30°.另一带正电粒子以某初速度只在电场力作用下由a 运动到b .以下说法正确的是( )图3A .a 、b 两点的电场强度E a =3E bB .a 、b 两点的电势φa <φbC .带正电粒子在a 、b 两点的动能E k a >E k bD .带正电粒子在a 、b 两点的电势能E p a >E p b 答案 AD解析 a 点到O 点的距离R a =L ab cos 60°=12L ab ,b 点到O 点距离R b =L b cos 30°=32L ab ,根据点电荷的场强公式E =kQr 2,可得:E a =3E b ,故A 正确;在正点电荷的周围越靠近场源电势越高,故有φa >φb ,故B 错误;带正电粒子在a 、b 两点的电势能E p a >E p b ,故D 正确;由能量守恒,带正电粒子在a 、b 两点的动能E k a <E k b ,故C 错误.3.(单选)(2014·江苏·4)如图4所示,一圆环上均匀分布着正电荷,x 轴垂直于环面且过圆心O .下列关于x 轴上的电场强度和电势的说法中正确的是( )图4A .O 点的电场强度为零,电势最低B .O 点的电场强度为零,电势最高C .从O 点沿x 轴正方向,电场强度减小,电势升高D .从O 点沿x 轴正方向,电场强度增大,电势降低 答案 B解析 根据电场的对称性和电场的叠加原理知,O 点的电场强度为零.在x 轴上,电场强度的方向自O 点分别指向x 轴正方向和x 轴负方向,且沿电场线方向电势越来越低,所以O 点电势最高.在x 轴上离O 点无限远处的电场强度为零,故沿x 轴正方向和x 轴负方向的电场强度先增大后减小.选项B 正确.场强、电势、电势能的比较方法1.电场强度:(1)根据电场线的疏密程度判断,电场线越密,场强越大; (2)根据等差等势面的疏密程度判断,等差等势面越密,场强越大;(3)根据a =qEm判断,a 越大,场强越大.2.电势:(1)沿电场线方向电势降低,电场线由电势高的等势面指向电势低的等势面,且电场线垂直于等势面;(2)根据U AB =φA -φB 比较正负,判断φA 、φB 的大小. 3.电势能:(1)根据E p =qφ,判断E p 的大小;(2)根据电场力做功与电势能的关系判断:无论正电荷还是负电荷,电场力做正功,电势能减小;电场力做负功,电势能增加.考题2 电场矢量合成问题例2(单选)如图5所示,在正方形区域的四个顶点固定放置四个点电荷,它们的电量的绝对值相等,电性如图中所示.K、L、M、N分别为正方形四条边的中点,O为正方形的中心.下列关于各点的电场强度与电势的判断正确的是()图5A.K点与M点的电场强度大小相等、方向相反B.O点的电场强度为零C.N点电场强度的大小大于L点电场强度的大小D.K、O、M三点的电势相等审题突破该题实质上考查常见电场的电场分布与特点,可以结合等量同种点电荷的电场特点,把两个相互垂直的等量同种点电荷的电场叠加在一起,进行分析可以得出结论.解析根据点电荷的电场即电场的叠加可得:K点与M点的电场强度大小相等、方向相同,所以A错误;O点的电场强度方向水平向右,不为零,所以B错误;由对称性知,N点的电场强度大小等于L点的电场强度大小,所以C错误;K、O、M三点的电势都等于零,所以D 正确.答案 D4.(单选)如图6所示,在真空中的A、B两点分别放置等量异种点电荷,在AB两点间取一正五角星形路径abcdefghija,五角星的中心与AB连线的中点重合,其中af连线与AB连线垂直.现将一电子沿该路径逆时针方向移动一周,下列判断正确的是()图6A.e点和g点的电场强度相同B.h点和d点的电势相等C.电子在e点的电势能比g点电势能大D.电子从f点到e点再到d点过程中,电场力先做正功后做负功答案 C解析由对称性可知,e点和g点的电场强度大小相同,但方向不同,选项A错误;h点电势高于d点的电势,选项B错误;因为g点的电势高于e点,故电子在e点的电势能比g点电势能大,选项C正确;电子从f点到e点再到d点过程中,电势先降低再升高,电势能先增大后减小,电场力先做负功后做正功,选项D错误.5.(2014·福建·20)如图7所示,真空中xOy平面直角坐标系上的ABC三点构成等边三角形,边长L=2.0 m.若将电荷量均为q=+2.0×10-6 C的两点电荷分别固定在A、B点,已知静电力常量k=9.0×109 N·m2/C2,求:图7(1)两点电荷间的库仑力大小;(2)C点的电场强度的大小和方向.(计算结果保留两位有效数字)答案(1)9.0×10-3 N(2)7.8×103 N/C方向沿y轴正方向解析(1)根据库仑定律,A、B两点电荷间的库仑力大小为F=k q2L2①代入数据得F=9.0×10-3 N②(2)A、B两点电荷在C点产生的场强大小相等,均为E1=k qL2③A、B两点电荷形成的电场在C点的合场强大小为E=2E1cos 30°④联立③④式并代入数据得E≈7.8×103 N/C场强E的方向沿y轴正方向.1熟练掌握常见电场的电场线和等势面的画法.2.对于复杂的电场场强、电场力合成时要用平行四边形定则.3.电势的高低可以根据“沿电场线方向电势降低”或者由离正、负场源电荷的关系来确定.考题3带电粒子在有界磁场中的临界、极值问题例3 (2014·江苏·14)某装置用磁场控制带电粒子的运动,工作原理如图8所示.装置的长为L ,上、下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B 、方向与纸面垂直且相反,两磁场的间距为d .装置右端有一收集板,M 、N 、P 为板上的三点,M 位于轴线OO ′上,N 、P 分别位于下方磁场的上、下边界上.在纸面内,质量为m 、电荷量为-q 的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P 点.改变粒子入射速度的大小,可以控制粒子到达收集板的位置.不计粒子的重力.图8(1)求磁场区域的宽度h ;(2)欲使粒子到达收集板的位置从P 点移到N 点,求粒子入射速度的最小变化量Δv ; (3)欲使粒子到达M 点,求粒子入射速度大小的可能值.审题突破 (1)粒子在磁场中做圆周运动,根据圆的性质可明确粒子如何才能到达P 点,由几何关系可求得磁场区域的宽度;(2)带电粒子在磁场中运动时,洛伦兹力充当向心力,由(1)中方法确定后来的轨道半径,则可求得两次速度大小;即可求出速度的差值;(3)假设粒子会经过上方磁场n 次,由洛伦兹力充当向心力可求得粒子入射速度的可能值. 解析 (1)设粒子在磁场中的轨迹半径为r ,粒子的运动轨迹如图所示.根据题意知L =3r sin 30°+32d cot 30°,且磁场区域的宽度h =r (1-cos 30°)解得:h =(23L -3d )(1-32).(2)设改变入射速度后粒子在磁场中的轨迹半径为r ′,洛伦兹力提供向心力,则有m v 2r=q v B ,m v ′2r ′=q v ′B , 由题意知3r sin 30°=4r ′sin 30°,解得粒子速度的最小变化量Δv =v -v ′=qB m (L 6-34d ).(3)设粒子经过上方磁场n 次由题意知L =(2n +2)d2cot 30°+(2n +2)r n sin 30°且m v 2nr n =q v n B ,解得v n =qB m (L n +1-3d )(1≤n <3L 3d-1,n 取整数).答案 (1)(23L -3d )(1-32) (2)qB m (L 6-34d )(3)qB m (L n +1-3d )(1≤n <3L 3d-1,n 取整数)6.(单选)图9为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3 T ,在x 轴上距坐标原点L =0.50 m 的P 处为离子的入射口,在y 轴上安放接收器,现将一带正电荷的粒子以v =3.5×104 m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50 m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不计其重力.则上述粒子的比荷qm(C/kg)是( )图9A .3.5×107B .4.9×107C .5.3×107D .7×107 答案 B解析 设粒子在磁场中的运动半径为r ,画出粒子的轨迹图如图所示依题意MP 连线即为该粒子在磁场中做匀速圆周运动的直径,由几何关系得r =22L ,由洛伦兹力提供粒子在磁场中做匀速圆周运动的向心力,可得q v B =m v 2r ,联立解得qm ≈4.9×107 C/kg ,故选项B 正确.7.如图10所示,在边长为L 的正方形区域内存在垂直纸面向里的匀强磁场,其磁感应强度大小为B .在正方形对角线CE 上有一点P ,其到CF 、CD 距离均为L4,且在P 点处有一个发射正离子的装置,能连续不断地向纸面内的各方向发射出速率不同的正离子.已知离子的质量为m ,电荷量为q ,不计离子重力及离子间相互作用力.图10(1)速率在什么范围内的所有离子均不可能射出正方形区域?(2)求速率为v =13qBL32m的离子在DE 边的射出点距离D 点的范围.答案 (1)v ≤qBL 8m (2)L4≤d <(2+3)L 8解析 因离子以垂直于磁场的速度射入磁场,故其在洛伦兹力作用下必做圆周运动. (1)依题意可知离子在正方形区域内做圆周运动不射出该区域,做圆周运动的半径为r ≤L8.对离子,由牛顿第二定律有q v B =m v 2r ⇒v =qBr m ≤qBL8m.(2)当v =13qBL32m 时,设离子在磁场中做圆周运动的半径为R ,则由q v B =m v 2R 可得R =m v qB=m qB ·13qBL 32m =13L 32.甲要使离子从DE 射出,则其必不能从CD 射出,其临界状态是离子轨迹与CD 边相切,设切点与C 点距离为x ,其轨迹如图甲所示, 由几何关系得:R 2=(x -L 4)2+(R -L4)2,计算可得x =58L ,设此时DE 边出射点与D 点的距离为d 1,则由几何关系有:(L -x )2+(R -d 1)2=R 2,解得d 1=L4.乙而当离子轨迹与DE 边相切时,离子必将从EF 边射出,设此时切点与D 点距离为d 2,其轨迹如图乙所示,由几何关系有:R 2=(34L -R )2+(d 2-L 4)2,解得d 2=(2+3)L8.故速率为v =13qBL 32m 的离子在DE 边的射出点距离D 点的范围为L4≤d <(2+3)L 8.1.解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.2.粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.考题4 带电粒子在匀强磁场中的多过程问题例4 (20分)如图11所示,在xOy 平面内,以O ′(0,R )为圆心、R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P 、Q 两点在坐标轴上,且O 、P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m 、电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力、不考虑粒子间相互作用力.求:图11(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;(3)挡板上被粒子打中的区域长度.解析 (1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线,长度为r ,C 为该轨迹圆的圆心.连接AO ′、CO ,可证得ACOO ′为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,(3分)由q v B =m v 2r (3分)得B =m vqR.(2分)(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 作挡板的垂线交于E 点,(1分)DP =2R ,OP =(2+1)R (2分) P 点的坐标为[(2+1)R,0](1分)(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R (1分)过O 点作挡板的垂线交于G 点,OG =(2+1)R ·22=(1+22)R (2分)FG =OF 2-OG 2= 5-222R (2分) EG =22R (1分) 挡板上被粒子打中的区域长度 l =FE =22R + 5-222R =2+10-422R (2分) 答案 (1)m vqR(2)[(2+1)R,0] (3)2+10-422R(2014·重庆·9)(18分)如图12所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .图12(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.答案 (1)mg q ,方向竖直向上 (2)(9-62)qBhm(3)0.68qBh m 0.545qBh m 0.52qBh m解析 (1)设电场强度大小为E . 由题意有mg =qE , 得E =mgq,方向竖直向上.(2)如图所示,设粒子不从NS 边飞出的入射速度最小值为v min ,对应的粒子在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ.由r =m v qB ,有r 1=m v min qB ,r 2=m v min 2qB =12r 1,由(r 1+r 2)sin φ=r 2, r 1+r 1cos φ=h , 得v min =(9-62)qBhm .(3)如图所示,设粒子入射速度为v ,粒子在上、下方区域的运动半径分别为r 1和r 2,粒子第一次通过KL 时距离K 点为x .由题意有3nx =1.8h ,(n =1,2,3,…),由(2)知32x ≥r 2=(9-62)h 2,x =r 21-(h -r 1)2,得r 1=(1+0.36n 2)h2,n ≤0.6(3+22)≈3.5,即n =1时,v =0.68qBhm ;n =2时,v =0.545qBhm ;n =3时,v =0.52qBhm.知识专题练 训练5题组1 对电场性质的理解1.(单选)在竖直平面内有水平向右、场强为E 的匀强电场,在匀强电场中有一根长为L 的绝缘细线,一端固定在O 点,另一端系一质量为m 的带电小球,它静止时位于A 点,此时细线与竖直方向成37°角,如图1所示.现对在A 点的该小球施加一沿与细线垂直方向的瞬时冲量,小球能绕O 点在竖直平面内做完整的圆周运动.下列对小球运动的分析,正确的是(不考虑空气阻力,细线不会缠绕在O 点上)( )图1A .小球运动到C 点时动能最小B .小球运动到C 点时绳子拉力最小 C .小球运动到Q 点时动能最大D .小球运动到B 点时机械能最大 答案 D解析 由题意可知,电场力与重力的合力应沿着OA 方向,因此小球在竖直平面内运动时,运动到A 点时动能最大,C 错误;运动到与A 点关于圆心对称的点时动能最小,在该点时绳子拉力也恰好最小,A 、B 错误;而在运动过程中,运动到B 点时电场力做功最多,因此机械能最大,D 正确.2.(单选) 某区域的电场线分布如图2所示,其中间一根电场线是直线,一带正电的粒子从直线上的O 点由静止开始在电场力作用下运动到A 点.取O 点为坐标原点,沿直线向右为x 轴正方向,粒子的重力忽略不计.在O 到A 运动过程中,下列关于粒子运动速度v 和加速度a 随时间t 的变化、粒子的动能E k 和运动径迹上电势φ 随位移x 的变化图线可能正确的是( )图2答案 B解析由题图可知,从O到A点,电场线由密到疏再到密,电场强度先减小后增大,因此粒子受到的电场力先减小后增大,则加速度先减小后增大,故A错误,B正确;沿着电场线方向电势降低,而电势与位移的图象的斜率表示电场强度,所以斜率应先减小后增大,因此C 错误;电场力对粒子做正功,导致电势能减小,则动能增加,且图线斜率先减小后增大,故D 错误.3.如图3所示,在两个等量异种电荷形成的电场中,D、E、F是两电荷连线上间距相等的三个点,三点的电势关系是φD>φE>φF,K、M、L是过这三个点的等势线,其中等势线L与两电荷连线垂直.带电粒子从a点射入电场后运动轨迹与三条等势线的交点是a、b、c,粒子在a、b、c三点的电势能分别是E p a、E p b、E p c,以下判断正确的是()图3A.带电粒子带正电B.E p a<E p b<E p cC.E p c-E p b=E p b-E p aD.E p c-E p b<E p b-E p a答案BD解析因φD>φE>φF,则左边是正点电荷,由运动轨迹可知,带电粒子带负电荷,则电场力做负功,导致负电荷的电势能增加,故A错误,B正确;D、E、F是两电荷连线上间距相等的三个点,结合点电荷电场矢量叠加原理,ab 电势差大于bc 电势差,根据W =qU ,则E p c -E p b <E p b -E p a ,故C 错误,D 正确. 题组2 电场矢量合成问题4.(单选)如图4所示是一个正方体ABCDEFGH ,m 点是ABCD 面的中点、n 点是EFGH 面的中点.当在正方体的八个角上各固定一个带电量相同的正点电荷,比较m 、n 两点的电场强度和电势,下列判断正确的是( )图4A .电场强度相同,电势相等B .电场强度不相同,电势不相等C .电场强度相同,电势不相等D .电场强度不相同,电势相等 答案 D解析 由对称性可知,m 、n 点电场强度大小相等,m 点电场强度方向垂直ABCD 面向上,n 点电场强度方向垂直EFGH 面向下,两点电场强度的方向相反.由叠加可知m 、n 点连线中点的电场强度为0.当电荷沿m 、n 连线从m 点移动到n 点的过程中电场力做功一定为0,表明m 、n 两点电势相等,故D 正确.5.(单选)如图5所示,在一个真空环境里,有一个空心导体球,半径为a ,另有一个半径为b 的细圆环,环心与球心连线长为L (L >a ),连线与环面垂直,已知环上均匀带电,总电荷量为Q .当导体球接地时(取无穷远处电势为零,与带电量为q 的点电荷相距r 处电势为φ=k qr ,k 为静电力恒量),下列说法正确的是( )图5A .球面上感应电荷量为q 感=-aQb 2+L 2 B .球面上感应电荷量为q 感=-aQLC .感应电荷在O 点的场强为E 感=k QL 2D .感应电荷在O 点的场强为E 感=k Qa 2答案 A解析 据题意,由于静电感应,球上所带电荷与圆环电性相反,球与大地相连,球的电势为0,即球上的电荷在球中心产生的电势与环上电荷在球中心产生的电势之和为0,故有:k qa+k QL 2+b 2=0,则选项A 正确,而选项B 错误;由于静电平衡,导体内场强处处为0,球上的电荷在O 点产生场强等于环在O 点产生的场强,方向相反,现将环看成无数个电荷的集合体,每个电荷在O 点产生的场强为:E 1=k Q 1L 2+b2,而所有电荷在O 点产生的场强是每个电荷在该点产生场强的矢量和,则为:E 感=-E 环=-k QL 2,故选项C 、D 均错误.6.(单选)如图6所示,真空中同一平面内MN 直线上固定电荷量分别为-9Q 和+Q 的两个点电荷,两者相距为L ,以+Q 电荷为圆心,半径为L2画圆,a 、b 、c 、d 是圆周上四点,其中a 、b 在MN 直线上,c 、d 两点连线垂直于MN ,一电荷量为+q 的试探电荷在圆周上运动,则下列判断错误的是( )图6A .电荷+q 在a 处所受到的电场力最大B .电荷+q 在a 处的电势能最大C .电荷+q 在b 处的电势能最大D .电荷+q 在c 、d 两处的电势能相等 答案 B解析 电场强度叠加后,a 点处场强最大,A 正确;将正电荷从a 点沿圆弧移动到c 、b 、d 点,+Q 对正电荷不做功,-9Q 对正电荷均做负功,电势能均增加,且移动到b 点克服电场力做功最多,移动到c 、d 两点克服电场力做功相同,因此正电荷在a 处电势能最小,在b 处电势能最大,在c 、d 两处电势能相等,B 错误,C 、D 正确. 题组3 带电粒子在有界磁场中的临界、极值问题7.如图7所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B ,∠A =60°,AO =L ,在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子(不计重力作用),粒子的比荷为q m ,发射速度大小都为v 0,且满足v 0=qBLm .粒子发射方向与OC 边的夹角为θ,对于粒子进入磁场后的运动,下列说法正确的是( )图7A .粒子有可能打到A 点B .以θ=60°飞入的粒子在磁场中运动时间最短C .以θ<30°飞入的粒子在磁场中运动的时间都相等D .在AC 边界上只有一半区域有粒子射出 答案 AD解析 根据Bq v 0=m v 20r ,又v 0=qBL m ,可得r =m v 0Bq=L ,又OA =L ,所以当θ=60°时,粒子经过A 点,所以A 正确;根据粒子运动的时间t =α2πT ,圆心角越大,时间越长,粒子以θ=60°飞入磁场中时,粒子从A 点飞出,轨迹圆心角等于60°,圆心角最大,运动的时间最长,所以B 错误;当粒子沿θ=0°飞入磁场中,粒子恰好从AC 中点飞出,在磁场中运动时间也恰好是T6,θ从0°到60°在磁场中运动时间先减小后增大,在AC 边上有一半区域有粒子飞出,所以C 错误,D 正确.8.如图8所示,在匀强电场中建立直角坐标系xOy ,y 轴竖直向上,一质量为m 、电荷量为+q 的微粒从x 轴上的M 点射出,方向与x 轴夹角为θ,微粒恰能以速度v 做匀速直线运动,重力加速度为g .图8(1)求匀强电场场强E ;(2)若再叠加一圆形边界的匀强磁场,使微粒能到达x 轴上的N 点,M 、N 两点关于原点O 对称,距离为L ,微粒运动轨迹也关于y 轴对称.已知磁场的磁感应强度大小为B ,方向垂直xOy 平面向外,求磁场区域的最小面积S 及微粒从M 运动到N 的时间t .答案 (1)mgq,方向竖直向上(2)πm 2v 2sin 2θq 2B 2 qBL -2m v sin θqB v cos θ+2θm qB解析 (1)对微粒有qE -mg =0,得E =mgq方向竖直向上.(2)微粒在磁场中有q v B =m v 2R ,解得R =m vqB.如图所示,当PQ 为圆形磁场的直径时,圆形磁场面积最小.有r =R sin θ其面积S =πr 2=πm 2v 2sin 2θq 2B 2又T =2πR v (或T =2πm qB )根据几何关系可知偏转角为2θ则在磁场中运动的时间t 2=2θ2πT =2θmqB又MP =QN =L -2R sin θ2cos θ,且有t 1=t 3=MPv故运动的时间t =t 1+t 2+t 3=L -2R sin θv cos θ+2θm qB =L -2m v qB sin θv cos θ+2θm qB =qBL -2m v sin θqB v cos θ+2θmqB .题组4 带电粒子在匀强磁场中的多过程问题9.如图9所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-2L,0)、Q (0,-2L )为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力( )图9A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为πL2B .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为πLC .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为2πLD .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为πL ,也可能为2πL 答案 AD解析 粒子在匀强磁场中做匀速圆周运动,设圆周运动半径为R ,若电子从P 点出发恰好经原点O 第一次射出磁场分界线,如图甲所示,则有2R cos 45°=2L ,半径R =L ,运动轨迹为四分之一圆周,所以运动的路程s =2πR 4=πL2,选项A 正确.若电子从P 点出发经原点O 到达Q点,若粒子恰好经原点O 第一次射出磁场分界线,则轨迹如图甲,运动路程为一个圆周,即s =2πR =2πL ,若粒子第N 次离开磁场边界经过原点O ,则要回到Q 点,经过O 点的速度必然斜向下45°,则运动轨迹如图乙,根据几何关系有2R cos 45°=2L N ,圆周运动半径R =LN,运动通过的路程为s =2πR 4×2N =2πL4N×2N =πL ,选项B 、C 错误,D 正确.图1010.如图10所示,在坐标系xOy 的第二象限内有沿y 轴负方向的匀强电场,电场强度大小为E ,第三象限内存在匀强磁场Ⅰ,y 轴右侧区域内存在匀强磁场Ⅱ,Ⅰ、Ⅱ磁场的方向均垂直于纸面向里.一质量为m 、电荷量为+q 的粒子自P (-l ,l )点由静止释放,沿垂直于x 轴的方向进入磁场Ⅰ,接着以垂直于y 轴的方向进入磁场Ⅱ,不计粒子重力. (1)求磁场Ⅰ的磁感应强度B 1;(2)若磁场Ⅱ的磁感应强度B 2=B 1,粒子从磁场Ⅱ再次进入电场,求粒子第二次离开电场时的横坐标;(3)若磁场Ⅱ的磁感应强度B 2=3B 1,求粒子在第一次经过y 轴到第六次经过y 轴的时间内,粒子的平均速度.答案 (1) 2mEql(2)-2l(3)23π 2qEl m,方向沿y 轴负方向 解析 (1)设粒子垂直于x 轴进入磁场Ⅰ时的速度为v , 由运动学公式2al =v 2 由牛顿第二定律Eq =ma由题意知,粒子在磁场Ⅰ中做圆周运动的半径为l ,由牛顿第二定律q v B 1=m v 2l解得B 1= 2mEql.。

高中物理高考真题解析(含答案)-电场和磁场的基本性质

高中物理高考真题解析(含答案)-电场和磁场的基本性质

第7讲 电场和磁场的基本性质1.(2012·江苏单科, 1)真空中, A 、 B 两点与点电荷Q 的距离分别为r 和3r , 则A 、 B 两点的电场强度大小之比为( )A .3∶1B .1∶3C .9∶1D .1∶9解析 由库仑定律F =kQ 1Q 2r 2和场强公式E =F q知点电荷在某点产生电场的电场强度E =kQ r2, 电场强度大小与该点到场源电荷的距离的二次方成反比, 则E A ∶E B =r 2B ∶r 2A =9∶1, 选项C 正确.答案 C2.(2013·江苏卷, 3)下列选项中的各14圆环大小相同, 所带电荷量已在图中标出, 且电荷均匀分布, 各14圆环间彼此绝缘.坐标原点O 处电场强度最大的是解析 设14圆环的电荷在原点O 产生的电场强度为E 0, 根据电场强度叠加原理, 在坐标原点O 处, A 图的场强为E 0, B 图场强为2E 0 , C 图场强为E 0, D 图场强为0, 因此本题答案为B.答案 B3.(2014·江苏卷,4)如图3-7-1所示,一圆环上均匀分布着正电荷,x轴垂直于环面且过圆心O.下列关于x轴上的电场强度和电势的说法中正确的是( )A.O点的电场强度为零,电势最低B.O点的电场强度为零,电势最高C.从O点沿x轴正方向,电场强度减小,电势升高D.从O点沿x轴正方向,电场强度增大,电势降低图3-7-1解析根据圆环的对称性可知,O点处的场强为零,又由正电荷在无限远处场强为零,故从O点沿x轴正方向,电场强度先增大,后减小,电势应逐渐降低,O点处的电势最高,故B项正确,A、C、D均错误.答案 B主要题型:选择题和计算题(计算题在第4、6讲已讲),以选择题为主知识热点1.(1)库仑定律、电场强度、点电荷的场强,及场强的叠加.(2)电场强度、电势、电势能与电场线之间的关系.(3)带电粒子在匀强电场中的运动.(已讲)2.带电粒子在匀强磁场中的运动.(已讲)物理方法(1)矢量运算法(平行四边形定则) (2)模型法(3)对称法(4)守恒法(5)补偿法命题趋势(1)2015年高考,预计点电荷的场强,电场强度与电势(差)、电势能和电场线之间的关系以及电场力做功与电势能变化的关系仍会出现,并很可能会以选择题的形式进行考查.带电粒子在匀强电场中的运动有可能会以选择题或计算题的形式出现.(2)近三年江苏省高考试题没有单独考查安培力及安培力作用下导体的平衡及运动问题,预计在2015年高考中这部分内容应是考查的重点.热点一对电场强度的理解及计算1.(多选)(2014·全国卷新课标Ⅱ,19)关于静电场的电场强度和电势,下列说法正确的是( )A .电场强度的方向处处与等电势面垂直B .电场强度为零的地方, 电势也为零C .随着电场强度的大小逐渐减小, 电势也逐渐降低D .任一点的电场强度总是指向该点电势降落最快的方向解析 电场线与等势面垂直, 而电场强度的方向为电场线的方向, 故电场强度的方向与等势面垂直, 选项A 正确; 场强为零的地方电势不一定为零, 例如等量同种正电荷连线的中点处的场强为零但是电势大于零, 选项B 错误; 场强大小与电场线的疏密有关, 而沿着电场线的方向电势是降低的, 故随电场强度的大小逐渐减小, 电势不一定降低, 选项C 错误; 任一点的电场强度方向总是和电场线方向一致, 而电场线的方向是电势降落最快的方向, 选项D 正确.答案 AD2. (2014·武汉市部分学校调研)在孤立的点电荷产生的电场中有a 、 b 两点, a 点的电势为φa , 场强大小为E a , 方向与连线ab 垂直.b 点的电势为φb , 场强大小为E b , 方向与连线ab 的夹角为30°.则a 、 b 两点的场强大小及电势高低的关系是( )A .φa >φb , E a =E b 2B .φa <φb , E a =E b2C .φa >φb , E =4E bD .φa <φb ,E a =4E b图3-7-2解析 将E a 、 E b 延长相交, 其交点为场源点电荷的位置, 由点电荷的场强公式E =kQ r2, 可得E a =4E b ; 分别过a 、 b 做等势面, 电场线由高的等势面指向低的等势面, 则φb >φa , 选项D 正确. 答案 D3. 如图3-7-3所示, 在一正三角形ABC 的三个顶点处分别固定三个电荷量均为+q 的点电荷, a 、 b 、 c 分别为三角形三边的中点, O 点为三角形三条中线的交点.选无穷远处为零电势面, 则下列说法中正确的是( )A .a 点的电场强度为零、 电势不为零B .b 、 c 两点的电场强度大小相等、 方向相反C .a 、 b 、 c 三点的电场强度和电势均相同D .O 点的电场强度一定为零, 电势一定不为零图3-7-3解析 由于电场强度是矢量, 根据矢量的叠加原理, 三角形底边B 、 C 两点的点电荷在a 点的合场强为零, 但三角形顶点A 处的点电荷会在a 处产生一个竖直向下的场强, 所以a 点的电场强度不为零, 由于三角形三个顶点的点电荷均为正点电荷, 所以a 、 b 、 c 、 O 点的电势均不为零,选项A错误;根据电场的叠加原理,三个点电荷在b点产生的场强方向沿Bb连线方向,在c点产生的场强方向沿Cc方向,所以在b、c两点处,三个点电荷所产生的场强大小相等方向不是相反的,选项B错误;由对称性可知,a、b、c三点的电场强度大小相等但方向不同,电势相同,选项C错误;根据矢量叠加原理和几何关系可知,B、C 两处的点电荷产生的场强一定与A处点电荷产生的场强大小相等、方向相反,所以O处的合场强一定为零,电势一定不为零,选项D 正确.答案 D4. (多选)如图3-7-4所示,图甲中MN为足够大的不带电的薄金属板.在金属板的右侧,距离为d的位置上放入一个电荷量为+q的点电荷O,由于静电感应产生了如图所示的电场分布.P是金属板上的一点,P点与点电荷O之间的距离为r,几位同学想求出P点的电场强度的大小,但发现很难.他们经过仔细研究,从图乙所示的电场得到了一些启示,经过查阅资料他们知道:图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中两异号点电荷电荷量的大小均为q,它们之间的距离为2d,虚线是两点电荷连线的中垂线.由此他们分别对P点的电势和电场强度作出以下判断,其中正确的是( )图3-7-4A .P 点的电势为零B .P 点的电势大于零C .P 点电场强度的方向垂直于金属板向左, 大小为2kqd r3 D .P 点电场强度的方向垂直于金属板向左, 大小为2kq r 2-d 2r3 解析 选项分两组, A 、 B 两项判断P 点电势, C 、 D 两项计算P 点场强.金属板MN 接地, 电势为零, 则金属板上P 点电势为零, A 正确、 B 错误;类比图乙中的电场线方向可知, 金属板所在位置及P 点场强方向均垂直于金属板向左, 大小由等量异种电荷分别在中垂线上产生的场强叠加得知, 由于对称, 带电荷量分别为+q 和-q 的点电荷在P 点产生的场强大小均为E +=E -=k q r 2, 由相似三角形关系得E E +=2d r, 解得E =2kqd r3, C 正确、 D 错误. 答案 AC1.高考对电场强度的考查, 往往会和对电势的考查结合在一起进行, 目的就是刻意对考生制造思维上的混乱, 以此来考查考生对物理基本概念的区分和辨别能力.2.解决此类问题的关键就是要明确电场强度是矢量,其运算规则为平行四边形定则;而电势为标量,其运算规则为代数运算规则.3.常用的思维方法——对称法.热点二电场性质的理解与应用5.(2014·淮安市高三考前信息卷)如图3-7-5所示,椭圆ABCD 处于一匀强电场中,椭圆平面平行于电场线,AC、BD分别是椭圆的长轴和短轴,已知电场中A、B、C三点的电势分别为φA=14 VφB =3 V、φC=-7 V,由此可得D点的电势为( )A.8 V B.6 V C.4 V D.2 V图3-7-5解析A、B、C、D顺次相连将组成菱形,由公式U=Ed可知,φA -φB=φD-φC或φA-φD=φB-φC,解得φD=4 V.选项C正确. 答案 C6.(2014·徐州市高三检测)在地面上插入一对电极M和N,将两个电极与直流电源相连,大地中形成恒定电流和恒定电场.恒定电场的基本性质与静电场相同,其电场线分布如图3-7-6所示,P、Q 是电场中的两点.下列说法正确的是( )图3-7-6A.P点场强比Q点场强大B.P点电势比Q点电势高C.P点电子的电势能比Q点电子的电势能大D.电子沿直线从N到M的过程中所受电场力恒定不变解析因为电场线密集处场强大,所以P点场强小于Q点场强,选项A错误;因为沿电场线电势降低,所以P点电势高于Q点电势,选项B正确;根据“负电荷在电势高处电势能低”,可知P点电子的电势能比Q点电子的电势能小,选项C错误;沿直线从N到M 的过程中,电场线先逐渐变稀疏,然后变密集,故此过程中,电子所受电场力先减后增,选项D错误.答案 B7.(2014·山东卷,19)如图3-7-7所示,半径为R的均匀带正电薄球壳,其上有一小孔A.已知壳内的场强处处为零;壳外空间的电场,与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样.一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA方向射出.下列关于试探电荷的动能E k与离开球心的距离r的关系图线,可能正确的是( )图3-7-7解析壳内场强处处为零,试探电荷在壳内运动时动能不变,排除选项C、D;由动能定理可得,ΔE kΔr=F,即在E-r图象中图线切线的斜率数值上等于电场力的大小,距离球壳越远试探电荷所受电场力越小,图象的斜率越小,正确选项为A.答案 A8.(多选) (2014·全国卷新课标Ⅰ,21)如图3-7-8,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°.M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN,φP=φF,点电荷Q 在M 、 N 、 P 三点所在平面内, 则( )A .点电荷Q 一定在MP 的连线上B .连接PF 的线段一定在同一等势面上C .将正试探电荷从P 点搬运到N 点, 电场力做负功D .φP 大于φM图3-7-8解析 作∠MNP 的角平分线交MP 于G , 则MG =GN 又因φM =φN , 所以点电荷Q 应放在G 点, 选项A 正确; 点电荷的等势面为球面, 所以选项B 错; 沿电场线的方向电势降低, 所以φP >φM , φP >φN , 故将正电荷从P 点搬运到N 点, 电场力做正功.选项D 正确, C 错误.答案 AD判断电场性质的常用方法(1)判断场强强弱⎩⎪⎨⎪⎧ 根据电场线或等势面的疏密根据公式E =k Q r 2和场强叠加原理(2)判断电势高低⎩⎪⎨⎪⎧ 根据电场线的方向根据φ=E p q(3)判断电势能大小⎩⎪⎨⎪⎧根据E p =qφ根据ΔE p =-W 电,由电场力做功情况判断热点三 安培力及安培力作用下导体的平衡与运动9.(多选)(2014·浙江卷, 20)如图3-7-9甲所示, 两根光滑平行导轨水平放置, 间距为L , 其间有竖直向下的匀强磁场, 磁感应强度为B .垂直于导轨水平对称放置一根均匀金属棒.从t =0时刻起, 棒上有如图乙所示的持续交变电流I , 周期为T , 最大值为I m , 图甲中I 所示方向为电流正方向.则金属棒( )图3-7-9A.一直向右移动B.速度随时间周期性变化C.受到的安培力随时间周期性变化D.受到的安培力在一个周期内做正功解析由I-t图可知,安培力随时间的变化关系与之相同.所以金属棒先向右匀加速运动,再做向右匀减速运动,然后重复运动,故选项A、B、C均正确.安培力先做正功,后做负功,故选项D错.答案ABC图3-7-1010.(多选)在竖直向下的匀强磁场中,“Γ”型金属导轨间距为0.5 m,右段在水平面内,左段竖直,如图3-7-10所示.两根质量均为0.06 kg的导体棒分别放在水平段和竖直段,并通过绝缘细线跨过定滑轮P 相连,导轨水平段光滑,导体棒cd与导轨竖直段间动摩擦因数为0.4.闭合开关S,发现两导体棒静止在导轨上,则下列各组磁感应强度的大小和电流值能满足要求的是( )A.B=0.5 T,I=2 A B.B=0.5 T,I=1 AC.B=1.0 T,I=1.5 A D.B=0.8 T,I=2.6 A解析 要使两导体棒静止在轨道上, 则ab 、 cd 受力平衡, ab 所受安培力水平向右, 细线的拉力水平向左, 大小F =F A =BIl ; cd 所受四个力如图所示, 其中静摩擦力的方向可能竖直向上或竖直向下,因此有F N =BIl , F ±μF N -mg =0, 联立解得BI =mg l 1±μ, 代入数据解得0.857 T·A≤BI ≤2 T·A, 四组选项中BI 在此范围内的是A 、C.答案 AC11.美国研发的强力武器轨道电磁炮在前日的试射中, 将炮弹以5倍音速, 击向200公里外目标, 射程为海军常规武器的10倍, 且破坏力惊人.电磁炮原理如图3-7-11所示, 若炮弹质量为m , 水平轨道长L , 宽为d , 轨道摩擦不计, 炮弹在轨道上做匀加速运动.要使炮弹达到5倍音速(设音速为v ), 则( )图3-7-11A .炮弹在轨道上的加速度为v 22LB .磁场力做的功为52mv 2 C .磁场力做功的最大功率为125mv 32LD .磁场力的大小为25mdv 22L 解析 炮弹在轨道上做初速度为零的匀加速直线运动, 由公式“v 2=2ax ”得a =5v 22L , A 错误; 不计摩擦, 磁场力做的功等于炮弹增加的动能, 即W =12m (5v )2=25mv 22, B 错误; 由动能定理得BIdL =12m (5v )2, 磁场力的大小BId =m 5v 22L , 则磁场力的最大功率P m =BId ·(5v )=m 5v 22L·(5v )=125mv 32L, C 正确、 D 错误. 答案 C 12.(2014·重庆卷, 8)某电子天平原理如图3-7-12所示, E 形磁铁的两侧为N 极, 中心为S 极, 两极间的磁感应强度大小均为B , 磁极宽度均为L , 忽略边缘效应, 一正方形线圈套于中心磁极, 其骨架与秤盘连为一体, 线圈两端C 、 D 与外电路连接, 当质量为m 的重物放在秤盘上时, 弹簧被压缩, 秤盘和线圈一起向下运动(骨架与磁极不接触), 随后外电路对线圈供电, 秤盘和线圈恢复到未放重物时的位置并静止, 由此时对应的供电电流I 可确定重物的质量.已知线圈匝数为n , 线圈电阻为R , 重力加速度为g .问:图3-7-12(1)线圈向下运动过程中, 线圈中感应电流是从C 端还是从D 端流出?(2)供电电流I 是从C 端还是从D 端流入? 求重物质量与电流的关系.(3)若线圈消耗的最大功率为P , 该电子天平能称量的最大质量是多少?解析 (1)由右手定则可知线圈向下运动, 感应电流从C 端流出.(2)设线圈受到的安培力为F A , 外加电流从D 端流入.由F A =mg ①和F A =2nBIL ②得m =2nBL g I ③ (3)设称量最大质量为m 0,由m =2nBL gI ④ 和P =I 2R ⑤得m 0=2nBL g P R⑥ 答案 (1)电流从C 端流出(2)从D 端流入 m =2nBL g I (3)2nBL g P R安培力作用下的平衡与运动问题的求解思路:热点四 带电粒子在磁场中运动的临界极值问题图3-7-1313.(多选)(2014·领航高考冲刺卷三)在磁感应强度大小为B 、 方向垂直纸面向里的正方形(边长为l )匀强磁场区域, ab 边和cd 边为挡板, 从ad 边中点O 垂直磁场射入一带电粒子, 速度大小为v 0, 方向与ad 边夹角为30°, 如图3-7-13所示, 已知粒子的电荷量为q 、 质量为m (重力不计).则下列说法正确的是( )A .若粒子带负电, 粒子恰能从d 点射出磁场, 则v 0=qBl 2mB .若粒子带正电, 粒子恰不碰到cd 挡板, 则v 0=qBl 2mC .若粒子带正电, 粒子恰能从b 点射出磁场, 则v 0=qBl mD .若粒子带正电, 粒子能从ad 边射出磁场, 则v 0的最大值v 0m =qBl 3m解析 当粒子带负电, 且恰能从d 点射出磁场时, 如图所示, R =l2, 由qv 0B =mv 20R , 得v 0=qBl 2m, A 对, 若粒子带正电, 粒子恰不碰到cd 挡板时, R -R c os 60°=l2, 解得R =l , 同理得v 0=qBl m, B 错; 若粒子带正电, 由几何关系可知, 粒子不可能恰好从b 点射出磁场, C 错; 若粒子带正电, 粒子能从ad 边射出磁场而不碰ab 板, 如图所示, 由几何关系得R =l3, 所以v 0m =qBl 3m, D 正确. 答案 AD图3-7-1414.(2014·长春市调研测试)如图3-7-14所示, 三角形区域磁场的三个顶点a 、 b 、 c 在直角坐标系内的坐标分别为(0,2 3 cm)、 (-2 cm,0)、 (2 cm , 0), 磁感应强度B =4×10-4T , 大量比荷q m =2.5×105 C/kg 不计重力的正离子, 从O 点以相同的速率v =2 3 m/s 沿不同方向垂直磁场射入该磁场区域.求:(1)离子运动的半径.(2)从ac 边离开磁场的离子, 离开磁场时距c 点最近的位置坐标.(3)从磁场区域射出的离子中, 在磁场中运动的最长时间.解析 (1)由qvB =m v 2R 得, R =mv qB, 代入数据可解得: R =2 3 cm(2)设从ac 边离开磁场的离子距c 最近的点的坐标为M (x , y ), M 点为以a 为圆心, 以aO 为半径的圆周与ac 的交点则x =R sin 30°= 3 cmy =R -R cos 30°=(23-3)cm离c 最近的点的坐标为M [ 3 cm , (23-3)cm](3)依题意知, 所有离子的轨道半径相同, 则可知弦越长, 对应的圆心角越大.易知从a 点离开磁场的离子在磁场中运动时间最长, 其轨迹所对的圆心角为60°T =2πm Bq =π50s t =T 6=π300s 答案 (1)2 3 cm (2)[ 3 cm , (23-3)cm](3)π300s1.求解这类问题的方法技巧解决带电粒子在磁场中运动的临界问题, 关键在于运用动态思维, 寻找临界点, 确定临界状态, 根据粒子的速度方向找出半径方向, 同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.2.带电粒子在有界磁场中运动临界问题的三种几何关系(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当粒子的运动速率v一定时,粒子经过的弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.(3)当粒子的运动速率v变化时,带电粒子在匀强磁场中的运动轨迹对应的圆心角越大,其在磁场中的运动时间越长.高考命题热点7.根据粒子运动的轨迹、电场线(等势面)进行相关问题的判断带电粒子运动轨迹类问题分析的关键是运用曲线运动的知识(受力特征:合外力指向凹侧;运动特征:速度方向沿切向)找出电场力的方向,进而判断出场强方向或电场力做功情况,一系列问题就迎刃而解.(1)确定受力方向的依据①曲线运动的受力特征:带电粒子受力总指向曲线的凹侧;②电场力方向与场强方向的关系:正电荷的受力方向与场强方向同向,负电荷则相反;③场强方向与电场线或等势面的关系:电场线的切线方向或等势面的法线方向为电场强度的方向.(2)比较加速度大小的依据: 电场线或等差等势面越密⇒E 越大⇒F =qE 越大⇒a =qE m越大. (3)判断加速或减速的依据: 电场力与速度成锐角(钝角), 电场力做正功(负功), 速度增加(减少).【典例】 (6分)如图3-7-15所示, 实线表示电场线, 虚线表示带电粒子只在电场力作用下的运动轨迹, a 、 b 为其运动轨迹上的两点, 可以判定( )A .粒子在a 点的速度大于在b 点的速度B .粒子在a 点的加速度大于在b 点的加速度C .粒子一定带正电荷D .粒子在a 点的电势能大于在b 点的电势能图3-7-15审题流程解析该粒子在电场中做曲线运动,则电场力应指向轨迹的凹侧且沿电场线的切线方向,设粒子由a向b运动,则其所受电场力方向和速度方向的关系如图所示,可知电场力做正功,粒子速度增加,电势能减少,A错、D对;b点处电场线比a点处电场线密,即粒子在b点所受电场力大,加速度大,选项B错;因电场线方向不确定,所以粒子的电性不确定,C选项错误.(假设粒子由b向a运动同样可得出结论)答案 D当带电粒子在电场中的运动轨迹是一条与电场线、等势线都不重合的曲线时,这种现象简称为“拐弯现象”,其实质为“运动与力”的关系.运用“牛顿运动定律、功和能”的知识分析:(1)“运动与力两线法”——画出“速度线”(运动轨迹在某一位置的切线)与“力线”(在同一位置电场线的切线方向且指向轨迹的凹侧),从二者的夹角情况来分析带电粒子做曲线运动的情况.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题目中相互制约的三个方面.若已知其中一个,可分析判定各待求量;若三个都不知(三不知),则要用“假设法”进行分析.(6分)如图3-7-16所示,带电粒子在电场中只受电场力作用时沿虚线从a运动到b,运动轨迹ab为一条抛物线,则下列判断正确的是( )A.若直线MN为一条电场线,则电场线方向由N指向MB.若直线MN为一条电场线,则粒子的动能增大C.若直线MN为一个等势面,则粒子的速度不可平行MND.若直线MN为一个等势面,则粒子的电势能减小图3-7-16解析若直线MN为一条电场线,则带电粒子所受电场力沿NM方向,可以判断电场力对粒子做负功,粒子的动能减小,但由于带电粒子的电性未知,因此不能确定电场强度的方向,A、B错;若直线MN 为一个等势面,粒子速度方向垂直于场强方向时平行于等势面,C错;若直线MN为一个等势面,电场力方向垂直于等势面指向轨迹凹侧,与速度间夹角小于90°做正功,粒子的电势能减小,D对.答案 D一、单项选择题1.(2014·宿迁市高三摸底考试)图3-7-17不带电导体P置于电场中,其周围电场线分布如图3-7-17所示,导体P表面处的电场线与导体表面垂直,a、b为电场中的两点,则( )A.a点电场强度小于b点电场强度B.a点电势低于b点的电势C.负检验电荷在a点的电势能比在b点的大D.正检验电荷从a点移到b点的过程中,电场力做正功解析电场线密集的地方场强大,则a点电场强度大于b点电场强度,选项A错误;沿电场线方向电势降低,则a点电势高于P点电势,P 点电势高于b点电势,选项B错误;负检验电荷在电势较高的地方电势能较小,选项C错误;正检验电荷在电势较高的地方电势能较大,正检验电荷从a点移到b点的过程中,电势能减小,电场力做正功,选项D正确.答案 D2.航母舰载机的起飞一般有两种方式:滑跃式(辽宁舰)和弹射式.弹射起飞需要在航母上安装弹射器,我国国产航母将安装电磁弹射器,其工作原理与电磁炮类似.用强迫储能器代替常规电源,它能在极短时间内释放所储存的电能,由弹射器转换为飞机的动能而将其弹射出去.如图3-7-18所示是电磁弹射器简化原理图,平行金属导轨与强迫储能器连接,相当于导体棒的推进器ab跨放在平行导轨PQ、MN上,匀强磁场垂直于导轨平面,闭合开关S,强迫储能器储存的电能通过推进器释放,使推进器受到磁场的作用力平行导轨向前滑动,推动飞机使飞机获得比滑跃起飞时大得多的加速度,从而实现短距离起飞的目标.对于电磁弹射器,下列说法正确的是(不计一切摩擦和电阻消耗的能量)( )图3-7-18A.强迫储能器上端为正极B.导轨宽度越大,飞机能获得的加速度越大C.强迫储能器储存的能量越多,飞机被加速的时间越长D.飞机的质量越大,离开弹射器时的动能越大解析由左手定则可判断,通过ab的电流方向为由b到a,所以强迫储能器上端为负极,A错误;ab所受安培力F=BIL与其有效长度成正比,故导轨宽度越大,推进器ab受到的安培力越大,飞机能获得的加速度越大,B正确;强迫储能器储存的能量越多,飞机能获得的动能越大,但加速时间受滑轨长度、飞机获得的加速度等影响,若滑轨长度一定,加速度越大,加速时间越短,C错误;由能量的转化和守恒定律可知,飞机离开弹射器时的动能取决于强迫储能器储存的能量,D错误.答案 B图3-7-193.(2014·武汉市调研考试)将等量的正、负电荷分别放在正方形的四个顶点上(如图3-7-19所示).O点为该正方形对角线的交点,直线段AB通过O点且垂直于该正方形,OA>OB,以下对A、B两点的电势和场强的判断,正确的是( )A.A点场强小于B点场强B.A点场强大于B点场强C.A点电势等于B点电势D.A点电势高于B点电势解析由电荷的对称分布关系可知AB直线上的电场强度为0,所以选项AB错误;同理将一电荷从A移动到B电场力做功为0,AB电势差为0,因此A点电势等于B点电势,选项C正确,D错误;因此答案选C.答案 C图3-7-204.(2014·山东名校高考冲刺卷二)如图3-7-20所示,a、b是x 轴上关于O点对称的两点,c、d是y轴上关于O点对称的两点,a、b两点上固定一对等量异种点电荷,带正电的检验电荷仅在电场力的作用下从c点沿曲线运动到d点,以下说法正确的是( )A.将检验电荷放在O点时受到的电场力为零B.检验电荷由c点运动到d点时速度先增大后减小C.c、d两点电势相等,电场强度大小相等D.检验电荷从c运动到d的过程中,电势能先减少后增加解析由带正电荷的检验电荷的轨迹可判断出a处为负电荷,b处为正电荷,检验电荷从c到d的过程中,速度先减小后增大,电势能先增加后减少,选项B、D均错;电荷在O点受到的电场力不为零,选项A错;根据等量异种电荷电场的分布及对称性可知选项C正确.答案 C5.(2014·河北省衡水中学调研)如图3-7-21甲所示,真空中有一半径为R、电荷量为+Q的均匀带电球体,以球心为坐标原点,沿半径方向建立x轴.理论分析表明,x轴上各点的场强随x变化关系如图乙所示,则( )。

最新高考物理二轮重点专题强化练习十:电场与磁场的理解

最新高考物理二轮重点专题强化练习十:电场与磁场的理解

最新高考物理二轮重点专题整合强化练专练十:电场与磁场的理解1、如图所示,虚线为某静电场的等势面,且相邻两等势面间的电势差相等.一带负电的粒子由M点移动到N 点的过程中,电场力做正功,M、N两点的电势用φM、φN表示,M、N两点的电场强度用E M、E N表示.则下列说法正确的是()A.φM=φNB.φM>φNC.E M>E ND.E M<E N【答案】 D解析带负电的粒子由M点移动到N点的过程中,电场力做正功,电势能减小,电势增加,则φM<φN;N 处等势面密集,电场线也密集,电场强度大.2、一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示.容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是()A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同【答案】 C解析由电场线的疏密表示场强大小可知,A点的电场强度比B点的小,A项错误;沿电场线的方向电势逐渐降低,B项错误;容器的内表面为一等势面,内表面处各点场强的方向与等势面垂直,C项对;容器内表面为等势面,在等势面上移动电荷,电场力不做功,D项错误.3、.(多选)一带正电的粒子仅在电场力作用下从A点经B、C运动到D点,其速度—时间图象如图所示.分析图象后,下列说法正确的是()A.B 、D 两点的电场强度和电势一定都为零B.A 处的电场强度大于C 处的电场强度C.粒子在A 处的电势能小于在C 处的电势能D.A 、C 两点的电势差大于B 、D 两点间的电势差【答案】 BC解析 速度-时间图象的斜率表示加速度,B 、D 两点的斜率为零,说明合力为零,因为一带正电的粒子仅在电场力作用下从A 点经B 、C 运动到D 点,所以B 、D 两点的电场力为零,电场强度为零,但是电势不一定为零,A 错误;A 处的斜率大小大于C 处的斜率大小,因为a =Eq m,所以A 处的电场强度大于C 处的电场强度,B 正确;因为只受电场力,所以运动过程中动能和电势能相互转化,从图中可得A 点的速度大于C 点的速度,所以从A 到C 一部分动能转化为电势能,故粒子在A 处的电势能小于在C 处的电势能,C 正确;从图中可得A 、C 两点的速度变化量小于B 、D 两点的速度变化量,根据公式W =Uq =ΔE k 可得A 、C 两点的电势差小于B 、D 两点间的电势差,D 错误.4、(多选)空间存在着平行于x 轴方向的静电场.A 、M 、O 、N 、B 为x 轴上的点,OA <OB ,OM =ON ,AB 间的电势φ随x 的分布如图所示,一个带电粒子在电场中仅在电场力作用下从M 点由静止开始沿x 轴向右运动,则下列判断中正确的是( )A.粒子一定带负电B.粒子从M 向O 运动过程中所受电场力均匀增大C.粒子一定能通过N 点D.AO 间的电场强度大于OB 间的电场强度【答案】ACD解析 由图可知,AB 两点电势相等,O 点的电势最高,A 到O 是逆电场线,粒子仅在电场力作用下,从M 点由静止开始沿x 轴向右运动即逆电场线方向运动,故粒子一定带负电,故A 正确;A 到O 电势均匀升高,故A 到O 的电场是匀强电场,所以粒子从M 向O 运动过程中所受电场力不变.故B 错误;由图可知,AB 两点电势相等,M 点的电势小于N 点的电势,故M 到O 电场力做的功大于O 到N 电场力做的功,所以粒子能通过N 点.故C 正确;由于OA <OB ,所以OA 之间的电势变化快于OB 之间的电势变化,即AO 间的电场强度大于OB 间的电场强度,故D 正确.5、电子束焊接机中的电场线如图中虚线所示.K 为阴极,A 为阳极,两极之间的距离为d .在两极之间加上高压U ,有一电子在K 极由静止被加速.不考虑电子重力,元电荷为e ,则下列说法正确的是( )A.A 、K 之间的电场强度为U dB.电子到达A 极板时的动能大于eUC.由K 到A 电子的电势能减小了eUD.由K 沿直线到A 电势逐渐减小【答案】 C解析 A 、K 之间建立的是非匀强电场,公式U =Ed 不适用,因此A 、K 之间的电场强度不等于U d.故A 错误;根据动能定理得:E k -0=eU ,得电子到达A 极板时的动能 E k =eU ,故B 错误;由能量守恒定律知,由K 到A 电子的电势能减小了eU ,故C 正确;电场力对电子做正功,则电子受到的电场力向下,电场方向向上,则由K 沿直线到A 电势逐渐升高,故D 错误.6、如图所示,在真空中固定两个等量异号点电荷+Q 和-Q ,图中O 点为两点电荷的连线中点,P 点为连线上靠近-Q 的一点,MN 为过O 点的一条线段,且M 点与N 点关于O 点对称.则下列说法正确的是( )A.同一个试探电荷在M 、N 两点所受的电场力相同B.M 、N 两点的电势相同C.将带正电的试探电荷从M 点沿直线移到N 点的过程中,电荷的电势能先增大后减小D.只将-Q 移到P 点,其它点在空间的位置不变,则O 点的电势升高【答案】A解析 等量异种点电荷的电场的分布具有一定的对称性,如图:由图可得M 、N 两点的电场强度相同,故A 正确;画出过M 、N 的等势面,如图所示:电场线从电势高的等势面指向电势低的等势面,故M 点的电势大于N 点的电势,故B 错误;将带正电的试探电荷从M 点沿直线移到N 点的过程中,电场力一直做正功,故电势能一直减小,故C 错误;等量异号点电荷连线的中垂线是一条等势线,故O 点的电势为零;只将-Q 移到P 点,其它点在空间的位置不变,此时两个电荷连线的中点在O 点的左侧,故O 点的电势变为负值,故O 点的电势减小,故D 错误.7、(多选)如图所示,O 为半径为R 的圆的圆心,ac 、bd 为圆的两个互相垂直的直径,在圆心O 处固定一电荷量为Q 的负点电荷,在a 点处固定一电荷量为4Q 的正点电荷,e 为Oc 连线上一点,f 为Oc 延长线上一点ec =cf ,则下列说法正确的是( )A.b 、c 、d 三点中,b 、d 两点场强相等,c 点场强最小B.b 、c 、d 三点中,b 、d 两点电势相等,c 点电势最低C.将一负的点电荷从e 点沿直线移到f 点,点电荷的电势能先减小后增大D.e 、f 两点的场强大小关系为E e >E f【答案】BCD解析 b 、c 、d 三点的场强为a 、O 两点固定点电荷产生的电场的叠加,根据电场叠加的结果,b 、d 两点的场强大小相等,但方向不同,因此场强不等,A 项错误;在O 处点电荷的电场中,b 、c 、d 三点的电势相等,而在a 处点电荷的电场中b 、d 两点电势相等,c 点电势最低,因此电势叠加的结果,b 、d 两点电势相等,c 点电势最低,B 项正确;由于c 点场强为E c =k ×4Q (2R )2-kQ R 2=0,可以判断Oc 连线上场强方向水平向左,Oc 延长线上的场强方向水平向右,因此一个负的点电荷从e 点沿直线移到f 点,电场力先做正功后做负功,因此电势能先减小后增大,C 项正确;设ec =ef =L ,则E e =k Q (R -L )2-k 4Q (2R -L )2=k Q (R -L )2-k Q (R -L 2)2,E f =k 4Q (2R +L )2-k Q (R +L )2=k Q (R +L 2)2-k Q (R +L )2,根据E =k Q x 2作出E -x 图象,由图象可知,E e 大小等于点电荷Q 电场中距场源(R -L )和(R -L 2)处场强大小的差,同样E f 大小等于点电荷Q 电场中距场源(R +L )和(R +L 2)处场强大小的差,由图象可知,E e >E f ,D 项正确. 8、 A 、B 为两等量异种点电荷,图中水平虚线为A 、B 连线的中垂线.现将另两个等量异种的检验电荷a 、b ,如图所示,用绝缘细杆连接后从离AB 无穷远处沿中垂线平移到AB 的连线,平移过程中两检验电荷位置始终关于中垂线对称.若规定离AB 无穷远处电势为零,则下列说法中正确的是( )A.在AB 的连线上a 所处的位置电势φa <0B.a 、b 整体在AB 连线处具有的电势能E p >0C.整个移动过程中,静电力对a做正功D.整个移动过程中,静电力对a、b整体做正功【答案】B解析设AB连线的中点为O.由于AB连线的垂直平分线是一条等势线,且一直延伸到无穷远处,所以O点的电势为零.AO间的电场线方向由A→O,而顺着电场线方向电势逐渐降低,可知,a所处的位置电势φa>0,故A错误;a所处的位置电势φa>0,b所处的位置电势φb<0,由E p=qφ知,a、b在AB连线处的电势能均大于零,则整体的电势能E p>0.故B正确;在平移过程中,a所受的静电力与其位移方向的夹角为钝角,则静电力对a做负功,故C错误;a、b看成一个整体,总电量为零,所以整个移动过程中,静电力对a、b 整体做功为零,故D错误.9、如图所示,有一带电量为+q的点电荷与均匀带电圆形薄板相距为2d,+q到带电薄板的垂线通过板的圆心.若图中a点处的电场强度为零,则图中b点处的电场强度大小是()A.k q9d2+k qd2 B.k q9d2-k qd2 C.0 D.k qd2【答案】A解析+q在a处产生的场强大小为E=k qd2,方向水平向左.据题,a点处的电场强度为零,+q与带电薄板在a点产生的场强大小相等,方向相反,则带电薄板在a点产生的场强大小为E=k qd2,方向水平向右.根据对称性可知,带电薄板在b点产生的场强大小为E=k qd2,方向水平向左.+q在b处产生的场强大小为E=k q(3d)2,方向水平向左,则b点处的电场强度大小是E b=kq9d2+kqd2.10、(多选)如图所示,在一等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B.一质量为m、电荷量为q的带正电粒子(不计重力)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形的两直角边长均为2L,则下列关于粒子运动的说法中正确的是()A.若该粒子的入射速度为v=qBLm,则粒子一定从CD边射出磁场,且距点C的距离为LB.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=2qBL mC.若要使粒子从AC 边射出,则该粒子从O 点入射的最大速度应为v =qBl 2mD.该粒子以不同的速度入射时,在磁场中运动的最长时间为m πqB【答案】 ACD解析 根据洛伦兹力充当向心力可知:Bqv =m v 2r ,若v =qBL m,解得:r =L ;根据几何关系可知,粒子一定从CD 边距C 点为L 的位置离开磁场;故A 正确;根据洛伦兹力充当向心力可知,v =Bqr m,因此半径越大,速度越大;根据几何关系可知,使粒子与AD 边相切时速度最大,则由几何关系可知,最大半径为一定大于2L ;故B 错误;若要使粒子从AC 边射出,则该粒子从O 点入射的最大半径为L 2;因此最大速度应为v =qBL 2m;故C 正确;粒子运行周期为2πm Bq ,根据几何关系可知,粒子在磁场中最大圆心角为180°;故最长时间为m πqB;故D 正确.11、如图所示,N 、M 、P 为很长的平行界面,N 、M 与M 、P 间距分别为l 1、l 2,其间分别有磁感应强度为B 1和B 2的匀强磁场区,Ⅰ和Ⅱ磁场方向垂直纸面向里,B 1≠B 2,有一带正电粒子的电量为q ,质量为m ,以某一初速度垂直边界N 及磁场方向射入MN 间的磁场区域.不计粒子的重力.求:(1)要使粒子能穿过Ⅰ磁场进入Ⅱ磁场,粒子的初速度至少应为多少?(2)粒子初速度v 为多少时,才可恰好穿过两个磁场区域.【答案】 (1)B 1ql 1m (2)qB 1l 1+qB 2l 2m解析 (1)粒子的初速度为v 0时恰好能进入Ⅱ磁场,则进入Ⅱ磁场时速度恰好沿M 边界,所以半径为r =l 1则B 1qv 0=m v 20r解得:v 0=B 1ql 1m (2)设粒子速度为v 时,粒子在B 2磁场中的轨迹恰好与P 边界相切,轨迹如图所示,由Bqv =m v 2R 可得:R 1=mv B 1q ,R 2=mv B 2qsin θ=l 1R 1=qB 1l 1mv粒子在B 2中运动有:R 2-R 2sin θ=l 2解得:v =qB 1l 1+qB 2l 2m12、真空中存在一中空的柱形圆筒,如图所示是它的一个截面,a 、b 、c 为此截面上的三个小孔,三个小孔在圆形截面上均匀分布,圆筒半径为R .在圆筒的外部空间存在着匀强磁场,磁感应强度大小为B ,其方向与圆筒的轴线平行,在图中垂直于纸面向里.现在a 处向圆筒内发射一个带正电的粒子,其质量为m ,带电荷量为q ,使粒子在如图所示平面内运动,设粒子只受磁场力的作用,若粒子碰到圆筒即会被吸收,则:(1)若要粒子发射后在以后的运动中始终不会碰到圆筒,则粒子的初速度的大小和方向有何要求?(2)如果在圆筒内的区域中还存在垂直纸面向外的匀强磁场,磁感应强度大小也为B ,则为使粒子以后都不会碰到圆筒,粒子的初速度大小和方向有何要求?【答案】 (1)qBR m ,方向从a 指向b (2)3qBR m,方向由a 指向圆筒截面的圆心 解析 (1)依题意,粒子进入圆筒后从a 指向b ,从b 进入磁场偏转后只能由c 进入圆筒,且方向指向a .画出粒子运动的轨迹如图甲,粒子的偏转角是240°,由图中的几何关系得:粒子运动的圆心一定在圆筒上,而且粒子的半径r =R .粒子在磁场中运动,洛伦兹力提供向心力,所以:qv 1B =mv 21r ,联立得:v 1=qBR m.甲 (2)如果在圆筒内的区域中还存在垂直纸面向外的匀强磁场,磁感应强度大小也为B ,由粒子运动的对称性可知,粒子运动的轨迹只能是从a 到b ,然后在外侧的磁场中到c ,在圆筒内再到a ,然后在外侧的磁场中到b ,在圆筒内再到c ,然后在外侧的磁场中到a .乙 粒子运动的初速度方向是从a 指向圆心.做出粒子运动的轨迹,粒子运动轨迹如图乙所示,由图可知,cd ⊥Oc ,bd ⊥Ob ,所以粒子的偏转角:β=300°,所以:∠bOd =60°,粒子在匀强磁场中做匀速圆周运动,设圆弧的圆半径为r ′,粒子的偏转半径:r ′=R tan 60°=3R由牛顿第二定律得:qv ′B =mv ′2r ′所以:v ′=3qBR m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习备考建议1.电场问题是动力学与能量观点在电磁学中的延续,主要考查点有电场叠加、电场描述、电场能的性质、带电粒子(带电体)在电场中的运动等.带电粒子(带电体)在电场中的运动能够综合考查运动的合成与分解、牛顿第二定律、动能定理等.这部分内容综合性强,是命题的热点.2.带电粒子在匀强磁场中的运动综合了洛伦兹力、牛顿运动定律、匀速圆周运动等知识,是高考命题的热点和重点,对磁场叠加、安培力的考查,难度一般不大.高考对于带电粒子在磁场中的运动的考查,多为选择题或计算题,难度适中,所以要重点复习,但不要过于繁、难.第6课时 电场与磁场的理解 考点电场性质的理解1.电场强度、电势、电势能的表达式及特点对比表达式特点电场强度E =F q ,E =k Q r 2,E =U d矢量,由电场本身决定.电场线越密,电场强度越大电势 φ=E pq标量,与零电势点的选取有关,沿电场线方向电势逐渐降低电势能 E p =qφ,ΔE p =-W 电标量,电场力做正功,电势能减小2.电势高低的比较(1)沿着电场线方向,电势越来越低;(2)带电荷量为+q 的点电荷,在电场力的作用下从电场中的某点移至无穷远处,电场力做功越多,则该点的电势越高;(3)根据电势差U AB =φA -φB ,若U AB >0,则φA >φB ,反之φA <φB .3.电势能变化的判断(1)由E p=qφ判断:正电荷在电势高的地方电势能大,负电荷在电势低的地方电势能大;(2)由W AB=E p A-E p B判断:电场力做正功,电势能减小,电场力做负功,电势能增大;(3)只有电场力做功时,电荷的电势能与动能之和守恒.4.运动轨迹问题(1)某点速度方向即为轨迹在该点的切线方向;(2)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正、负;(3)结合速度方向与电场力的方向,确定电场力做功的正、负,从而确定电势能、电势的变化等.例1(多选)(2019·贵州安顺市上学期质量监测)两电荷量分别为q 1和q2的点电荷分别放在x 轴上的O、M两点,两电荷连线上各点电势φ随x变化的关系如图1所示,其中A、N两点的电势均为零,ND段中的C点电势最高,则()图1A.q1带正电,q2带负电B.A、N点的电场强度大小为零C.NC间场强方向沿x轴负方向D.将一负点电荷从N点移到D点,电势能一直增大答案AC解析由题图可知,在q1附近电势为正,q2附近电势为负,可知q1带正电,q2带负电,故A 正确;φ-x图象的斜率表示场强E,可知A、N两点电场强度不为零,故B错误;由题图可知:由N至C,电势升高,所以场强方向沿x轴负方向,故C正确;由N至D,电势先升高后降低,则将一负点电荷从N点移到D点,电势能先减小后增大,故D错误.变式训练1.(多选)(2019·全国卷Ⅲ·21)如图2,电荷量分别为q和-q(q>0)的点电荷固定在正方体的两个顶点上,a、b是正方体的另外两个顶点.则()图2A.a点和b点的电势相等B.a点和b点的电场强度大小相等C.a点和b点的电场强度方向相同D.将负电荷从a点移到b点,电势能增加答案BC解析b点距q近,a点距-q近,则b点的电势高于a点的电势,A错误;如图所示,a、b 两点的电场强度可视为E3与E4、E1与E2的合场强.其中E1∥E3,E2∥E4,且知E1=E3,E2=E4,故合场强E a与E b大小相等、方向相同,B、C正确;由于φa<φb,负电荷从低电势处移至高电势处过程中,电场力做正功,电势能减少,D错误.2.(多选)(2020·山东等级考模拟卷·9)在金属球壳的球心有一个正点电荷,球壳内外的电场线分布如图3所示,下列说法正确的是()图3A.M点的电场强度比K点的大B.球壳内表面带负电,外表面带正电C.试探电荷-q在K点的电势能比在L点的大D.试探电荷-q沿电场线从M点运动到N点,电场力做负功答案ABD解析由电场线的疏密程度可知,M点的场强大于K点的场强,A正确;由于感应起电,在金属球壳的内表面感应出负电,外表面感应出正电,B正确;负电荷在电场中,沿电场线方向运动,电场力做负功,电势能增加,C错误,D正确.例2(多选)(2018·全国卷Ⅱ·21)如图4,同一平面内的a、b、c、d四点处于匀强电场中,电场方向与此平面平行,M为a、c连线的中点,N为b、d连线的中点.一电荷量为q(q>0)的粒子从a点移动到b点,其电势能减小W1;若该粒子从c点移动到d点,其电势能减小W2.下列说法正确的是()图4A .此匀强电场的场强方向一定与a 、b 两点连线平行B .若该粒子从M 点移动到N 点,则电场力做功一定为W 1+W 22C .若c 、d 之间的距离为L ,则该电场的场强大小一定为W 2qLD .若W 1=W 2,则a 、M 两点之间的电势差一定等于b 、N 两点之间的电势差 答案 BD解析 结合题意,只能判定U ab >0,U cd >0,但电场方向不能确定,A 项错误;由于M 、N 分别为ac 和bd 的中点,对于匀强电场,则U MN =φa +φc 2-φb +φd 2=U ab +U cd2,可知该粒子由M至N 过程中,电场力做功W =W 1+W 22,B 项正确;电场强度的方向只有沿c →d 时,才有场强E =W 2qL ,但本题中电场方向未知,C 项错误;若W 1=W 2,则U ab =U cd =U MN ,即φa -φb=φM -φN ,φa -φM =φb -φN ,可知U aM =U bN ,D 项正确. 变式训练3.(多选)(2019·山东日照市上学期期末)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图5所示,三点的电势分别为10 V 、16 V 、24 V .下列说法正确的是( )图5A .坐标原点的电势为18 VB .电场强度的大小为1.25 V/cmC .电场强度的方向从c 点指向a 点D .电子从b 点运动到坐标原点,电场力做功为2 eV 答案 ABD解析 根据φb -φa =φc -φO ,因a 、b 、c 三点电势分别为φa =10 V 、φb =16 V 、φc =24 V ,则原点处的电势为φO =18 V ,故A 正确;如图,y 轴上y =2点(M 点)的电势为φM =φO -φO -φa 4=16 V ,所以b 点与y 轴上y =2点的电势相等,连接b 点与y 轴上y =2点的直线即为等势线,过a 点作Mb 的垂线即为电场线,方向与y 轴负方向成37°角斜向上,垂足为N ,由几何关系得:∠abM =37°,aN =ab ·sin 37°=4.8 cm ,φN =φb ,所以E =U Na aN =1.25 V/cm ,故B 正确,C 错误;φb <φO ,则电子从b 点运动到坐标原点,电场力做正功,W =2 eV ,故D 正确.考点 带电粒子(带电体)在电场中的运动1.直线运动的两种处理方法 (1)动能定理:不涉及t 、a 时可用.(2)牛顿第二定律和运动学公式:涉及a 、t 时可用.尤其是交变电场中,最好再结合v -t 图象使用.2.匀强电场中偏转问题的处理方法 (1)运动的分解已知粒子只在电场力作用下运动,且初速度方向与电场方向垂直. ①沿初速度方向做匀速直线运动,运动时间t =Lv 0.②沿电场方向做初速度为零的匀加速直线运动,加速度a =F m =qE m =qUmd .③离开电场时的偏移量y =12at 2=qUL 22md v 02.④速度偏向角tan φ=v y v 0=qUx md v 02――→x =L tan φ=qULmd v 02; 位移偏向角tan θ=y x =qUx 2md v 02――→x =Ltan θ=qUL 2md v 02. (2)动能定理:涉及功能问题时可用.注意:偏转时电场力做的功不一定是W =qU 板间,应该是W =qEy (y 为偏移量). 3.非匀强电场中的曲线运动(1)电荷的运动轨迹偏向所受合外力的一侧,即合外力指向轨迹凹的一侧;电场力一定沿电场线切线方向,即垂直于等势面.(2)由电场力的方向与运动方向的夹角,判断电场力做功的正负,再由功能关系判断动能、电势能的变化.例3 (2019·全国卷Ⅱ·24)如图6,两金属板P 、Q 水平放置,间距为d .两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同.G 接地,P 、Q 的电势均为φ(φ>0).质量为m 、电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计.图6(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少? 答案 (1)12m v 02+2φd qh v 0mdhqφ(2)2v 0mdh qφ解析 (1)PG 、QG 间场强大小相等,均为E .粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd ①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有 qEh =E k -12m v 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有h =12at 2④l =v 0t ⑤联立①②③④⑤式解得 E k =12m v 02+2φd qhl =v 0mdhqφ(2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L =2l =2v 0mdhqφ. 变式训练4.(2019·湖南六校4月联考)如图7所示,空间中存在着由一固定的负点电荷Q (图中未画出)产生的电场.另一正点电荷q 仅在电场力作用下沿曲线MN 运动,在M 点的速度大小为v 0,方向沿MP 方向,到达N 点时速度大小为v ,且v <v 0,则( )图7A .Q 一定在虚线MP 下方B .M 点的电势比N 点的电势高C .q 在M 点的电势能比在N 点的电势能小D .q 在M 点的加速度比在N 点的加速度小 答案 C解析 场源电荷带负电,运动电荷带正电,它们之间是吸引力,而曲线运动合力指向曲线的内侧,故负点电荷Q 应该在轨迹的内侧,故A 错误;只有电场力做功,动能和电势能之和守恒,运动电荷在N 点的动能小,故其在N 点的电势能大,故C 正确;运动电荷为正电荷,故N 点电势高于M 点电势,故M 点离场源电荷较近,则M 点场强较大,所以q 在M 点的加速度比在N 点的加速度大,故B 、D 错误.5.(2019·河北“五个一名校联盟” 第一次诊断)如图8所示,地面上某区域存在着水平向右的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好竖直向下通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为60°,重力加速度为g ,则以下说法正确的是( )图8A .电场力大小为3mg2B .小球所受的合外力大小为3mg3 C .小球由O 点到P 点用时3v 0gD .小球通过P 点时的动能为52m v 02答案 C解析 设OP =L ,从O 到P 水平方向做匀减速运动,到达P 点的水平速度为零;竖直方向做自由落体运动,则水平方向:L cos 60°=v 02t ,竖直方向:L sin 60°=12gt 2,解得:t =3v 0g ,选项C 正确;水平方向F 1=ma =m v 0t =3mg3,小球所受的合外力是F 1与mg 的合力,可知合力的大小F =(mg )2+(F 1)2=233mg ,选项A 、B 错误;小球通过P 点时的速度v P =gt =3v 0,则动能:E k P =12m v P 2=32m v 02,选项D 错误.考点磁场对电流的作用1.对磁场的理解(1)磁感应强度是矢量,其方向与通电导线在磁场中所受力的方向垂直; (2)电流元必须垂直于磁场方向放置,公式B =FIL才成立;(3)磁场中某点的磁感应强度是由磁场本身决定的,与通电导线受力的大小及方向均无关. 2.磁场的叠加对于电流在空间某点的磁场,首先应用安培定则判断出各电流在该点的磁场方向,然后应用平行四边形定则合成. 3.安培力(1)若磁场方向和电流方向垂直:F =BIL . (2)若磁场方向和电流方向平行:F =0. (3)方向判断:左手定则.(4)方向特点:垂直于磁感线和通电导线确定的平面. 4.磁场力做功情况磁场力包括洛伦兹力和安培力,由于洛伦兹力的方向始终和带电粒子的运动方向垂直,洛伦兹力不做功,但是安培力可以做功.例4 (2019·全国卷Ⅰ·17)如图9,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接.已知导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为( )图9A .2FB .1.5FC .0.5FD .0 答案 B解析 设三角形边长为l ,通过导体棒MN 的电流大小为I ,则根据并联电路的特点可知通过导体棒ML 和LN 的电流大小为I2,如图所示,依题意有F =BlI ,则导体棒ML 和LN 所受安培力的合力为F 1=Bl ·I 2=12F ,方向与F 的方向相同,所以线框LMN 受到的安培力大小为1.5F ,选项B 正确.变式训练5.电磁炮是一种理想的兵器,它的主要原理如图10所示,利用这种装置可以把质量为m =2.0 g 的弹体(包括金属杆EF 的质量)加速到6 km/s ,若这种装置的轨道宽d =2 m 、长L =100 m 、电流I =10 A 、轨道摩擦不计且金属杆EF 与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是( )图10A .B =18 T ,P m =1.08×108 W B .B =0.6 T ,P m =7.2×104 WC .B =0.6 T ,P m =3.6×106 WD .B =18 T ,P m =2.16×106 W 答案 D解析 由v m 2=2aL 和BId =ma 可得B =18 T , 最大功率P m =BId ·v m =2.16×106 W ,故D 正确.6.(2019·河南天一大联考上学期期末)一课外探究小组用如图11所示实验装置测量学校所在位置的地磁场的水平分量B x .将一段细长直导体棒南北方向放置,并与开关、导线、电阻箱以及电动势为E 、内阻为R 的电源组成如图所示的电路.在导体棒正下方距其l 处放一小磁针,开关断开时小磁针与导体棒平行,现闭合开关,缓慢调节电阻箱阻值,发现小磁针逐渐偏离南北方向,当电阻箱的接入阻值为5R 时,小磁针的偏转角恰好为30°.已知通电长直导线周围某点磁感应强度大小为B =k Ir (r 为该点到通电长直导线的距离,k 为比例系数),导体棒和导线电阻不计,则该位置地磁场的水平分量大小为( )图11A.3kE5lR B.3kE6lR C.3kE15lRD.3kE18lR答案 B解析 通电长直导体棒在其正下方距其l 处产生的磁场的磁感应强度大小为B 1=k Il,方向沿东西方向,其中的I =E R +5R =E 6R;如图,由磁场的叠加可知B x =B 1tan 30°=3kE6lR ,故选B.考点 磁场对运动电荷的作用1.基本公式:q v B =m v 2r ,T =2πrv重要结论:r =m v qB ,T =2πmqB .2.基本思路(1)画轨迹:确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度相联系;偏转角度与圆心角、运动时间相联系;在磁场中运动的时间和周期相联系.(3)用规律:利用牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式. 3.轨迹的几个基本特点(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.如图12,θ1=θ2=θ3. (2)粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角,即α1=α2.图12(3)沿半径方向射入圆形磁场的粒子,射出时亦沿半径方向,如图13.图13 图14(4)磁场圆与轨迹圆半径相同时,以相同速率从同一点沿各个方向射入的粒子,出射速度方向相互平行.反之,以相互平行的相同速率射入时,会从同一点射出(即磁聚焦现象),如图14所示. 4.半径的确定方法一:由物理方程求.由于Bq v =m v 2R ,所以半径R =m vqB;方法二:由几何关系求.一般由数学知识(勾股定理、三角函数等)通过计算来确定. 5.时间的确定方法一:由圆心角求,t =θ2πT ;方法二:由弧长求,t =sv . 6.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向确定半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.例5 如图15所示,在矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度大小为B = 5.0×10-2 T ,矩形区域长为235m ,宽为0.2 m ,在AD 边中点O 处有一粒子源,某时刻,粒子源沿纸面向磁场中各方向均匀地发射出速率均为v =2×106 m/s 的某种带正电粒子,带电粒子质量m =1.6×10-27kg 、电荷量为q =+3.2×10-19C(不计粒子重力和粒子间的相互作用),求:图15(1)带电粒子在磁场中做圆周运动的半径为多大?(2)从BC 边界射出的粒子中,在磁场中运动的最短时间为多少? (3)从BC 边界射出的粒子中,在磁场中运动的最长时间为多少? 答案 (1)0.2 m (2)π3×10-7 s (3)π2×10-7 s解析 (1)粒子在磁场中做匀速圆周运动, 由牛顿第二定律得:q v B =m v 2R解得:R =0.2 m.(2)因为所有粒子的轨道半径相同,所以弦最短的圆所对应的圆心角最小,运动时间最短,作EO ⊥AD ,则EO 弦最短,如图所示.因为EO =0.2 m ,且R =0.2 m ,所以对应的圆心角为θ=π3由牛顿第二定律得:q v B =m (2πT )2R解得:T =2πmqB最短时间为:t min =θ2πT =θm qB解得:t min =π3×10-7 s.(3)从BC 边界射出的粒子在磁场中运动的时间最长时,粒子运动轨迹与BC 边界相切或粒子进入磁场时的速度方向指向OA 方向,转过14圆周,对应的圆心角:α=π4,粒子的最长运动时间:t max =14T =πm 2qB ,解得:t max =π2×10-7 s.变式训练8.(2019·山东菏泽市下学期第一次模拟)如图16所示,abcd 为边长为L 的正方形,在四分之一圆abd 区域内有垂直正方形平面向外的匀强磁场,磁感应强度大小为B .一个质量为m 、电荷量为q 的带正电粒子从b 点沿ba 方向射入磁场,结果粒子恰好能通过c 点,不计粒子的重力,则粒子的速度大小为( )图16A.qBLm B.2qBLmC.(2-1)qBL mD.(2+1)qBL m答案 C解析 粒子沿半径方向射入磁场,则出射速度的反向延长线一定过圆心,由于粒子能经过c 点,因此粒子出磁场时一定沿ac 方向,轨迹如图所示,由几何关系可知,粒子做圆周运动的半径r =2L -L =(2-1)L ,根据牛顿第二定律得q v 0B =m v 02r ,求得v 0=(2-1)qBLm ,C 项正确.9.(2019·全国卷Ⅱ·17)如图17,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外.ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子.已知电子的比荷为k .则从a 、d 两点射出的电子的速度大小分别为( )图17A.14kBl ,54kBl B.14kBl ,54kBl C.12kBl ,54kBl D.12kBl ,54kBl 答案 B解析 如图,电子从a 点射出时,其轨迹半径为r a =l4,由洛伦兹力提供向心力,有e v a B =m v a 2r a ,又e m =k ,解得v a =kBl 4;电子从d 点射出时,由几何关系有r d 2=l 2+(r d -l2)2,解得轨迹半径为r d =5l 4,由洛伦兹力提供向心力,有e v d B =m v d 2r d ,又e m =k ,解得v d =5kBl 4,选项B正确.专题突破练级保分练1.(2019·山东济南市上学期期末)长为L 的直导体棒a 放置在光滑绝缘水平面上,固定的长直导线b 与a 平行放置,导体棒a 与力传感器相连,如图1所示(俯视图).a 、b 中通有大小分别为I a 、I b 的恒定电流,I a 、I b 方向未知.导体棒a 静止时,传感器受到a 给它的方向向左、大小为F 的拉力.下列说法正确的是( )图1A.I b与I a的方向相同,I b在a处的磁感应强度B大小为FI b LB.I b与I a的方向相同,I b在a处的磁感应强度B大小为FI a LC.I b与I a的方向相反,I b在a处的磁感应强度B大小为FI b LD.I b与I a的方向相反,I b在a处的磁感应强度B大小为FI a L答案 B解析因传感器受到a给它的方向向左、大小为F的拉力,可知电流a、b之间是相互吸引力,即a、b中的电流同向;根据F=BI a L,可知I b在a处的磁感应强度B大小为B=FI a L,故选B.2.(2019·浙江绍兴市3月选考)如图2所示,下边缘浸入水银槽中的铝盘置于蹄形磁铁的磁场中,可绕转轴转动,当转轴、水银槽分别与电源的正、负极相连时,铝盘开始转动.下列说法中不正确的是()图2A.铝盘绕顺时针方向转动B.只改变磁场方向,铝盘的转动方向改变C.只改变电流方向,铝盘的转动方向改变D.同时改变磁场方向与电流方向,铝盘的转动方向不变答案 A3.(2019·安徽合肥市第一次质量检测)如图3所示,真空中位于x轴上的两个等量负点电荷,关于坐标原点O对称.下列关于电场强度E随x变化的图象正确的是()图3答案 A解析设x轴的正方向代表电场强度的正方向,两负点电荷所在位置分别为A、B点,等量负点电荷电场线分布如图所示.①在A点左侧电场线水平向右,场强为正,离A点越近,场强越大;②在A到O之间,电场线向左,场强为负,离A越近,场强越大;③在O到B之间,电场线向右,场强为正,离B越近,场强越大;④在B点右侧,电场线水平向左,场强为负,离B越近,场强越大.综上所述,只有选项A符合题意.4.(2019·福建厦门市第一次质量检查)如图4所示,菱形ABCD的对角线相交于O点,两个等量异种点电荷分别固定在AC连线上的M点与N点,且OM=ON,则()图4A.B、D两处电势相等B.把一个带正电的试探电荷从A点沿直线移动到B点的过程中,电场力先做正功再做负功C.A、C两处场强大小相等、方向相反D.同一个试探电荷放在A、C两处时电势能相等答案 A5.(多选)(2019·全国卷Ⅱ·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行答案AC解析在两个等量同种点电荷的电场中,一带同种电荷的粒子在两点电荷的连线上自M点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A正确;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,粒子运动到N点时动能不小于零,则粒子在M点的电势能不低于其在N点的电势能,选项C正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D错误.6.(多选)(2019·广东珠海市质量监测)如图5,空间有平行于纸面的匀强电场,处于该电场中的直角三角形ABC 直角边BC =20 cm ,∠A =60°,AD 是∠A 的角平分线.若在直角顶点B 处有一个射线源,能朝空间各方向射出动能为1 000 eV 的电子,则能在顶点A 和C 分别探测到动能为1 100 eV 和900 eV 的电子,本题中运动的电子仅需考虑匀强电场的电场力,则( )图5A .AB 间的电势差U AB =100 V B .该匀强电场的场强E =1 000 V/mC .电场强度的方向沿A 指向D D .整个三角形内,顶点C 的电势最高 答案 ABC解析 从B 到A 由动能定理可得:-eU BA =1 100 eV -1 000 eV ,可得U BA =-100 V ,所以U AB =100 V ,故A 正确;由题可知BC 间的电势差U BC =100 V ,所以AC 间的电势差为U AC =200 V ,由几何知识可得AC 在AD 方向上的投影是AB 在AD 方向上的投影的2倍,这就说明电场的方向一定沿着AD ,并且由A 指向D ,故C 正确;AB 在AD 上的投影AB ′=AB ·cos 30°=BC ·tan 30°·cos 30°=BC ·sin 30°=10 cm ,所以电场强度的大小为:E =1000.1 V /m =1 000 V/m ,故B正确;分析可知,整个三角形内,顶点A 的电势最高,故D 错误.7.(2019·山西晋城市二模)一正方形导体框abcd ,其单位长度的电阻值为r ,现将该正方形导体框置于如图6所示的匀强磁场中,磁感应强度的大小为B ,用不计电阻的导线将导体框连接在电动势为E 、不计内阻的电源两端,则关于导体框所受的安培力,下列描述正确的是( )图6A .安培力的大小为2EB r ,方向竖直向上B .安培力的大小为4EB3r ,方向竖直向下C .安培力的大小为EBr ,方向竖直向下D .安培力的大小为EBr,方向竖直向上答案 B解析 由题图可知,电路接通后流过导体框的电流方向为ad 及abcd ,假设导体框的边长为L ,由欧姆定律可得流过ad 边的电流大小为I 1=E Lr ,流过bc 边的电流大小为I 2=E3Lr ;又由左手定则可知ab 、cd 两边所受安培力大小相等、方向相反,ad 、bc 两边所受安培力方向均竖直向下,则导体框所受的安培力大小为F =BI 1L +BI 2L =4EB3r,方向竖直向下,故选项B 正确. 8.(多选)(2019·山东烟台市上学期期末)如图7所示,一平行板电容器的A 、B 两极板与一电压恒定的电源相连,极板水平放置,极板间距为d ,两极板间有一个质量为m 的带电粒子静止于P 点.下列说法正确的是( )图7A .带电粒子带负电B .若仅将A 板稍微向上移动一定距离,则带电粒子仍将保持静止C .若仅将两极板各绕其中点快速顺时针转过一定小角度,则粒子将向左做直线运动D .若断开电源并将B 板稍向右移动一定距离,则带电粒子将向上做直线运动 答案 AD解析 带电粒子静止于P 点,则所受电场力竖直向上,因电场强度方向向下,知粒子带负电,故A 正确;若仅将A 板稍微向上移动一定距离,因电压U 不变,E =Ud ,则电场力减小,因此粒子将向下运动,故B 错误;将两极板顺时针旋转α角度后,电场强度E ′=Ud ·cos α,而且电场强度的方向也旋转了α,由受力分析可知,竖直方向合力为0,水平方向有电场力向右的分力,所以粒子水平向右做匀加速直线运动,故C 错误;若断开电源,电容器所带电荷量Q 不变,根据C =Q U ,E =U d 及C =εr S 4πkd 得E =4πkQεr S ,则知将B 板稍向右移动一定距离,电场强度E 增大,则带电粒子将向上做直线运动,故D 正确.9.(多选)(2019·江西赣州市上学期期末)如图8所示,在半径为R 的圆形区域内,存在匀强磁场,磁感应强度大小为B ,方向垂直于圆平面(未画出).一群比荷为qm 的负离子以相同速率v 0(较大),由P 点在纸平面内沿不同方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧的荧光屏(足够大)上,则下列说法正确的是(不计离子的重力和离子间的相互作用)( )。

相关文档
最新文档