电化学原理第二章

合集下载

电化学原理第二章

电化学原理第二章

23:41:36
原电池表示法: (1)负极在左边,正极在右边,中间溶液。注明活度、浓度、 分压等物态 (2)两相用“|”或“,”表示;盐桥用“||” (3)注明惰性金属种类 (4)上述写法可注明电池反应温度,电极正、负极性,且自发 进行时电池电动势为正值。
• (-) 电极a 溶液(a1) 溶液(a2) 电极b (+) • 阳极 E • 电池电动势: 阴极
23:41:36
以锌电极为例(锌插入硫酸锌溶液所组成的电极体系) 可以将金属看成离子和自由电子构成。当锌片与硫酸锌溶液 接触时,金属锌中Zn2+的化学势大于溶液中Zn2+的化学势,则 锌不断溶解到溶液中,而电子留在锌片上。 结果:金属带负电,溶液带正电;形成双电层。
双电层的形成建立了相间的电位差;
表面电位χ: M相的试验电荷越过表面层进入M相所引起的能量变化涉及 两方面: (1)任一相表面层中,因界面上的短程力场(范德华力、共 价键力等)引起原子或分子偶极化并定向排列,使表面层成 为一层偶极子层,单位正电荷穿越此偶极子层所作的电功为 M相的表面电位χ ,故将一个单位正电荷从无穷远处移入M 相所作电功是外电位与表面电位χ之和 ф =+ χ (2.2)
(2.9)
ΔMs是被测电极绝对电位,ΔRs是参比电极绝对电位, ΔRM是两金属相R与M的金属接触电位。(2.9)可简化为
(2.11) E = - R 若规定参比电极相对电位R=0,则测得的端电压 = E ,且有
i i F nF
m s
23:41:36
eM
23:41:36
外电位用:已知真空中任何一点的电位等于一个单位 正电荷从无穷远处移至该处所做的功,如孤立相M是 良导体组成的球体,电荷均匀分布,故试验电荷移至 距离球面10-4~10-5cm处所作的功W1等于球体所带净电 荷在该处引起的全部电位,这一电位称M相(球体) 的外电位用表示。

第 2 章 腐蚀电化学原理简介

第 2 章 腐蚀电化学原理简介
腐蚀反应中释放的化学能又是从何而来的?
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
中国民航大学 理学院
2010/8/14
10

2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数
什么是正极和负极,什么是阴极和阳极? 什么情况下正极是阳极,什么情况下正 极是阴极?
A
e
k
+
Cu 2H+
Zn
Zn2+
SO42-
中国民航大学 理学院
2010/8/14
4
总反应(电池反应) = 阳极反应 + 阴极反应 Zn+2H+→Zn2++H2↑
形 成 回 路
电流的流动 金属中:电子从阳极流向阴极。 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从 阴极区向阳极区迁移。 阳极:发生氧化反应 阴极:发生还原反应
腐蚀电池不做有用功,只造成金属的腐蚀。
腐蚀电池的电极反应、电池反应和推动力与一般原电池相同。
两个电极反应,阳极反应造成金属溶解(或腐蚀),阴极反 应是环境中的氧化剂(习惯上称去极化剂)的还原反应。
两个电极反应是共轭关系,即阳极失去的电子等量地被阴极 反应消耗。
金属的腐蚀速度、阴极去极化剂的还原速度和通过的电流之 间符合法拉第定律。
情况下肉眼可辨。
1. 电偶电池:两种不同的金属短路接触,浸入连续的电解质溶液中。 如钢铁部件用铜铆钉连接,连接区存有积水的情况。
中国民航大学 理学院
2010/8/14

《电化学原理第二章》PPT课件

《电化学原理第二章》PPT课件

溶液(1)
§2.2 电化学体系
电化学体系有三类 1.原电池:电化学反应自发进行并能对外做功,自发将电流送到外电 路中做功。 2.电解池:与外电源组成回路,强迫电流在电化学体系中通过并促使 电化学反应发生。 3.腐蚀电池:电化学反应自发进行,但不对外做功,仅起金属破坏作 用。
16:23:07
一、 原电池
例2: 2Ag + Hg2Cl2 2Hg + AgCl
阳极:Ag + Cl- - e → AgCl 阴极:Hg2Cl2 + 2e → 2Hg + 2Cl原电池表示为: Ag∣AgCl(s), Cl-(α1)‖Cl-(α2), Hg2Cl2(s)∣Hg(
16:23:07
例3:
H2 (P1) + Cl2 (P2)
阳极
16:23:07
E
电池电动势:
E = c - a+液接 = 右 - 左+液接
阴极
例1: Zn + CuSO4(α2) ZnSO4(α1)+Cu
阳极 Zn – 2e → Zn2+ 阴极 Cu2+ + 2e → Cu 原电池表示: Zn∣ZnSO4(α1)‖CuSO4(α2)∣Cu
16:23:07
16:23:07
二、金属接触电位
相互接触的两金属相之间的外电位差称为金属接触电位。 不同金属对电子亲和力不同,故在不同金属相中电子的电化学位不相等,电子逸出难易不同。 电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量 叫电子逸出功。 其电子逸出功不同,相互逸入的电子数目将不等,故在界面形成双电子层结构。电子逸出功高的相带负 电,电子逸出功低的相带正电。两相间双电子层的电位差即为金属接触电位。

电化学原理-第二章-电化学热力学

电化学原理-第二章-电化学热力学

1.
单位正电荷情况:任一相的表面层中,由于界面上的短程
力场(范德瓦耳斯力、共价键力等)引起原子或分子偶极化并 定向排列,使表面层成为一层偶极子层。单位正电荷穿越
该偶极子层所作的电功称为M相的表面电位χ。所以将一个
单位正电荷从无穷远处移入M相所作的电功是外电位ψ与表 面电位χ之和,即:


式中,ф称为M相的内电位。

金属晶格中自由电子对锌离子的静电引力。它既起着阻止
表面的锌离子脱离晶格而溶解到溶液中去的作用,又促使 界面附近溶液中的水化锌离子脱水化而沉积到金属表面来。 极性水分子对锌离于的水化作用。它既促使金属表而的锌 离子进入溶液,又起着阻止界面附近溶液中的水化锌离子

脱水化面沉积的作用。
在金属/溶液界面上首先发生锌离子的溶解还是沉
电化学原理
第二章 电化学热力学
1. 2. 3. 4. 5.
相间电位和电极电位 电化学体系 平衡电极电位 不可逆电极 电位-pH图
2.1、相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
一、相间电位
相间电位是指两相接触时.在两相界面层中存在
(2)内电位差,又称伽尔伐尼(Galvani)电位差。定 义为 。直接接触或通过温度相同的良好 B A 电子导电性材料连接的两相间的内电位差可以表 示为 B A 。只有在这种情况下。

B A
B A
由不同物质相组成的两相间的内电位差是不能直接 测得的。
(3)电化学位差,定义为 i i。
金属表面的特点:
锌离子脱离晶格,必须克服晶格间的结合力--金属键力。 在金属表面的锌离子,由于键力不饱和,有吸引其他正离 子以保持与内部锌离子相同的平衡状态的趋势;同时,又 比内部离子更易于脱离晶格。

电化学原理知识点

电化学原理知识点

电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子或空穴的导体,叫做电子导体,也称第一类导体;第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体; 三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置;电解池:将电能转化为化学能的电化学体系叫电解电池或电解池;腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池;阳极:发生氧化反应的电极原电池-电解池+阴极:发生还原反应的电极原电池+电解池-电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质;分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数;水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜;可分为原水化膜与二级水化膜;活度与活度系数:活度:即“有效浓度”;活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差;规定:活度等于1的状态为标准态;对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1;离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于·dm-3 时才有效;电导:量度导体导电能力大小的物理量,其值为电阻的倒数; 符号为G,单位为S 1S =1/Ω;ii i xαγ=∑=221i i z m I IA ⋅-=±γlog LA G κ=影响溶液电导的主要因素:1离子数量;2离子运动速度;当量电导率:在两个相距为单位长度的平行板电极之间,放置含有 1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1;与 K 的关系:与 的关系:当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导;离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和:同一离子在任何无限稀溶液中极限当量电导值不变离子淌度:单位场强V/cm 下的离子迁移速度,又称离子绝对运动速度;离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数;或第二章 电化学热力学相间:两相界面上不同于基体性质的过度层;相间电位:两相接触时,在两相界面层中存在的电位差;产生电位差的原因:荷电粒子含偶极子的非均匀分布 ;KV=λN c Nc k1000=λ-++=000λλλ形成相间电位的可能情形:1.剩余电荷层:带电粒子在两相间的转移或利用外电源向界面两侧充电 ;2.吸附双电层:阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷 ;3.偶极子层:极性分子在界面溶液一侧定向排列 ;4.金属表面电位:金属表面因各种 短程力作用而形成的表面电位差;相间电位的类型:外电位差伏打电位差:内电位差伽尔伐尼电位差:电化学位差:电化学位:AB ψψ-A B φφ-AB---μμ()χψμφμμ++=+=-nF nF绝对电位:金属电子导电相与溶液离子导电相之间的内电位差;例:若电极材料不变, 不变;若令 不变,则:相对电极电位:研究电极与参比电极组成的原电池电动势称为该电极的相对电极电位 ,用 ψ 表示;符号规定:研究电极在原电池中发生还原反应 :研究电极在原电池中发生氧化反应:氢标电位:标准氢电极作参比电极时测得的电极相对电位;如:Pt|H2,H+||Ag2+|Ag液体接界电位:相互接触的两个组成不同或浓度不同的电解质溶液之间存在的相间电位;产生的原因:各种离子具有不同的迁移速率而引起;盐桥:饱和KCl 溶液中加入3%琼脂;ZnCu Cu S S Zn E φφφ∆+∆+∆=R M φ∆RS φ∆()S M E φ∆∆=∆0>ϕ0<ϕV 799.0=ϕ作用:由于K+、Cl-的扩散速度接近,液体接界电位可以保持恒定;电池进行可逆变化必须具备两个条件:1.电池中的化学变化是可逆的,即物质的变化是可逆的;2.电池中能量的转化是可逆的,即电能或化学能不转变为热能而散失;原电池电动势:原电池短路时的端电压即两电极相对电位差; 注意:只有可逆电池有E,电池不可逆时只能测到V; 基本关系式: 注:只适用于可逆电池, 表示可以做的最大有用功电功;Nernst方程: 标准状态下的电动势对反应: 的含义:标准状态下的平衡电位电极的分类:1.可逆电池阳离子第一类可逆: 金属在含有该金属离子的可溶性盐溶液中所组成的电极;阴离子第二类可逆:金属插入其难溶盐和与该难溶盐具有相同阴离子的可溶性盐溶液中; 或-+-=ϕϕE nFEG -=∆G∆-∏∏+=生反ννααln 0nF RT E E K nF RT E ln 0=R ne O ⇔+0ϕ++=n MnFRT αϕϕln 0()-A MAn M ,固氧化还原可逆电极:铂或其它惰性金属插入同一元素的两种不同价态离子溶液中,如:气体电极:气体吸附在铂或其它惰性金属表面与溶液中相应的离子进行氧化还原反应并达到平衡,如:2.不可逆电极第一类不可逆电极:金属在不含该金属离子的溶液中形成的电极;如:第二类不可逆电极:标准单位较正的金属在能生成该金属难溶盐或氧化物的溶液中形成的电极;如:第三类不可逆电极:金属浸入含有某种氧化剂的溶液中形成的电极;如: 不可逆气体电极:一些具有较低氢过电位的金属在水溶液中,尤其在酸中,形成的电极;如:影响电极电位的因素:1.电极的本性2.金属表面的状态3.金属的机械变形和内应力4.溶液的PH 值5.溶液中氧化剂的存在6.溶液中络合剂存在7.溶剂的影响第三章 电极/溶液界面的结构与性质理想极化电极:在一定电位范围内,有电量通过时不发生电化学反应的电极体系称为理想极化电极;比较:理想极化电极是在一定条件下电极上不发生电极反应的电极,通电时电极反应速度跟不上电子运动速度,不存在去极化作用,流入电极的电荷全部在电极表面不断积累,只起到nn M M Pt ,1-()()++H H H P H Pt α22,22ln2H H P F RT ++=αϕϕ溶液的无能溶解+n M M M NaOH Cu 3HNOFe改变电极电位,即改变双电层结构的作用,如滴汞电极;反之,如果电极反应速度很大,以至于去极化作用于极化作用接近于平衡,有电流通过时电极电位几乎不变化,即电极不出现极化现象,就是理想不极化电极,如电流密度很小时的饱和甘汞电极;零电荷电位 :电极表面剩余电荷为零时的电极电位 ;与 不同原因:剩余电荷的存在不是形成相间电位的唯一原因;零标电位:相对于零电荷电位的相对电极电位,以零电荷电位作为零点的电位标度;吸附:某物质的分子、原子或离子在界面富集正吸附或贫乏负吸附的现象;分类:静电吸附;非特性吸附;特性吸附物理吸附+化学吸附;电毛细现象:界面张力б随电极电位变化的现象;电毛细曲线:界面张力与电极电位的关系曲线 ;微分电容:引起电位微小变化时所需引入电极表面的电量,也表征了界面在电极电位发生微小变化时所具备的贮存电荷的能力;电毛细曲线及微分电容曲线研究界面性质和结构的优缺点比较:仅供参考1电毛细曲线法的主要应用:判断电极表面带电状况符号;求电极表面剩余电荷密度q ;求离子表面剩余量 ;ϕ0ϕ0=∆ϕi Γ2微分电容曲线的主要应用:利用 判断q 正负;研究界面吸附 ;求q 、 :3用微分电容法求q 值比电毛细曲线法更为精确和灵敏,电毛细曲线的直接测量只能在液态金属汞、镓等电极上进行,微分电容还可以在固体电极上直接进行;应用微分电容发往往需要应用电毛细曲线法确定零电荷电位;斯特恩模型:电极/溶液界面的双电层由紧密层和分散层两部分组成;电位分布特点:紧密层——线性分布分散层——曲线分布电位:离子电荷能接近电极表面的最小距离处的平均电位; 紧密层结构对Stern 模型的两点重要修正:水偶极子定向及对结构的影响“电极水化”短程作用引起的吸附特性吸附;无离子特性吸附 :OHP :距离电极表面为d 的液层,即最接近电极表面的水化阳离子电荷中心所在液层称为外紧密层或外Helmholtz 平面;ϕi C 1ψ()11ψψϕϕϕϕ+-=a a =+分紧有离子特性吸附 :IHP :阴离子电荷中心所在的液层称为内紧密层平面或内Helmholtz 平面;“电极/溶液”界面模型概要总结:由于界面两侧存在剩余电荷电子及离子电荷所引起的界面双电层包括紧密层和分散层两部分;分散层是由于离子电荷的热运动引起的,其结构厚度、 电势分布等只与温度、电解质浓度包括价型及分散层中的剩余电荷密度有关,而与离子的个别特性无关;紧密层的性质决定于界面层的结构,特别是两相中剩余电荷能相互接近的程度;能在电极表面“特性吸附”的阴离子往往在电极表面上“超载吸附”;此时界面结构及其中电势分布具有“三电层”形式;特性吸附:无机阴离子的特性吸附对 的影响:使界面张力下降;使 负移;有机分子的特性吸附对 的影响:使 下降;出现电容峰;第四章 电极过程概述极化:有电流通过时,电极电位偏离平衡电位的现象过电位:在一定电流密度下,电极电位与平衡电位的差值ϕσ~()0max ϕσϕ~d C dC极化值:有电流通过时的电极电位极化电位与静止电位的差值极化曲线:过电位或电极电位随电流密度变化的关系曲线;极化度:极化曲线上某一点的斜率;极化图:把表征电极过程特征的阴极极化曲线和阳极极化曲线画在同一个坐标系中,这样组成的曲线图叫极化图;电极过程的基本历程:1.液相传质步骤2.前置的表面转化步骤简称前置转化3.电子转移步骤或称电化学反应步骤4.随后的表面转化步骤简称随后转化5.新相生成步骤或反应后的液相传质步骤速度控制步骤:串连的各反应步骤中反应速度最慢的步骤;浓差极化:液相传质步骤成为控制步骤时引起的电极极化;电化学极化:由于电化学反应迟缓而控制电极过程所引起的电极极化;准平衡态:当电极反应以一定速度的进行时,非控制步骤的平衡态几乎未破坏的状态;第五章 液相传质步骤动力学液相传质的三种方式:电迁移:电解质溶液中的带电粒子在电场作用下沿着一定的方向移动;对流:一部分溶液与另一部分溶液之间的相对流动;扩散:溶液中某一组分自发地从高浓度区域向低浓度区域移动;对流扩散理论的前提条件: 对流是平行于电极表面的层流;忽略电迁移作用;注:稳态扩散的必要条件:一定强度的对流的存在;边界层:按流体力学定义 的液层;扩散层:根据扩散传质理论,紧靠电极表面附近有一薄层存在反应粒子的浓度梯度;浓差极化特征及判别:在一定的电极电位范围内出现一个不受电极电位变化影响的极限扩散电流密度 ;提高搅拌强度可以使极限扩散电流密度增大;u u di提高主体浓度可提高电流密度 ;与电极真实表面积无关,与 有关 ;i 受温度影响不大动力学公式及极化曲线稳态和暂态的区别:扩散层中的反应粒子浓度是否与时间有关,即稳态: 暂态:第六章 电子转移步骤动力学位能图:表示金属离子处在金属/溶液界面不同位置时,位能高低的一种示意图;活化能:活化态与离子平均能量之差电极过程的传递系数α、β:表示电极电位对还原反应和氧化反应活化能影响的程度;注:单电子转移步骤中 , 所以又称为对称系数;电化学极化规律与浓差极化规律的比较扩i 表S ()x f c i =()t x f c i ,=5.0≈≈βα交换电流密度:物理意义:平衡电位下氧化反应和还原反应的绝对速度;影响 大小的因素1.与反应速度常数有关2.与电极材料有关3.与反应物质浓度有关4.与温度有关电极反应过程的可逆性:电极过程恢复平衡态的能力或去极化作用的能力为电极反应过程的可逆性;析氢过电位:在某一电流密度下,氢实际析出的电位与氢的平衡电位的差值 ;影响析氢过电位的主要因素:电极材料性质 ;电极表面状态 ;溶液组成;温度;金属电沉积的基本历程:液相传质 前置转化 电荷传递 电结晶金属电沉积过程的特点:阴极过电位是电沉积过程进行的动力;双电层的结构,特别是粒子在紧密层中的吸附对电沉积过程有明显影响;沉积层的结构、性能与电结晶过程中新晶粒的生长方式和过程密切相关,同时与电极表面基体金属表面的结晶状态密切相关;i iϕϕη-平=盐溶液中结晶过程:过饱和度越大,结晶出来的晶粒越小;过饱和度越小,结晶出来的晶粒越大;在一定过饱和度的溶液中,能继续长大的晶核必须具有一定大小的尺寸;电结晶形核过程规律:电结晶时形成晶核要消耗电能,所以平衡电位下不能形成晶核,只有达到一定的阴极极化值时析出电位才能形核;过电位的大小决定电结晶层的粗细程度;。

李狄版电化学原理-第二章电化学热力学

李狄版电化学原理-第二章电化学热力学

E = M S - R + R M R =0 E(相对电位)= = M S + R M 实际上,相对电极电位不仅包括M S ,而且包括金属接触电
位 R M 。
3 绝对电位符号的规定
规定溶液深处电位为零,金属与溶液的内电位差看成是金属 相对于溶液的电位降。 金属一侧带正电, 溶液一侧带有负 电,M S 为正值 反之,: M S 为负值。
B i A i
相间平衡条件(相间稳定分布的条件)
G
A B i
0

B i
A i
2. 带电粒子:a 克服短程力做功-化学能变化 b 克服长程力做功-电能变化 1mol带电粒子在M相中所具有的能量有两部分构成 化学能 克服物相M与1mol带电粒子之间短程力所作的化学功 用w化=μi表示。 电能 将1mol带电粒子从无穷远处移至实物相内部所做的功
4 原电池电动势的温度系数 在恒压下,原电池电动势对温度的偏导数称为原电池 电动势的温度系数。
表示为:
E T P
(G ) (G ) E G H T s nF T P T T P E H nFE nFT T P
Zn
S
2.1.4 绝对电位和相对电位
1. 绝对电位:电极电位 是金属与溶液之间的 内电位差,其数值称 为电极的绝对电位。
Zn
P
E
Cu
绝对电位不可能测量
溶液
E (
Zn
Zn S
) ( ) (
S S Cu S Cu
Cu
)
Zn


Cu
Zn
2 参比电位和相对电位

第2章—电化学腐蚀原理(二)讲解

第2章—电化学腐蚀原理(二)讲解

O2 + e →
O
2
O
2
+ H+ → HO2
HO2
HO
2
+
e

HO
2
+ H+ → H2O2
H2O2 + H+ + e → H2O + HO
HO + H+ + e → H2O
2.9.2 扩散控制——浓差极化
J


D(
dC dx
)x0
id nFJ
id=nFD(
dC dx
)
x0

nFD
化腐蚀,或称析氢腐蚀。
析氢腐蚀反应类型: 在酸性溶液中,反应物来源于水合氢离子(H3O+),它在阴极 上放电,析出氢气:H3O+ + 2e → H2 + 2H2O
在中性或碱性溶液中,则是水分子直接接受电子析出氢气: 2H2O + 2e → H2 + 2OH-
2.8.1 析氢腐蚀的阴极过程步骤
在酸性溶液中,析氢过程步骤: (1)水合氢离子向阴极表面扩散并脱水: H3O+ → H+ + H2O (2)H+与电极表面的电子结合放电,形成吸附氢原子: H+ + e→Hads (3)吸附态氢原子通过复合脱附,形成H2分子: Hads + Hads → H2 或发生电化学脱附,形成H2分子: Hads + H+ + e → H2 (4)H2分子形成氢气泡,从电极表面析出。 各过程连续进行,最慢的过程控制整个反应过程。
2.9.2 耗氧腐蚀的步骤
耗氧腐蚀可分为两个基本过程:氧

李狄-电化学原理-第二章-电化学热力学

李狄-电化学原理-第二章-电化学热力学

第二节

电化学体系


一. 三种电化学体系: 原电池(Galvanic cell):凡是能将化学 能直接转变为电能的电化学装置叫做原 电池或自发电池; 电解池(Electrolytic cell):将电能转 化为化学能的电化学体系叫电解电池或 电解池; 腐蚀电池(Corrosion cell):只能导致 金属材料破坏而不能对外界做有用功的 短路原电池。

相对(电极)电位:研究电极与参比电 极组成的原电池电动势称为该电极的相 对(电极)电位 ,用 表示。 符号规定: 0 研究电极在原电池中发生还原反应: 0 研究电极在原电池中发生氧化反应:


氢标电位

定义:标准氢电极作 参比电极时测得的电 极相对电位 。如:
Pt|H2,H+||Ag2+|Ag

i
或 0

带电粒子:
W2
W1

W2
W1

将单位正电荷从无穷远处移至实物相内部所做的功

将单位正电荷e从无穷远处移至离良导体球 体M10-4~10-5cm处,电荷与球体之间只有长 程力(库仑力)作用:
W1


从10-4~10-5cm处越过表面层到达M相内: W2 界面短程力做电功: 克服物相M与试验电荷之间短程力所作的化 学功:W化
0.799V
液体接界电位与盐桥

液体接界电位:相互接触的两个组成不 同或浓度不同的电解质溶液之间存在的 相间电位。
产生的原因:各种离子具有不同的迁移 速率而引起。
由于离子扩散速度不同造成的液体接界电位

盐桥:饱和KCl溶液中加入3%琼脂。
由于K+、Cl-的扩散速度接近,液体接 界电位可以保持恒定。

电化学原理知识点

电化学原理知识点

电化学原理知识点 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数: 活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S( 1S =1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。

应用电化学课件第二章电化学基本原理

应用电化学课件第二章电化学基本原理

应用电上化一学内容 下一内容 回主目录
返回
2019/10/28
⑤膜电极。利用隔膜对单种离子透过性或膜表面 与电解液的离子交换平衡所建立起来的电势,测 定电解液中特定离子的活度如玻璃电极、离子选 择电极等。
膜内外被 测离子活 度的不同 而产生电 位差
应用电上化一学内容 下一内容 回主目录
应用电上化一学内容 下一内容 回主目录
返回
2019/10/28
A. 标准氢电极(NHE) 常以氢离子和氢气的活度为1时的电位即E0为 电极电位的基准,其值为0.
B.甘汞电极(Calomel electrode)
应用电上化一学内容 下一内容 回主目录
返回
2019/10/28
0 .1 m o l/L 甘 汞 电 极标 准 甘 汞 电 极 (N C E ) 饱 和 甘 汞 电 极 (S C E )
K C l浓 度
0 .1m o l/L
1 .0m o l/L
饱 和 溶 液
电 极 电 位 ( V ) + 0 .3 3 6 5
+ 0 .2 8 2 8
+ 0 .2 4 3 8
应用电上化一学内容 下一内容 回主目录
返回
2019/10/28
C. 银|氯化银电极 由覆盖着氯化银层的金属银 浸在氯化钾或盐酸溶液中组成。常用 Ag|AgCl|Cl-表 示。一般采用银丝或镀银铂丝在盐酸溶液中阳极氧 化法制备。银|氯化银电极的电极电势与溶液中Cl浓度和所处温度有关。
返回
2019/10/28

lm
G T, PGT, PRlTnL a
M b
l m
zFE GT, PRlTnL M a b
AB

金属电化学腐蚀基本原理 第二章-1

金属电化学腐蚀基本原理 第二章-1

1
当载荷逐渐增大,σ达到某一临界值σc,构件中裂缝将发生急速的 失稳扩展而脆断。此时与σc相对应的K1c称为材料的“断裂韧性”,
它与试件的形状和尺寸无关,是表示材料固有韧性的特性值,反映
有裂纹材抖对破裂的实际抗力,可以通过实验测定。 在腐蚀环境中具有裂缝的试件的应力场强度因子K1同样存在一个临 界值K1SCC,称为应力腐蚀破裂临界强度因子,K1SCC低于K1c。
2
影响腐蚀的结构因素
— 过程装备腐蚀与防护
2
影响腐蚀的结构因素
(3) 采用合理的热处理方法消除残余应力,或 改善合金的组织结构以降低对SCC的敏感性
采用退火处理消除内应力:钢铁在500 ~ 600 oC处理0.5
~ 1 h,然后缓慢冷却;奥氏体不锈钢可以加热到900 oC
左右再缓冷。但高温处理有可能引起金属表面氧化,形
无应力存在下的局部腐蚀速度(如孔蚀等),
— 过程装备腐蚀与防护
2
影响腐蚀的结构因素
• 应力腐蚀破裂裂纹形貌:应力腐蚀裂纹形态有 晶间型、穿晶型和混合型三种。混合型是以一 种形态为主,支缝中出现另一种形态。
— 过程装备腐蚀与防护
2
影响腐蚀的结构因素
不同的金属一环境体系,将出现不同的裂纹形态, SCC裂纹起源于表面,裂纹的长宽不成比例,可相 差几个数量级,裂纹扩展方向多垂直于主拉伸应力 方向,裂纹一般呈树状。 不同的材料有不同的破裂方式:碳钢、高强钢、 铝合金、铜合合多半是沿晶间断裂,奥氏体不锈钢、 镁合金大多是穿晶型,钛合金为为混合型。 裂纹断口的形貌,宏观上属于脆性断裂,即使塑 性很高的材料也是如此。 但从微观上观察,在断裂面有塑性流变痕迹。断 面有裂纹分叉现象,断面形貌呈海滩条纹、羽毛状、 撕裂岭、扇子形和冰糖块等征状。

电化学原理.doc

电化学原理.doc

电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池( -)电解池( +)阴极:发生还原反应的电极原电池( +)电解池( -)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度” 。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

i ix i规定:活度等于 1 的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度 I:1 m i z i2I2离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:log A I 注:上式当溶液浓度小于0.01mol · dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为 G,单位为 S ( 1S =1/Ω )。

GA L影响溶液电导的主要因素:( 1)离子数量;( 2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有 1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω -1· cm2· eq-1。

电化学原理_(李狄_著)北航出版社_课后1-7章习题参考答案

电化学原理_(李狄_著)北航出版社_课后1-7章习题参考答案

电化学原理第一章习题答案1、解:2266KCl KCl H O H O 0.001141.31.010142.31010001000c K K K K cm 11λ−−−−×=+=+=+×=×Ω溶液 2、解:E V Fi i =λ,FE V i i λ=,,, 10288.0−⋅=+s cm V H 10050.0−⋅=+s cm V K 10051.0−⋅=−s cm V Cl 3、解:,62.550121,,,,2−−⋅Ω=−+=eq cm KCl o HCl o KOH o O H o λλλλ2O c c c ,c 1.004H H +−====设故,2,811c5.510cm 1000o H O λκ−−−==×Ω4、(1)121,,Cl ,t t 1,t 76.33mol (KCl o KCl o Cl cm λλλλλ−−−−+−+−=++=∴==Ω⋅∵中)121121121,K ,Na ,Cl 73.49mol 50.14mol 76.31mol (NaCl o o o cm cm cm λλλ++−−−−−−−=Ω⋅=Ω⋅=Ω⋅同理:,,中)(2)由上述结果可知: 121Cl ,Na ,121Cl ,K ,mol 45.126mol 82.142−−−−⋅Ω=+⋅Ω=+−+−+cm cm o o o o λλλλ,在KCl 与NaCl 溶液中−Cl ,o λ相等,所以证明离子独立移动定律的正确性;(3) vs cm vs cm u vs cm u F u a o o l o l o i o /1020.5,/1062.7,/1091.7,/24N ,24K ,24C ,C ,,−−−×=×=×==++−−λλ5、解:Cu(OH)2== Cu 2++2OH -,设=y ;2Cu c +OH c −=2y 则K S =4y 3因为u=Σu i =KH 2O+10-3[y λCu 2++2y λOH -]以o λ代替λ(稀溶液)代入上式,求得y=1.36×10-4mol/dm 3所以Ks=4y 3=1.006×10-11 (mol/dm 3)36、解: ==+,令=y ,3AgIO +Ag −3IO Ag c +3IO c −=y ,则=y S K 2,K=i K ∑=+(y O H K 2310−+Ag λ+y −3IO λ)作为无限稀溶液处理,用0λ代替,=+y O H K 2310−3AgIO λ则:y=43651074.1104.68101.11030.1−−−×=××−×L mol /;∴= y S K 2=3.03810−×2)/(L mol 7、解:HAc o ,λ=HCl o ,λ+NaAc o ,λ-NaCl o ,λ=390.7,121−−⋅Ωeq cm HAc o ,λ=9.02121−−⋅Ωeq cm ∴α0/λλ==0.023,==1.69αK _2)1/(V αα−510−×8、解:由欧姆定律IR=iS KS l ⋅=K il,∵K=1000c λ,∴IR=1000il cλ⋅=V 79.05.0126101010533≈××××− 9、解:公式log ±γ=-0.5115||||+Z −Z I (设25)C °(1)±γ=0.9740,I=212i i z m ∑,I=212i i c z ∑,=()±m ++νm −−νm ν1(2)±γ=0.9101,(3)±γ=0.6487,(4)±γ=0.811410、解:=+H a ±γ+H m ,pH=-log =-log (0.209+H a 4.0×)=1.08电化学原理第二章习题答案1、 解:()+2326623Sb O H e Sb H O ++++ ,()−236H H +6e + ,电池:2322323Sb O H Sb H O ++解法一:00G E nF ∆=−83646F =0.0143V ≈,E=+0E 2.36RT F 2232323log H Sb O Sb H OP a a a ==0.0143V0E 解法二:0602.3 2.3log log 6Sb Sb H H RT RT a a F Fϕϕϕ+++=+=+; 2.3log H RTa Fϕ+−=∴000.0143Sb E E ϕϕϕ+−=−===V2解:⑴,(()+22442H O e H O +++ )−224H H +4e + ;电池:22222H O H O +2220022.3log 4H O H O P P RT E E E Fa =+= 查表:0ϕ+=1.229V ,0ϕ−=0.000V ,001.229E V ϕϕ+−∴=−= ⑵视为无限稀释溶液,以浓度代替活度计算()242Sn Sn e ++−+ ,(),电池:32222Fe e Fe ++++ 23422Sn Fe Sn Fe 2+++++ +23422022.3log 2Sn Fe Sn Fe C C RT E E F C C ++++=+=(0.771-0.15)+220.05910.001(0.01)log 20.01(0.001)××=0.6505V ⑶(),,(0.1)Ag Ag m e +−+ ()(1)Ag m e Ag +++ (1)(0.1)Ag m Ag m ++→电池:(1)0(0.1)2.3log Ag m Ag m a RT E E F a ++=+,(其中,=0) 0E 查表:1m 中3AgNO 0.4V γ±=,0.1m 中3AgNO 0.72V γ±=, 2.310.4log0.0440.10.72RT E V F×∴==× 3、 解:2222|(),()|(),Cl Hg Hg Cl s KCl m Cl P Pt ()2222Hg Cl Hg Cl e −−++ ,()222Cl e Cl −++ ,222Hg Cl Hg Cl 2+ 电池:222200002.3log 2Cl Hg Hg Cl P a RT E E E F a ϕϕ+−=+==−∵O 1.35950.2681 1.0914(25C)E V ,∴=−=设 由于E 与无关,故两种溶液中的电动势均为上值Cl a −其他解法:①E ϕϕ+=−−0,亦得出0E ϕϕ+=−−②按Cl a −计算ϕ+,查表得ϕ甘汞,则E ϕϕ+=−甘汞 4、 ⑴解法一:23,(1)|(1)()H Pt H atm HCl a AgNO m Ag +=()222H H e +−+ 222,()Ag e Ag +++ g ,2222H Ag H A ++++ 电池:有E ϕϕϕ+−=−=+,02.3log()AgAgAg RTE m Fϕγ++±∴=−。

电化学原理.pdf

电化学原理.pdf

电化学原理与方法预习思考题第一章 绪论1.你认为电化学体系与其它电子导体构成的电路体系的根本区别是什么?2.简述电极反应的基本历程。

3.三电极体系指的是什么?三电极体系中有那些回路, 在每个回路中是否有电流流过?4.电化学反应与普通氧化还原反应的区别是什么?5.电化学测量过程中一般采用三电极体系,为什么?6.为什么电流或电流密度可以表示电化学反应的速度?第二章 电极-溶液界面结构1.出现相间电势的可能原因有哪些?举例说明?2.解释概念:内电为、外电位、表面电势、电化学势、零电荷电势、3.金属/溶液相间平衡电势是如何建立的,以Zn|ZnSO4(α =1,水溶液)为例说明。

4.阐明电极|溶液界面双电层电容与紧密层和分散层电容的关系?5.理想极化电极和理想不极化电极。

6.金属电极中电子在各能级上是如何分布的?第三章 传质过程动力学1.液相传质过程有哪些,写出它们的作用范围?2.液相传质过程有无电子转移?当该步骤成为电极过程的控速步骤时,该步骤的速度如何表示?为什么?3.当液相传质步骤成为电极过程的控速步骤时,能否应用能斯特方程?如果能应注意什么?为什么?4.什么是稳态和非稳态?造成稳态和非稳态的原因是什么?5.列出理想情况下和实际情况下的稳态扩散过程的电流表达式。

6.解释概念:扩散层的有效厚度7.按以下情况列出电化学反应O+ne|R在液相传质为控制步骤下的稳态I∼ϕ曲线:反应生成独立相、反应产物可溶、开始反应前O与R均存在且可溶。

8.已知一个电化学反应,如何通过实验证明其是扩散控制过程?9.液相传质过程为控制步骤时,用恒电位阶跃的暂态动力学关系说明单纯扩散过程能否建立稳态传质过程。

10.解释液相传质过程为控制步骤时,恒电流阶跃暂态过程中“过渡时间”的概念及物理意义。

11.对于电化学反应O+ne|R,列出静止液层中平面电极上电位阶跃时的暂态电流表达式。

第四章 电化学步骤的动力学1.当一个电子传递反应的交换电流密度较大时,线性电位扫描为什么会出现电流峰?在峰电流是否对应与稳态扩散过程中的极限扩散电流?2.电极过程中的电子传递控制和扩散控制3.解释概念:极化、过电位、交换电流密度4.外电流密度(I)与过电位之间(η)的线性关系和半对数关系各在什么条件下出现?这是否意味着电化学极化有两种截然不同的动力学特征?5.电极电势以哪两种不同的方式影响电化学反应速度的速度?阐述在上述两种方式中电极电势如何影响电化学反应的速度?6.从理论上推导出Tafel关系。

920124-李狄-电化学原理-第二章-作业

920124-李狄-电化学原理-第二章-作业

电极反应
() ()
Zn Zn2 2e Hg2Cl2 2e 2Hg 2Cl
电池反应
Zn Hg 2Cl 2 Zn2 2Hg 2Cl
E
E0
RT 2F
ln
Zn 2
Cl
2
E
E0
RT 2F
ln
Zn 2
Cl
2
E
E0
RT 2F
ln(cZn 2
)(c Cl
)2
E
E0
RT 2F
ln
4c3
3
E0
m' '
nF ' ' F ' '
m' ' ' '
lg ' 0.0822 lg 0.082 0.3046 ' 0.496
' ' 2 0.0591 0.0082
' '
电池2是有迁移浓差电池,且电极对阴离子可逆
(2)Eb t RT ln( ' ) 2t RT ln( ' )
nF ''
电极反应
() H 2 2H 2e () I 2 2e 2I
电池反应
H 2 I 2 2HI
E
E0
RT 2F
ln
1
HI 2
E0
0
0
0(350C)
0(250C) 1.310 4(t 250C)
0.5346 1.310 4(350C 250C) 0.5333V
(3)该反应的△G0值 (4)该反应的平衡常数K值 (5)如果把上述反应改写成1/2H2(101325 Pa)+1/2I2=2HI (α=1),以上各问的答案是否会改变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 H2 2
在电化学中,认为规定标准氢电极的相对电位为零, 0 用符号 H / H 表示,上标0即表示标准状态。
2
氢标电位:选用标准氢电极作参比电极时,任何一个电极 的相对电位就等于该电极与标准氢电极所组成的原电他的
§2-1
相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
一、相间电位
相间电位是指两相接触时,在两相界面层中存在的电 位差。
两相之间出现电位差的原因 是带电粒子或偶极子在界面层 中的非均匀分布。
造成这种非均匀分布的原因可能有以下几种: 1、两相中出现剩余电荷。这些剩余电荷不同程度地集 中在界面两例,形成所谓的“双电层”。 产生原因:带电粒子在两相间的转移或利用外电源
当带电粒子在两相间的转移过程达到平衡后,就在相 界面区形成一种稳定的非均匀分布,从而在界面区建 立起稳定的双电层(见图2.1)。双电层的电位差就 是相间电位。
相间电位也可相应地定义为以下几类: 外电位差
内电位差
电化学位差
(1)外电位差,又称伏打(Volta)电位差,定义 为 B A 。直接接触的两相之间的外电位差 B A 又称为接触电位差,用符号 表示。它是 可以直接测量的参数。
向界面两侧充电。
2、荷电粒子(如阳离子和阴离子)在界面层中 的吸附量不同,造成界面层与相本体中出现等值 反号的电荷,因而在界面的溶液一例形成双电层 (吸附溶液中的极性分子在界面溶液一侧定向排列, 形成偶极子层,如图(b)。
3、金属表面因各种短程力作用而形成的双电层。如图 (c)所示。
4、表面电位差。例如金属表面偶极化的原子在 界面金属一侧的定向排列所形成的双电层,如图(d) 所示。
G
A B i

B i
A i
式中:ΔG表示自由能变化;μ表示化学位。上标
表示相,下标表示粒子。
显然,建立起相间平衡,即i粒子在相间建立
稳定分布的条件应当是
G
AB i
0
也即该粒子在两相中的化学位相等,即

B i A i
驱动力2---电化学位之差 对带电粒子来说,在两相间转移时,除了引起化学能
同样也不能直接测量
i i
B

A
下面,我们分别介绍几种在金属腐蚀和防护领域中常见
的相间电位。
§2-1
相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
二、金属接触电位
定义:相互接触的两个金属相之间的外电位差称为 金属接界电位。 由于不同金属对电子的亲和能不同,因此在不 同的金属相中电子的化学位不相等,电子逸 出金属相的难易程度也就不相同。
然后考虑试验电荷越过表面层进入M相所引起的能 量变化。
由于讨论的是实物相M,因此这一过程要涉及两方面 的能量变化:
1. 单位正电荷情况:任一相的表面层中,由于界面 上的短程力场(范德瓦耳斯力、共价键力等)引起 原子或分子偶极化并定向排列,使表面层成为一 层偶极子层。单位正电荷穿越该偶极子层所作的 电功称为M相的表面电位χ。所以将一个单位正电 荷从无穷远处移入M相所作的电功是外电位ψ与表 面电位χ之和,即:


• 标准氢电极可用下式表示:
Pt , H 2 p 101 325Pa H 1
式中:p表示氢气分压;α表示氢离子在溶液中的活 度。所以,标准氢电极就是由气体分压为101 325Pa的氢 气(还原态)和离子活度为1的氢离子(氧化态)溶液所 组成的电极体系。
•标准氢电极的电极反应是:H e
Zn
2
H 2On 2e Zn
2
2e nH2O
Zn 2 2e nH2O

Zn 2 H 2On 2e
这样在界而层中会形成一定的剩余电荷分布,我 此时,溶解和沉积两个过程仍在进行,只不过 们称金属/溶液界面层这种相对稳定的剩余电荷 速度相等而已。也就是说,在任一瞬间,有多少 分布为离子双电层。 锌离子溶解在溶液中,就同时有多少锌离子沉积 在金属表面上。 离子双电层的电位差就是金属/溶液之间的相间 电位(电极电位)的主要来源。 因而,界面两侧(金属与溶液两相中)积累的 除了离子双电层外,前面提到的吸附双电层、偶极子 剩余电荷数量不再变化,界面上的反应处于相对 层和金属表面电位等也都是电极电位的可能的来源。 稳定的动态平衡之中。 电极电位的大小等于上述各类双电相的内电位。
2. 带电粒子情况:克服试验电荷与组成M相的物质之间
的短程力作用(化学作用)所作的化学功。 如果进入M相的不是单位正电荷,而是1摩尔的带电粒子, 那么所作的化学功等于该粒子在M相中的化学位μi。若 该粒子荷电量为ne0,则1摩尔粒子所作的电功为nFф 。 F为法拉第常量。因此,将1摩尔带电粒子移入M相所引 起的全部能量变化为:
金属是由金属离子和自由电子按一定的晶格形式
排列组成的晶体。
金属表面的特点: 锌离子脱离晶格,必须 克服晶格间的结合力--金属 键力。 在金属表面的锌离子, 由于键力不饱和,有吸引其 他正离子以保持与内部锌离 子相同的平衡状态的趋势; 同时,又比内部离子更易于 脱离晶格。
水溶液(如硫酸锌溶液)的特点:溶液中存在着 极性很强的水分子、被水化了的锌离子和硫酸 根离子等,这些离子在溶液中不停地进行着热 运动。 当金属浸入溶液时,便打破了各自原有的平衡状态: 极性水分子和金属表面的锌离子相互吸引而定 向排列在金属表面上; 同时锌离子在水分子的吸引和不停的热运动冲 击下,脱离晶格的趋势增大了. 这就是所谓水分子对金属离子的“水化作用”。
通常,以电子离开金属逸入真空中所需要的
最低能量来衡量电子逸出金属的难易程度,
这一能量叫电子逸出功。
产生原因:当两种金属相互接触时,由于电子逸 出功不等,相互逸入的电子数目将不相等,因此, 在界面层形成了双电层结构:
在电子逸出功高的金属相一侧电子过剩,带负
电;
在电子逸出功低的金属相一侧电子缺乏,带正
当单位正电荷在无穷远处时,它同M相的静电作用力 为零。当它从无穷远处移至距球面约10-4-10-5cm时, 可认为试验电荷与球体间只有库仑力(长程力)起作用, 而短程力尚未开始作用。
真空中任何一点的电位等于一个单位正电荷从无穷 远处移至该处所作的功。所以,试验电荷移至距球 面10-4~10-5cm处所作的功W1等于球体所带净电荷在 该处引起的全部电位。这一电位称为M相(球体)的 外电位,用ψ表示。




参比电极:能作为基准的、其电极电位保持恒 定的电极。 将参比电极与被侧电极组成一个原电池回路 (如图2.3所示)所测出的电池端电压E(称为 原电池电动势)叫做该被测电极的相对电位, 习惯上直接称作电极电位,用符号 表示。 为了说明这个相对电位是用什么参比电极测得 的,一般应在写电极电位时注明该电位相对于 什么参比电极电位。
电化学原理
Fundamentals of Electrochemistry


2013-09-06
上一节重点知识点回顾:
1、电化学中的三个导电回路、两类导体 2、电解质溶液电导、电导率、离子迁移数的 概念及其计算 3、影响电解质溶液电导的影响因素: 离子本性;溶液浓度;温度和溶剂粘度
4、柯劳许经验公式( cN < 0.002 eq/dm3 ): A为常数,对1-1价电解质,25 ℃ 时,A =
§2-1
相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
四、绝对电位和相对电位
1.绝对电位与相对电位的概念 从上面的讨论可以看出,电极电位就是金属(电 子导电相)和溶液(离子导电相)之间的内电位差,其 数值称为电极的绝对电位。 然而,绝对电位不可能测量出来。
2. 绝对电位符号的规定
•根据绝对电位的定义,把
溶液深处看作是距离金属/ 溶液界面无穷远处,认为溶
液深处的电位为零,把金属
与溶液的内电位差看成是金
属相对于溶液的电位降。
3.氢标电位和相对电位符号的规定
在实际工作中经常使用的 电极电位不是单个电极的 绝对电位,而是相对于某 一参比电极的相对电位。 电化学中最常用、最重要 的参比电极是标准氢电极。
以锌电极为例,为了测量锌与溶液的内电位差, 就需要把锌电极接入一个测量回路中去。
P E
这样,在测量回路中又出
现了一个新的电极体系。 电位差计上得到的读数臵 将包括三项内电位差。


溶液 测量电极电位示意图
E Zn S S Cu Cu Zn Zn S S Cu Cu Zn
这样,在金属/溶液界面上,对锌离于来说,存 在着两种矛盾着的作用:
金属晶格中自由电子对锌离子的静电引力。它既 起着阻止表面的锌离子脱离晶格而溶解到溶液中 去的作用,又促使界面附近溶液中的水化锌离子 脱水化而沉积到金属表面来。
极性水分子对锌离于的水化作用。它既促使金属 表而的锌离子进入溶液,又起着阻止界面附近溶 液中的水化锌离子脱水化面沉积的作用。
水化作用
电极上的反应:
自由电子
Zn 2e nH2O Zn
2
2
H 2On 2e
结果:
但锌离子发生溶解后,在金属上留下的电子使 金属带负电; 溶液中则因锌离子增多而有了剩余正电荷。 这样,由于金属表面剩余负电荷的吸引和 溶液中剩余正电荷的排斥,锌离子的继续溶 解变得困难了,而水化锌离子的沉积却变得 容易了。于是,有利于下列反应的发生:
电。
这一相间双电层的电位差就是金属接触电位。
§2-1
相间电位和电极电位
一、相间电位 二、金属接触电位 三、电极电位 四、绝对电位和相对电位 五、液体接界电位
相关文档
最新文档