旅行商问题描述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设城市数量为n,则有
( n 1)! 2
条不同路径。
算法的复杂程序呈指数增加。城市数量越多,所需的计算时 间成本越大,当城市数量无穷多时,则不可能被计算出来。 例:当n=20,路径数有1.2×1018 ,即使每秒列举1亿条路径, 需350年才能全部列出。
二、近似算法
• 1、路径构建法: 从距离矩阵中产生一个近似最佳解的途径,有以下几种解法: (1)最近邻点法:一开始以寻找离场站最近的需求点为起始路线 的第一个顾客,此后寻找离最后加入路线的顾客最近的需求点,直到 最后。 (2)节省法:以服务每一个节点为起始解,根据三角不等式两边 之和大于第三边之性质,其起始状况为每服务一个顾客后便回场站, 而后计算路线间合并节省量,将节省量以降序排序而依次合并路线, 直到最后。 (3)插入法:如最近插入法、最省插入法、随意插入法、最远插 入法、最大角度插入法等。 • 2、路径优化法:先产生一条初始巡回路径,再改变其中某些车市的 顺序,使路径优化,逐渐接近最优解。 • 3、智能算法
3、智能算法
• 至今没有找到多项式时间算法解(无法用一个确定的公式 来求解)的一类问题,但问题的所有可能答案,都是可以 在多项式时间内计算得出并进行正确与否的验算。
应用
1、印刷电路版的走刀问题 2、车间调度、电网配线 3、交通运输:航线安排、物流配送
求解算法:
一、精确算法—穷举法 • 旅行商问题实际上是一个排列组合问题。穷举法:将所有 的可能路线全部求出,通过比较找到全局最优解,但计算 量在顶点数稍微多一点情况下,这时由于可行解太多,而 使算法不可行。
旅行商问题是一个典型的组合优化问题,也是一个典型的 NPC问题。 该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合 爆炸。 以42个地点为例:
• NPC问题(Non-deterministic Polynomial complete problem)非确定多项式完全问题。
• P(Polynomial,多项式)问题,是可以在多项式时间内被 确定机(通常意义的计算机)解决的问题。 • NP(Non-Deterministic Polynomial,非确定多项式)问题, 是指可以在多项式时间内被非确定机(他可以猜,他总是 能猜到最能满足你需要的那种选择)解决的问题。
旅行商问题(TSP):
一个旅行商人要拜访多个城市时,如何找 到逐次拜访每个城市后再回到起点的最短 路径。
例子:五个城市的旅行商问题
• 最早:1759年欧拉研究的骑士周游问题, 即对于国际象棋棋盘中的64个方格,走访 64个方格一次且仅一次,并且最终返回到 起始点。 • 后来由美国RAND公司于1948年引入,该 公司的声誉以及线性规划这一新方法的出 现使得TSP成为一个知名且流行的问题。
相关文档
最新文档