验证马吕斯定律的实验方法

验证马吕斯定律的实验方法
验证马吕斯定律的实验方法

 

 万方数据

 

 万方数据

马吕斯定律实验报告

竭诚为您提供优质文档/双击可除 马吕斯定律实验报告 篇一:偏振光实验报告 实验报告 姓名:高阳班级:F0703028学号:5070309013同组姓名:王雪峰 实验日期:20XX-3-3 指导老师:助教10 实验成绩:批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波 片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度e称为光矢量。在垂直于光波传播方

向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。 2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用 的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为A0,

偏振光的观测与研究~~实验报告

偏振光的观测与研究 光的干涉与衍射实验证明了光的波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H的振动方向就是垂直于光的传播方向的。光的偏振性证明了光就是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律与光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就就是电磁波,它的电矢量E与磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉与感光材料的特性上瞧,引起视觉与化学反应的就是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E与光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光就是由大量原子或分子辐射构成的。由于热运动与辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率就是相同的。一般说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向与电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

大学物理实验报告范例(验证牛顿第二定律)

大学物理实验报告范例(验证牛顿第二定律)

怀化学院

1 、 速度测量 挡光片宽度Δs 已知,用计时测速仪测出挡光片通过光电门时的挡光时间Δt,即可测出平均速度,因Δs 很小,该平均速度近似为挡光片通过光电门时的瞬时速度,即: 瞬时速度:t s dt ds t s v t ??≈=??=→?lim MUJ-5B 计时仪能直接计算并显示速度。 2、 加速度测量

(1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。 2、由数据记录表4,可得a 与M 的关系如下:

实验五 验证玻意耳定律

实验五验证玻意耳定律 实验器材 1.橡皮帽2.玻璃管3.体积标尺4.油 5.固定架6.接头7.压强表 准备作业 1.本实验的研究对象是。在保持不变的条件下,来研究它的压强和体积的关系。 2.实验前,在注射器的活塞上均匀地抹上一层轻质润滑油,这样做的目的是,。 3.实验过程中,不能用手握住注射器,其目的是。 4.实验过程中,应避免注射器内外空气的压强差过大,这样做的目的是为了防止,以保持注射器内空气的不变。 5.在实验过程中,应使活塞的运动尽可能慢些,这是为了() (A)减少活塞所受的摩擦力 (B)避免损坏仪器

(C)防止注射器漏气 (D)使注射器内空气做等温变化 6.如果在实验过程中橡皮帽脱落,能否用它堵住注射器小孔后再继续进行实验?7.实验中,各小组所得的PV值可能都不相同,这是什么原因? 数据处理 实验次数压强(×105帕)体积(格) 1 2 3 相关习题 1.(1997全国)“验证玻意耳定律实验”实验读数过程中,不能用手握住注射器,这是为了。用橡皮帽封住注射器小孔,这是为了。 2.(1995上海)在“验证玻意耳定律”的实验中,对气体的初状态和末状态的测量和计算都正确无误。结果末状态的pV值与初状态的p0V0值明显不等。造成这一结果的可能原因是在实验过程中() (A)气体温度发生变化(B)气体与外界间有热交换 (C)有气体泄漏(D)体积改变得太迅速 3.(1999上海)某同学做“验证玻意耳定律”实验时,将注射器竖直放置,测得的数据如下表所示。发现第5组数据中的pV乘积值有较大偏差。如果读数和计算无误,那么造成此偏差的原因可能是或。 实验次序 1 2 3 4 5 p(105Pa) 1.21 1.06 0.93 0.80 0.66 V(ml)33.2 37.8 43.8 50.4 69.2 pV(105Pa·ml)40.2 40.1 40.7 40.3 45.7 4.(2001上海)某同学用同一个注射器做了两次验证波意耳定律的实验, 操作完全正确。根据实验数据却在p-V图上画出了两条不同双曲线。造 成这种情况的可能原因是()

偏振光实验数据处理分析

偏振光实验数据处理分析 ——关于验证马吕斯定律的数据处理方法 一、 马吕斯定律: 1.一束光强度为的线偏振光,透过检偏器以后,透射光的光强度为α20cos I I = (1) 其中是线偏振光的光振动方向与检偏器透振方向间的夹角,该式称为马吕斯定律。 2.在光路中放入偏振片 作为起偏器,获得振动方向与 透振方向一致的线偏振光,线偏 振光的强度为入射自然光强度的 。 马吕斯定律光路图 3.在光路中放入偏振片,作为检偏器,其透振方向 与的夹角为,透过的光振 幅为 αcos A A 2 20 2 = (2) 式中为透过的线偏振光的振幅。因为 ,所以,光强度为α20cos I I = 这就是马吕斯定律,马吕斯定律说明了入射到偏振片上的线偏振光,其透射光强度的变化规律。 二、 简单实验过程 以He-Ne 激光作光源,用偏振片起偏和检偏,光电池接收,用电检流计量度光强的大小。实验从两偏振片方向(或称光轴)平行或垂直开始,记录光电流。测量时每转15记录一个数据,转180,取12个位置读数。 2 P 1 P

三、 数据处理 以角度为横坐标,光电流为纵坐标画图,并与余弦函数的平方值随着角度的变化关系比较 表1 将表1中角度θ和电流i 的数据输入,并通过工作表计算出2cosθ的值。打开Origin 数据处理软件,将含有原始数据的excel 工作表在Origin 数据处理软件中打开。 当图形窗口为当前窗口时,可以采用从菜单进行电流i 和cos 2θ的直线拟合,其拟合的函数为 Y=A+BX i 采用最小二乘法估计方程参数: B X -Y A = ∑ ∑ = N i 2 i N i i i X -X Y -Y X -X B )() )(( 对马吕斯定律的验证一般采用的方法是由实验得到的角度θ和电流i 的数据,进而用作图法得出cos 2θ和I 成正比的线性关系,如果cos 2θ与电流i 的线性关系良好,则说明马吕斯定律得以验证。然而学生用作图法验证马吕斯实验时,是用目测测试点分布而画出cos 2θ和电流i 之间的直线图,目测时测试点呈直线与否的界限难以确定,手工作图过程中也必然引入误差,以至于使实验中真正导致误差较大的原因容易被掩盖。同时,这种处理方法也使实验中产生的有规律性的误差被忽略,其结果往往达不到定量验证的目的。用Origin 数据分析软件依据最小二乘法原理进行实验数据处理,可由相关系数R 定量表示测试点的线性程度,达到定量验证物理规律的目的。由回归标准差SD 可得到实验误差。

实验报告-偏振光学实验

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:2008-3-3 指导老师:助教10 批阅日期: 偏振光学实验 【实验目的】 1.观察光的偏振现象,验证马吕斯定律 2.了解1/2波片,1/4波片的作用 3.掌握椭圆偏振光,圆偏振光的产生与检测. 【实验原理】 1.光的偏振性 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为 偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种 振动状态称为平面振动态,此平面就称为振动面(见图1)。此时光矢 量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。若 光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称 为圆偏振态。如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态(见图2)。

2.偏振片 虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光介质的这种性质称为二向色性。)。偏振器件即可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片的透振方向之间的夹角为α,透过起偏器的线偏振光振幅为,则透过检偏器的线偏振光的振幅为A,A=ɑ,强度I=,I=ɑ= Iɑ=ɑ式中为进入检偏器前(检偏器无吸收时)线偏振光的强度。 这就是1809年马吕斯在实验中发现的,所以称马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I将发生周期变化。

在“验证牛顿第二定律”实验中为什么要求M--m

在“验证牛顿第二定律”实验中为什么要求M >> m 在“验证牛顿第二定律”实验中,研究加速度与力的关系时得到如图所示的图像,试分析其原因。 探究加速度的实验中为什么小车及其中砝码的质量要远大于托盘及其中砝码的质量 错误解法:mg-T=ma T=Ma 代入上式 mg-Ma=ma 化简a=〔m/(M+m)〕g 因此要使〔〕中的式子接近于1 分子分母同除以m,所以M不应该远小于m嘛! 。 【分析】在做a - F关系实验时,用托盘及其中砝码重力mg代替了小车所受的拉力F,如图所示。事实上,托盘及其中砝码的重力mg与小车所受的拉力F是不相等的。这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别。 由图像经过原点知,小车所受的摩擦力已被平衡。设小车实际加速度为a,由牛顿第二定律可得:mg=(m+M)a,即a=mg/(M+m) 若视F = mg,设这种情况下小车的加速度为a′,则a′= mg/M。 在本实验中,M保持不变,a'与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小。理想情况下,加速度a与实际加速度a差值为△a=mg/M-mg/(M+m)=m2g/[M(M+m)]=g/[M(M/m2+1/m)] 上式可见,m取不同值,△a不同,m越大,△a越大,当M >> m时,a≈a',△a→0,这就是要求该实验必须满足M >> m的原因所在。 本题误差是由于当托盘及其中砝码质量较大时,不能很好满足M >> m造成的。 【点评】本实验的误差来源:因原理不完善引起的误差,用托盘及其中砝码的总重力mg代替小车的拉力,而实际小车所受的拉力要小于托盘及其中砝码的总重力,这个托盘及其中砝码的总质量越接近小车和砝码的总质量,误差越大,反之托盘及其中砝码的总质量越小于小车和砝码的总质量,由此引起的误差就越小。因此满足托盘及其中砝码的总质量m 远小于小车和砝码的总质量M的目的就是为了减小因实验原理不完善而引起的误差。此误差可因为M >> m而减小,但不可能消去此误差。

玻意尔定律-实验报告

玻意尔定律-实验报告 课程名称___________________________ 实验项目__________________________ 专业班级___________________________ 姓名___________ 学号__________ 实验日期____2015年04月08日14:01____ 指导教师___________ 成绩__________ 一、实验目的 验证玻意耳定律。 二、实验仪器 1、Lab Studio系统软件 2、LABPORT数据采集器 3、压强传感器 4、计算机 5、注射器等 三、实验原理 玻意耳定律:当温度不变时,一定质量的理想气体,其压强与体积之间的乘积(PV)为常量,即体积与压强成反比。 四、实验步骤 1.将压强传感器接入LABPORT数据采集器; 2.将注射器的活塞推至于15mL处(初始值可以任选,应尽可能让管内气体体积较大),并通过软管与压强传感器的测量口紧密相连。 3、添加新栏“体积”,并添加数据31-41,设置采集方式为手动采集,设置纵轴坐标参数为压强,横轴坐标参数为体积;(注意:传感器外接塑料管内部容积大约有1mL,输入计算机的气体体积数据应为“注射器读数+1”) 4、点击“开始采集”,开始记录压强值,同时描绘出P、V之间关系曲线; 5、观察实验结果,数据点的排列有着双曲线的特征,对图像进行曲线拟合,选取“反比拟合”,得到一条拟合曲线,可以看出,实验采集所得点均匀分布在拟合曲线附近,基本重合。由此我们可以近似看出压强与体积之间呈现反比关系。 五、实验数据和数据处理 1.实验数据

[table] 2.绘图及处理 六、实验分析讨论 无

偏振光实验报告

实验题目:偏振光的研究 实验者:PB08210426 李亚韬 实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。验证马吕斯定律,并根据 布儒斯特定律测定介质的折射率。 实验原理: 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1 产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法 之一。如图1所示。因为此时 20π γ= +i ,γsin sin 201n i n =, 12 0000sin cos sin n n sin i i i tgi === γ,若n 1=1(为空气的折射率),则 2tgi n = (1) 0i 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产 生偏振光(玻璃堆)。第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o 光),另一束光一般不遵守折射定律叫做非寻常光(e 光)。o 光和e 光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o 光和e 光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的主平面,o 光电矢量的振动方向垂直于o 光主平面,e 光电矢量的振动方向平行于e 光主平面。 格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。自然光垂直于界面射入棱镜后分为o 光和e 光,o 光在空气隙上全反射,只有e 光透过棱镜射出。

偏振光实验报告

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:偏振光实验室 二、实验项目名称:偏振光实验 三、实验学时: 四、实验原理: 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直与其传播方向的平面内,取所有可能的方向;某一方向振动占优势的光叫部分偏振光;只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 (一)线偏振光的产生 1.非金属表面的反射和折射 光线斜射向非金属的光滑平面(如水、木头、玻璃等)时,反射光和折射光都会产生偏振现象,偏振的程度取决于光的入射角及反射物质的性质。当入射角是某一数值而反射光为线偏振光时,该入射角叫起偏角。起偏角的数值α与反射物质的折射率n 的关系是: n =αtan (1) 称为布如斯特定律,如图1所示。根据此式,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。从空气入射到介质,一般起偏角在53度到58度之间。 非金属表面发射的线偏振光的振动方向总是垂直于入射面的;透射光是部分偏振光;使用多层玻璃组合成的玻璃堆,能得到很好的透射线偏振光,振动方向平行于入射面的。 图 1 图 2 2.偏振片 分子型号的偏振片是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构的分子,这些分子平行地排列在同一方向上。这种胶膜只允许垂直于分子排列方向的光振动通过,因而产生

线偏振光,如图2所示。分子型偏振片的有效起偏范围几乎可达到180度,用它可得到较宽的偏振光束,是常用的起偏元件。 图 3 鉴别光的偏振状态叫检偏,用作检偏的仪器叫或元件叫检偏器。偏振片也可作检偏器使用。自然光、部分偏振光和线偏振光通过偏振片时,在垂直光线传播方向的平面内旋转偏振片时,可观察到不同的现象,如图3所示,图中(α)表示旋转P ,光强不变,为自然光;(b )表示旋转P ,无全暗位置,但光强变化,为部分偏振光;(c )表示旋转P ,可找到全暗位置,为线偏振光。 (二)圆偏振光和椭圆偏振光的产生 线偏振光垂直入射晶片,如果光轴平行于晶片的表面,会产生比较特殊的双折射现象。这时,非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差 d n n e )(200 -= λπ δ (2) 式中0λ表示单色光在真空中的波长,o n 和e n 分别为晶体中o 光和e 光的折射率,d 为晶片厚度。 1.如果晶片的厚度使产生的相位差1 (21)2 k δπ=+,k =0,1,2,…,这样的晶片称为1/4波片,其最小厚度为0 min 4() o e d n n λ= -。线偏振光通过1/4波片后,透射光一般是椭 圆偏振光;当α=π/4时,则为圆偏振光;当0=α或π/2时,椭圆偏振光退化为线偏振光。由此可知,1/4波片可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将椭圆偏振光或圆偏振光变成线偏振光。 2.如果晶片的厚度使产生的相差πδ)12(+=k ,k =0,1,2,…,这样的晶片称为半波片,其最小厚度为0 min 2() o e d n n λ= -。如果入射线偏振光的振动面与半波片光轴的交角为 α,则通过半波片后的光仍为线偏振光,但其振动面相对于入射光的振动面转过α2角。 3. 如果晶片的厚度使产生的相差2k δπ=,k =1,2,3,…,这样的晶片称为全波片, 其最小厚度为0 min o e d n n λ= -。从该波片透射的光为线偏振光。

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

玻意耳定律教学设计

玻意耳定律教学设计 Prepared on 24 November 2020

广东省物理师范生教学技能 创新实践大赛参赛教案 课题:玻意耳定律 教材:粤教版高中物理选修3-3 授课对象:高中二年级学生 参赛选手:陈丹纯 参赛单位:华南师范大学 《玻意耳定律》教案 【课题】玻意耳定律 【教学时间】15分钟 【教学对象】高中二年级学生 【教材】粤教版高中物理选修3-3第二章第七节 【教学内容分析】 1.教材的地位和作用 玻意耳定律是热学部分的重点内容,它是在“气体状态参量”的基础上,用实验研究一定质量的气体在温度保持不变时,压强随体积的变化规律。 本节内容在气体性质的教学内容中起着承上启下的作用,它不仅在研究方法上为后面研究气体的等容、等压变化作下铺垫,而且也为得出理想气体状态方程奠定了知识基础。本节内容的学习有利于培养学生通过观察和实验来研究物理问题的思想和方法,同时也可以开拓学生的眼界,初步培养学生探索科学的能力。 2.课程标准对本节内容的要求 第一,从实验入手,在定性和定量结果的基础上,得出玻意耳定律;第二,重视图象的运用,能用图象分析说明物理问题;第三,利用玻意耳定律解释有关的物理现象。

可见课程标准要求从“定性到定量”、从“实践到理论再到实践”等方面理解和掌握玻意耳定律,并注重物理思想和方法的渗透。 3.教材内容安排 粤教版教材体现了课程改革的要求,教材的内容的编排顺序如下: 通过家用气压保温瓶和内燃机气缸的例子引入气体改变状态的现象,提出问题。然后应用DISlab系统进行实验探究玻意耳定律,再通过实验数据和p-V、P-1/V图线的分析得出玻意耳定律,最后让学生运用规律解决有关的物理问题。 教材的这一结构(提出问题→实验探究→分析数据→得出结论→运用知识)体现了自主性学习的一般方法,也体现了科学探究的一般过程。 4.教材的特点 第一,重视“实验与探究”的过程,培养学生的观察和分析能力;第二,突出了得出玻意耳定律的思路和方法。 5.对教材的处理 考虑到玻意耳定律这一知识点的内容较为抽象,在本节课的教学过程中,我做了如下的调整和处理: 通过教师演示气压保温瓶模型的实验导入新课,接着引导学生联系所学知识,采用控制变量法进行分组实验,得到定性的结果。为了更进一步研究问题,教师引导学生结合DISLab系统进行定量实验,分析实验数据和p-V、P- 1/V图线,并启发学生思考实验中存在误差的原因以及拟合图线不合理的地 方。在得出玻意耳定律之后,利用flash动画分析气压保温瓶的原理,解决一开始提出的问题。最后介绍玻意耳定律在生活中的有关应用,培养学生分析和解决问题的能力以及学习物理的兴趣。这样更有助于学生对这一知识的理解、掌握和应用。 【学生情况分析】 1.学生的兴趣 作为高二的学生因果认识兴趣增强,乐于探索事物的因果关系和物理世界的奥秘,并想了解和探索物理规律,表现出一定的概括认识兴趣。 2.学生的知识基础

偏振光实验验证马吕斯定律

偏振光实验——验证马吕斯定律 【原理】 光是电磁波,而且是一种横波。光的电矢量在垂直于传播方向的平面内可以任意取向,若对于传播方向不对称而偏于某个方向称为偏振。光矢量振动方同与传播方向组成振动面,限于某个固定振动方向的称线偏振光,或从振动面来看,也称为平面偏振光。此外,还有一种偏振光,它的光矢量末端在垂直于传播方向的平面上随时间变化的轨迹呈椭圆或圆,故称之为椭圆偏振光或圆偏振光。本实验主要观察线偏振光(平面偏振光)。偏振器一般指线偏振器,它只允许电矢量沿某一特定方向的线偏振光通过。普通光源发出的为自然光,经过偏振器后成为线偏振光,这样的偏振器称起振器。当偏振器用来检验一个光是否偏振光时,则称为检偏器。用二色性物质制作的偏振片允许特定方向的光振动通过(这一特定方向称该偏振片的透光轴),而吸收与透光轴方向垂直的光振动。对于理想起偏器,自然光透过它之后应变成完全线偏振光。当线偏振光再次透过作为理想检偏器的同样的偏振片时,如果检偏器与起偏器透光轴互相平行,则透过的偏振光光强不变。而当二透光轴相互垂直时,透射光完全不能通过,光强为零。一般情况下,二平行放置的偏振片的透光轴互成θ角,设入射到第二片偏振片的偏振光振动振幅为E 0,光强I 0,则从第二片偏振片透射出来的偏振光振动振幅变为θcos 0E ,光强,称作马吕斯定律。本实验即是对它作验证。 θθ2020cos )cos (I E I ==当然,实际的偏振片都不是理想偏振片,由于材料、制作因素以及不可避免的表面反射、散射等原因,马吕斯定律只是近似成立。如果实验中器件安置或操作不够良好,还会产生更大差异,是应尽力避免的。本实验使用光强传感器,光源可选用普通光源或半导体激光光源。利用计算机辅实时测量设备建立光强——角度)(??I 、光强——余弦)cos (φ?I 、光强——平方余弦图,进行研究分析,以令人信服的证据验证马吕斯定律。其中角度的测量,还可以使用旋转移动传感器与偏振片连动,以1440点/转的灵敏度自动记录测量数据。 )cos (2φ?I 【仪器与器材】 Science Workshop750接口盒、光传感器、转动传感器、偏振片(二片)、光源(普通光源、半导体激光光源)光具座。 【实验内容】 1. 测定转动偏振片时,光线通过此偏振片后光强变化,说明光源性质。 2. 验证马吕斯定律,要求从φ?I 、φcos ?I 、三个曲线图综合分析论证,并分析导致实 验结果与理论存在差异的主要原因。 φ2cos ?I 【实验步骤】 Science WorkShop 1. 光传感器(1×档)接入750接口盒的模似信号输入A 口,旋转移动传感器接入数字信号输入通 道,黄色插头接1口,黑色插头接2口。 2. 启动Science WorkShop (科学工作室),在实验设置窗口(无标题·SWS )点击并拖曵模拟式插头 图标至模拟输入A 口图标,选择光传感器,确定。 3. 点击并拖曵数字式插头至数字输入口1的图标,选择旋转移动传感器(RMS ),确定;选择1440格/转,确定。 4. 点击实验设置窗口左方“采样选项……”按钮,设置采样周期为快,10Hz ,确定。 5. 点击并拖曵数字表(12.3)图标到光传感器图标,确定。 6. 点击并拖曵图表图标至光传感器图标,点击图形水平轴变量图标,选择“数码输入1,角位置”,将X 轴从时间改变为角度(弧度)。 7. 双击光传感器图标进行定标(相对光强方式): (1)取下二片偏振片,让光源直接照射光传感器。显示的当前电压值若大于1V ,则传感器盒上的灵

玻意尔定律

实验十七:玻意耳定律 【实验目的】 验证玻意耳定律。 【实验原理】 由玻意耳定律:当温度不变时,一定质量的理想气体,其压强与体积的乘积(PV )为常量,即体积与压强成反比。 【实验器材】 朗威?DISLab 、计算机等。实验装置图见图1。 【实验过程与数据分析】 1、将压强传感器接入数据采集器; 2、取出注射器,将注射器的活塞置于20ml 处 (初始值可任意选值),并通过软管与压强传感器 的测口紧密连接; 3、打开“计算表格”,增加变量“V ”表示注 射器的体积,拉动注射器的活塞至4ml 处,手动输 入V 值; 4、点击记录压强值; 5、改变并输入V 的值,记录不同的V 值对应的 压强数据; 6、点击“公式”,选取热学公式库中的“玻意耳定律”公式,再输入“自由表达式”k =1/V 代表体积的倒数,计算得出一组实验数据(如上左图所示); 7、观察实验结果,发现压强与体积的乘积基本为一常数; 8、启动“绘图”功能,设定X 轴、Y 轴分别为“V ”与“P 1”,得出一组“P-V ”数据点(如上左图所示); 9、观察可见,数据点的排列具有明显的双曲线特征。点击“拟合”,选取“反比拟合”,得到一条拟合图线(如下图所示),该图线与数据点完全重合,证明了事先关于压强与体积成反比的猜测(如上右图所示); 10、设定X 轴、Y 轴分别为“k ”与“P 1”,得出一组“P-k ”数据点。观察可见,数据点的排列具有明显的线性特征。点击“拟合”,选取“线性拟合”,一条非常接近原点的拟合图线(如下图所示),该图线贯穿了所有数据点,证明了事先的猜测:压强与体积的倒数成正比(线性关系)。 图1 实验装置图

验证马吕斯定律实验报告

验证马吕斯定律实验报告 用Origin进行线性拟合并修正系统误差——以“验证马吕斯定律”实验为例主要包含的内容:介绍了用Microcal Origin软件进行实验数据处理与线性拟合并进行系统误差修正的具体方法。以验证马吕斯定律实验中入射光振动方向与检偏器主截面之间的夹角θ和通过光电探测器探测到的光电流强度Iθ的数据处理以及Iθ~cos2θ线性拟合为例,并找出系统误差,对测量结果进行修正,展现了Origin软件的便捷、高效、直观等优点。 对于线性曲线拟合,常用的方法有作图法,即在作图纸上人工拟合直线,此方法很方便,但却不是一种建立在严格的统计理论基础上的数据处理方法。在作图纸上人工拟合直线时存在一定的主观随意性,难免会增大误差。而最小二乘法是数据线性拟合中最常用的一种实验数据处理方法。但是,如果运用最小二乘法手工计算拟合参数值,所需的计算比较繁琐,且容易出错。现在计算机中的Excel或是Origin等数据图像分析软件中,在进行线性拟合时大都选用了最小二乘法算法。运用计算机软件进行数据处理和作图,有着简便快速、精确度更高的优点,这也是信息时代发展的要求。本文将选用验证马吕斯定律实验为例,介绍运用Origin 软件进行实验数据线性拟合的具体方法,并通过Origin软件处理实现消除系统误差。 用Origin实现实验数据的线性拟合 下面是以验证马吕斯定律实验为例,说明Origin在运用最小二乘法算法进行实验数据线性拟合的方法步骤。 数据输入与处理 首先将得到的实验数据输入Origin的工作表worksheet中.按其默认设置打开一个工作表窗口,在本文实验中共有11组数据,将其输入工作表中,如图2中A (X1) , I1 (Y1) , I2 (Y1) , I3 (Y1) 所示。然后在工作表中通过Column/Add New Column新增一列,命名为B (X2) 用于存放夹角θ的余弦的平方.选中Column B (X2) ,右击然后选Set Column Values将跳出一个窗口,然后在编辑窗口输入Column B (X2) 的赋值运算公式:Col (B) =cos (Col (A) *pi/180) ^2, 点击OK,则可快速求得夹角θ的余弦的平方。同样的方法再新增一列命名为IMean (Y2) .IMean (Y2) 用于存放光电流Iθ的平均值,其赋值运算公式为:Col (IMean) = (Col (I1) +Col (I2) +Col (I3) ) /3,即得到电流Iθ的平均值。 用Origin进行线性拟合并修正系统误差 调用绘图窗口 点击Plot菜单的Scatter功能项,将弹出绘图坐标轴选项。将B (X2) 设置为X轴,将IMean (Y2) 设置为Y轴后, 出现绘图Graph窗口下的数据点状分布图。 用Origin修正系统误差 这一误差主要是由仪器误差和环境误差等造成的系统误差.要减小系统误差,一是消除产生

验证牛顿第二定律实验精选习题

专题六 《验证牛顿运动定律》 1某同学设计了一个探究加速a 度与物体所受合力F 及质量m 的关系实验。实验装置简图如图14-12所示,A 为小车,B 为打点计时器,C 为装有砂的砂桶,D 为一端带有定滑轮的长方形木板,实验中认为细绳对小车拉力F 等于砂和砂桶总重量,小车运动加速度a 可用纸带上点求得: 图14-12 (1)保持砂和砂桶质量不变,改变小车质量m ,分别得到小车加速度a 与质量m 及对应的m 1 数据如下表: 次数 1 2 3 4 5 6 7 8 小车加速度a (m ·s - 2) 1.90 1.72 1.49 1.25 1.00 0.75 0.5 00.30 小车质量m (kg) 0.25 0.29 0.33 0.40 0.50 0.71 1.00 1.67 m 1(kg - 1) 4.00 3.50 3.00 2.5 2.00 1.40 1.00 0.60 根据上表数据,为直观反映F 不变时a 与m 的关系,请在图14-13方格坐标纸中选择恰当物理量建立坐标系,并作出图线。 图14-13 从图线中得到F 不变时小车加速度a 与质量 m 1 之间定量关系式是______。 (2)保持小车质量不变,改变砂和砂桶重量,该同学根据实验数据作出了加速度a 与合力F 图线如图14-14所示,该图线不通过原点,明显超出偶然误差范围,其主要原因是______。

2某实验小组利用图示的装置探究加速度与力、质量的关系。 ①下列做法正确的是___________(填字母代号) A .调节滑轮的高度,使牵引木块的细绳与长木板保持平行 B .在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴木块上 C .实验时,先放开木块再接通打点计时器的电源 D .通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度 ②为使砝码桶及桶内砝码的总重力在数值上近似等于木块运动时受到的拉力,应满足的条件是砝码桶及桶内砝码的总质量 木块和木块上砝码的总质量(填“远大于”、“远小于”或“近似等于”) ③甲、乙两同学在同一实验室,各取一套图示的装置放在水平桌面上,木块上均不放砝码,在没有平衡摩擦力的情况下,研究加速度a 与拉力F 的关 系,分别得到图中甲、乙两条直线。设甲、乙用的木块质量分别为m 甲、m 乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲,μ乙,由图可知,m 甲 m 乙,μ甲 μ乙。(填“大于”、“小于”或“等于”) 32012海淀二模)用如图甲所示装置做“探究物体的 加速度跟力的关系”的实验。实验时保持小车的质量不变,用钩码所受的重力作为小车受到的合力, 用打点计时器和小车后端拖动的纸带测出小车运动 的加速度。 ①实验时先不挂钩码,反复调整垫木的左右位置,直到小车做匀速直线运动,这样做的目的是 。 ②图乙为实验中打出的一条纸带的一部分,从比较清晰的点迹起,在纸带上标出了连续的5个计数点A 、B 、C 、D 、E ,相邻两个计数点之间都有4个点迹没有标出,测出各计数点到A 点之间的距离,如图乙所示。已知打点计时器接在频率为50Hz 的交流电源两端,则此次实验中小车运动的加速度的测量值a =____________m/s 2。(结果保留两位有效数字) ③实验时改变所挂钩码的质量,分别测量小车在不同外力作用下的加速度。根据测得的多组数据画出a -F 关系图线,如图丙所示。此图线的AB 段明显偏离直线,造成此现象的主要原因可能是 。(选填下列选项的序号) 木 甲 乙 丙

光偏振及其应用论文

光偏振及其应用 班级:116041A 姓名:孙思颖 摘要: 本文先全面地介绍了偏振光的定义和分类,其中包括线偏振光、椭圆偏振光和圆偏振光,然后阐释了偏振光的产生方法,给出马吕斯定律,详细地介绍了波光片的结构,以及怎样形成偏振光。 然后,通过四个实验(分别为求得系统偏振率,验证马吕斯定理,测量晶体旋光度,观察椭圆偏振光和圆偏振光)的分析,得到相应的结论,并同时进行了相应的误差分析。 最后,在所做实验基础上进行思考与拓展,并给出创新见解及方法。 Abstract: This paper first introduced the definition and classification of polarized light, including linear polarized light, elliptically and circularly polarized light, and then explains the method to produce polarized light, Ma Lu's law, introduces in detail the structure light sheet, and how the formation of polarized light. Then, through four experiments (respectively to obtain polarization rate, verify the Marius theorem, measurement of crystal rotation, observe the elliptically and circularly polarized light) analysis, obtains the corresponding conclusion, and also analyzes the error. Finally, in the experimental basis of thinking and development, and gives the ideas and methods. 关键词:光波(light wave)、偏振光(Polarizaed Light)、光矢量(The light vector)、自然光(Natural light)、部分偏振光(Partially polarized light)、线偏振光(Linearly polarized light)、椭圆偏振光(Elliptically polarized light)、圆偏振光(Circularly polarized light)、偏振角(Angle of polarization)、寻常光(ordinary light)、非寻常光(extraordinary light)、起偏器(Polarizer)、旋光性(optical activity)。 【理论分析】 1偏振光的基本定义 光波(Figure 1)是电磁波,是 一种横波,垂直于传播方向的振动矢 量有电矢量和磁矢量。由于在光和物 质的相互作用过程中主要是光波中 的电矢量起作用,所以在研究时,通 常以电矢量E作为光波中振动矢量 的代表,叫光矢量。 Figure 1光波示意图 偏振(polarization)指的是波

实验验证玻意耳定律 人教版

验证玻意耳定律 教学目标 通过实验证明:一定质量的气体,在温度不变的情况下,压强和体积成反比或压强和体积的乘积为一恒量. 通过实验了解气体状态参量的测量方法,学习计算封闭容器中气体的压强. 培养学生的动手能力和良好的实验习惯. 重点、难点分析 本实验为验证性的学生实验,要求学生必须明确验证什么、依据是什么、使用什么设备、实验怎么做.所以实验原理、实验器材、实验步骤是本实验的重点. 对公式P=P0±F/S的正确理解、封闭气体的压强计算是难点之一,相当一部分学生处理不好时公式中取P0+F/S,何时取P0-F/S.如果空气柱受到活塞和固定在它上面的框架的压力作用的同时,还受到我们施加的拉力或压力的作用,这些力的合力是F.对于这一点,也经常出问题. 由于学生缺乏操作经验,靠目测判断竖直方向,再加上实验器材本身的质量问题,注射器或实验器竖直难于保证. 实验器材 框架和100g钩码若干;测力计;铁架台及铁夹;水银气压计(共用);带刻度的注射器(5ml);刻度尺. 若使用带有长度刻度的注射器型的“玻意耳定律实验器”做本实验,请将刻度尺换为游标卡尺. 主要教学过程 明确实验原理 掌握实验所依据的公式PV=恒量; 理解公式P=P0+F/S中各物理量的意义; P0表示实验时的大气压强; S表示活塞的横戴面积; F表示封闭气体所受的合力; 会运用此公式计算封闭气体的压强. 知道本实验应满足的条件: 等温过程t=恒量; 研究对象即封闭气体的质量不变. 实验器材 认识实验器材. 了解水银气压计的构造,知道使用方法. 通过实物观察,了解注射器与玻意耳定律实验器上的刻度的区别. 实验步骤 用测力计称出活塞和框架所受重力G. 按图1所示,把注射器固定在铁架台的铁夹上,保持注射器竖直. 把适量的润滑油抹在注射器的活塞上,再上下拖动活塞,使活塞与器壁间被油封住.当活塞插进注射器内适当位置后,再套上橡皮帽,将一定质量的气体封闭在注射器内. 从注射器上读出空气柱的体积V,用刻度尺测出这个空气柱的长度,计算出活塞的横戴面S. 记下大气压强P0.

相关文档
最新文档