放大电路的基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放大电路的基本原理

内容提要:单管放大电路是组成各种复杂放大电路的基本单元。本章首先以单管共发射极放大电路为例,阐明放大电路的组成以及实现放大作用的基本原理。然后介绍电子电路最常用的两种分析方法――图解法和微变等效电路法,并利用上述方法分析单管共发射极放大电路的静态工作点、电压放大倍数和输入、输出电阻。

由于温度变化将对半导体器件的参数产生影响,进而引起放大电路静态工作点的变动,为此,介绍了一种常用的分压式静态工作点稳定电路。

除了单管共发射极放大电路以外,也介绍了放大电路的另外两种组态――共集电术组态和共基极组态放大电路,并对三种不同组态的特点进行了列表比较。

在双极型三极管放大电路的基础上,介绍了场效应管放大电路的特点和分析方法。

在本章的最后,介绍了组成多级放大电路最常用的三种耦合方式,分析了多级放大电路的电压放大倍数和输入、输出电阻。

学习要求:

①对于放大电路的两种基本分析方法,要求熟练掌握用简化的h参数等效电路分析放大电路的Au、Ri和Ro的方法,掌握rbe 的近似估算公式。正确理解如何利用图解分析放大电路的静态和动态工作情况。

②掌握放大电路的三种基本组态(共射、共集和共基组态)的工作原理和特点。

③正确理解温度变化对三极管参数的影响,掌握分压式工作点稳定电路的工作原理和计算方法。

④掌握由场效应管组成和共源和共漏放大电路和工作原理以及微变等效电路法分析Au、Ri和Ro的方法。了解场效应管与双极型三极管相比有所特点。

⑤掌握直接耦合多级放大电路的工作原理,电压放大倍数的计算方法。正确理解零点漂移现象。一般了解其他两种耦合方式(阻容耦合、变压器耦合)的特点。

2.1 放大的概念

放大电路的应用十分广泛,无论日常使用的收音机、扩音器,或者精密的量测仪器和复杂的自动控制系统等,其中通常都有各种各样的放大电路。在这些电子设备中,放大电路的作用是将微弱的信号放大,以便于人们量测和利用。例如,从收音机天线接收到的信号,或者人传感器得到的信号,有时只有微伏升毫伏数量级,必须经过放大才能驱动喇叭发出声音,或者驱动批示设备和执行机构,便于进行观察、记录和控制。由于放大电路是电子设备中使用最普遍的一种基本单元,因而是模拟电子技术课程中最基本的内容之一。所谓放大,表面看来是将信号的幅度由小增大,但是在电子技术中,放大的本质首先是实现能量的控制。由于输入信号(例如从天线或传感器得到的信号)的能量过于微弱,不足以推动负载(例如喇叭或批示仪表、执行机构),因此需要在放大电路中加另外提供一个能源,由能量较小的输入信号控制这个能源,使之输出圈套的能量,然后推动负载。这种小能量对大能量的控制作用就是放大作用。

另外,放大作用涉及到变化量的概念。也就是说,当输入信号有一个比较小的变化量时,要求在负载上得到一个较大变化量的输出信号。而放大电路的放大倍数也是指输出信号与输入信号的变化量之比。由此可见,所谓放大作用,其放大的对象是变化量。

已经知道,双极型三极管的基极电流对集电极电流有控制作用,同样,场效应管的栅源之间的电压对漏极电流也有控制作用,因此,这两种器件都可以实现放大作用,它们是组成放大电路的核心元件。

下面以单管共发射极放大电路为例,介绍放大电路的组成和放大的基本原理。

2.2.1 单管共发射极放大电路的组成

下图是一个单管共发射极(以下简称单管共射)放大电路的原理电路图。电路中有一个双极型三极管作为放大器件,因此是单管放大电路。由图可见,输入回路与输出回路的公共端是三极管的发射极,所以称为单管共射放大电路。

在电路中,NPN型三极管TV担负着放大作用,是放大电路的核心。VCC是集电极直流电源,为输入信号提供能量。RC是集电极负载电阻,集是极电流iC通过Rc,从而将电流的变化转换为集电极电压的变化,然后传送到放大电路的输出端。基极直流电源VBB和基极电阻Rb的作用是,一方面为三极管的发射结提供正抽偏置电压;同时,二者共同决定了当不加输入电压时三极管基极回路的电流,这个电流称为静态基流。在以后的分析中将会看到,静态基流的大小对放大作用的优劣,以及放大电

路的其他性能有着密切的关系。

在单管共射放大电路中,仅仅具备上述各个组成部分还不足以保证电路很好地起放大作用。为了使三极管工作在放大区,还必须使发射结正向偏置,集电结反向偏置,为此,VCC,RC、VBB和Rb等元件的参数应与电路中三极管的输入、输出特性有适当的配合关系。

2.2.2 单管共发射极放大电路和工作原理

本节将定性地分析如上图所示的单管共射放大电路如何实现放大作用。

假设电路中的参数及三极管的特性能够保证三极管工作在放大区。此时,如果在放大电路的输入端加上一个微小的输入电压变化量△uI,则三极管基极与发射极之间的电压也将随之发生变化,产生△uBE。因三极管的发射结处于正向偏置状态,故当发射结电压发生变化时,将引起基极电流产生相应的变化,得到△uB。由于三极管工作在放大区,具有电流放大作用,因此,基极电流的变化将引起集电极电流发生更大的变化,即△iC等于△iB的β倍。这个集电极电流的变化量流过集电极负载电阻RC,使集电极电压也发生相应的变化。由上图可见,当iC增大时,RC上的电压降也增大,于是UCE将降低,因为RC上的电压与UCE之和等于VCC,而这个集电极直流电源是恒定不变的,所以UCE的变化量△uCE与△iC在RC上产生的电压变化量数值

相等而极性相反,即△uCE=-△iCRC。在本电路中,集电极电压UCE即等于输出电压uO,故△uO=△uCE。综上可知,当输入电压有一个变化量△uI时,在电路中将依次产生以下各个电压或电流的变化量:△uBE,△iB,△iC,△uCE和△uO。当电路参数满足一定条件时,可能使输出电压的变化量△uO比输入电压的变化量△uI大得多,也就是说,当在放大电路的输入端加上一个微小的变化量△uI时,在输出端将得到一个放大了的变化量△uO,从而实现了放大作用。

从以上的分析可知,组成放大电路时必须遵循以下几个原则:

首先,外加直流电源的极性必须使三极管的发射结正向篇置,而集电结反抽偏置,以保证三极管工作在放大区。此时,若基极电流有一个微小的变化量△iB,将控制集电极电流产生一个较大的变化量△iC,二者之间的关系为△iC=β△iB。

其次,输入回路的接法应该使输入电压的变化量△uI能够传送到三极管的基极回路,并使基极电流产生相应的变化量△iB。

第三,输出回路的接法应使集电极电流的变化量△iC能够转化为集民极电压的变化量△uCE,并传送到放大电路的输出端。

只要符合上述几项原则,即使电路的形式有所变化,仍然能够实现放大作用。

现在来观察上图所示的单管共射放大电路。这是一个原理性电路,若付诸实用主要存在两个缺点,其一,在这个只有一个放大元件的简单电路中需要两路直流电源VCC和VBB,既不方便也很不经济;其二,放大电路的输入电压uO不共地,在实际应用时也不可取。为此,可以根据上述组成放大电路的几项原则,对原来的电路加以改进。见下图。

相关文档
最新文档