垂直管内气液两相流的流型判别图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂直管内气液两相流的流型判别图

预测垂直管内两相流的流型图较少。由于两相流的流型不易拚认,仅有的几种流型图之间差别很大。1961年Griffth和Wallis在研究液节流时提出一张流型图(图6-6),目的是要划出二个可能发生液节流的区域,即图中的Ⅱ区。该区的范围较宽,除液节流外,还包括了

泡沫流和气泡流的一部分,因此,用这张图预侧工业上忌用的液节流比较保险。这也许就是它在工业上得到广泛应用的原因。本章也建议用这张图来判别垂直炉管内气液两相流的流型。它的坐标按下两式计算:

(2.4)炉管内气液两相流的适宜流型

同一般工业管道一样,炉管内不允许出现液节流,因为这种流型会产生水击,发生很大的噪声,严重时会损坏炉管。炉管与一般工业管道不一样的地方是炉管内的流型还要从传热方面提出限制,为了避免油料局部过热发生裂解,炉管内气、液两相流的流型最好是雾状流。

在局部地方,例如泡点附近,要达到雾状流比较困难,也允许出现环状流或分散气泡流。除此之外,其他流型均应避免。值得指出的是,当按计算的坐标值在流型图上找出的定位点比较靠近分界线时,要考虑到气、液两相因为不稳定,有跨过分界线变为另一种流型的可能性。当定位点表示的流型完全不符合要求的,可以缩小炉管直径或加大注人的水蒸气童来获得适宜的流型。

在逐级扩径的汽化段炉管内,不适宜的流型一般出现在每种管径的始端,在继续流动中,随着吸热量的增加和压力的降低,汽化率增加,流速也增加。如果始端流型符合要求,则该管径炉管其他部位的流型也会符合要求。因此,流型判别计算只需对各种管径的始端进行。

3)高流速限制

炉出口条件P1、t1,和e1。;是必须满足的工艺要求。其中,压力p1由与炉子相接的转油线及其后的设备的压力来确定。而温度t1和汽化率e1则靠汽化段炉管的正确设计来满足。如果炉管直径过小,计算流速超高,往往会出现计算流速超过临界流速的情况,此时在炉管与转油线相接的截面突然扩大处,压力和温度陡降,汽化率陡升。压力的陡降是由截面突然扩大的涡流损失造成的,而温度陡降和汽化率陡升则意味着大量的显热转化为潜热。这种情况下,炉出口条件p1,t1只出现在截面扩大了的转油线内,而出口炉管内的压力和温度却远高于p1和t1,汽化率则远低于e1。在转油线上测得的低油温只是一种假象,炉管内的油温可能超过显著裂解温度很多。在炉内管径扩大处的小管径一侧,即每种管径的终端,都可能出现类似的情况。为了减少压降,避免油温超限,必须对计算流速进行限制。一般要求计算的气液混合流速不超过临界速度的80%~90%。为此,需要在每种炉管直径的终端,用

(6-2)式计算临界速度。当发现计算流速超过临界流速的90%时,就应扩大炉管直径。

当流速接近临界速度时,还会发生振动和噪声,甚至造成炉管损坏。这是限制管内流速不能太高的另一个原因。

相关文档
最新文档