CNMR核磁共振碳谱化学位移总览表

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.13C-15N的偶合常数
由于15N的天然丰度很小,只有14N的0.37%,因此13C与15N 直接相连的概率很低,偶合常数也很小。一般13C与15N的偶合常数 在1-15Hz。
精品课件
4.5 核磁共振碳谱解析及应用 4.5.1 核磁共振碳谱谱图解析程序
13C NMR谱的解析并没有一个成熟、统一的程序,应该根 据具体情况,结合其他物理方法和化学方法测定的数据,综合分 析才能得到正确的结论。
精品课件
3.能给出不连氢碳的吸收峰 在1H NMR中不能直接观察到C=O、C=C、C≡C、C=N、季
碳等不连氢基团的吸收信号,只能通过相应基团的化学位移值 、分子式不饱和度等来判断这些基团是否存在。而13C NMR谱可 直接给出这些基团的特征吸收峰。由于碳原子是构成有机化合 物的基本元素,因此从13C NMR谱可以得到有关分子骨架结构的 信息。
的1/6000。所以,在连续波谱仪上是很难得到13C NMR谱的,
这也是13C NMR在很长时间内未能得到广泛应用的主要原因。
2.分辫能力高
1H NMR的化学位移通常在0-15ppm,而13C NMR的常用范围 为0-300ppm,约为1H谱的20倍。同时13C自身的自旋-自旋裂分 实际上不存在,虽然,13C-1H之间有偶合,但可以用质子去偶 技术进行控制。因此13C谱的分辨能力比1H谱高得多,结构不对 称的化合物、每种化学环境不同的碳原子通常可以得到特征的 谱线。
精品课件
INEPT谱中不出现季碳 的信号 CH3和CH为正峰,而CH2为 负峰 只出现CH的正峰 CH3、CH2、CH为正值
精品课件
2)DEPT法
DEPT谱中也不出 现季碳的信号
DEP-45°谱,CH3、CH2和 CH的峰均为正峰 DEPT-90°谱,只出现 CH的正峰 DEPT-135°谱,CH3和 CH为正峰,而CH2的峰为 负
4.3.1 屏蔽常 数
不同环境的碳,受到的屏蔽作用不同,δ值不同,其共
振频率νC也不同。
精品课件
4.3.2 影响13C化学位移的因素
1.碳杂化轨道
碳原子的杂化轨道状态(sp3、sp2、sp)很大程度上决定 13C化学位移。sp3杂化碳的共振信号在高场,sp2杂化碳的共振信 号在低场,sp杂化碳的共振信号介于前二者之间。以TMS为标准
精品课件
3.炔烃的化学位移值
炔基碳为sp杂化,其化学位移介于sp3与sp2杂化碳之间 ,为67-92ppm。
精品课件
4.芳环碳和杂芳环碳的δC值
芳环碳的化学位移值一般在120-160ppm范围内,峰往往出 现在较低场,这点与脂肪族季碳峰在较低场是类似的。
精品课件
稠环芳烃和杂环芳烃中芳环碳的化学位移值也在苯及衍生物的
有机波谱分析
精品课件
4.1 核磁共振碳谱的特点 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先
观察到的。碳是组成有机物分子骨架的元素,人们清楚认识 到13C NMR对于化学研究的重要性。由于13C的信号很弱,加之 1H核的偶合干扰,使13C NMR信号变得很复杂,难以测得有实 用价值的谱图。20世纪70年代后期,质子去偶和傅里叶变换 技术的发展和应用,才使13C NMR的测定变成简单易得。20多 年来,核磁共振技术取得巨大发展,目前,13C NMR已广泛应 用于有机化合物的分子结构测定、反应机理研究、异构体判 别、生物大分子研究等方面,成为化学、生物化学、药物化 学及其他相关领域的科学研究和生产部门不可缺少的分析测 试手段,对有关学科的发展起了极大的促进作用。
精品课件
3.共轭效应
共轭作用会引起电子云分布的变化,导致不同位置碳 的共振吸收峰向高场或低场移动。
比乙醛(199.6ppm)处较高场
4.立体效应
δ值比苯 (128.5ppm) 大
13C化学位移对分子的立体构型十分敏感。只要碳核间空 间比较接近,即使间隔几个化学键,彼此还会有强烈的影响。如 在Van der Waals效应中,通常1H是处于化合物的边缘或外围, 当2个氢原子靠近时,由于电子云的相互排斥,使1H核周围的电 子云密度下降,这些电子云将沿着C-H键移向碳原子,使碳的屏 蔽作用增加,化学位移向高场移动。
1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的 核(如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系 统中,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递 到低灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递 可使,13C信号强度增强4倍。
Hale Waihona Puke Baidu
豫机制不同,NOE效应对不同碳原子的信号强度影响差异很大
,因此不等价碳原子的数目不能通过常规共振谱的谱线强度来
确定。
精品课件
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数 在化合物中,处于不同环境的13C核,它们的弛豫时间
τ1数值相差较大,可达2-3个数量级,通过τ1可以指认结构 归属,窥测体系运动状况等。 4.2.1 脉冲傅里叶变换法 原理同1H NMR。
取代基处于直立键比处平 伏键时δ位碳的占值小约
5ppm。
精品课件
分子中存在空间位阻,常会影响共轭效应的效果,导致化学位移的 变化,如邻位烷基取代的苯乙酮,随着烷基取代基数目增加,烷基的空间位
阻使羰基与苯环的共轭效应减弱,羰基碳δ值向低场位移。
5.测定条件
测定条件对13C的化学位移有一定的影响,如溶解样品的 溶剂、溶液的浓度、测定时的温度等。
精品课件
4.4 13C NMR的自旋偶合及偶合常数
4.4.1 13C-1H的自旋偶合 13C-13C偶合的几率很小(13C天然丰度1.1%);
13C- 1H偶合;偶合常数1JCH:100-250 Hz;峰裂分;谱图复杂;
去偶!!!
精品课件
4.4.2 13C—X的自旋偶合
1.13C-19F的偶合常数
,则说明样品中可能有杂质或有异构体共存。 (3)分析谱线的化学位移,可以识别sp3、sp2、sp杂化碳和季碳,
如果从高场到低场进行判断,0-40ppm为饱和烃碳,40-90ppm为与
O、N相连的饱和碳,100-150ppm为芳环碳和烯碳,大于150ppm为
羰基碳及叠烯碳。
精品课件
(4)分析偏共振去偶谱和DEPT谱,了解与各种不同化学环境的碳直 接相连的质子数,确定分子中有多少个CH3、CH2、CH和季碳及其可 能的连接方式。比较各基团含H总数和分子式中H的数目,判断是否 存在一OH、一NH2、一C(X)H、一NH一等含活泼氢的基团。 (5)如果样品中不含F、P等原子,宽带质子去偶谱图中的每一条谱 线对应于一种化学环境的碳,对比偏共振去偶谱,全部偶合作用产 生的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑 分子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位 移规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他的双 共振技术及τ1测定,排除不合理者,得到正确的结构式。
34
4
3 21
56
1
2
5 6
精品课件
谱图去偶作用对比
精品课件
6.INEPT谱和DEPT谱
常规的13C NMR谱是指宽带质子去偶谱。在去偶的条件 下,失去了全部C-H偶合的信息,质子偶合引起的多重谱线合 并,每种碳原子只给出一条谱线。虽然用偏共振去偶技术可以 分辨CH3、CH2、CH及季C的归属,但由于偏共振去偶谱中偶合常 数分布不均匀,多重谱线变形和重叠,在复杂分子的研究中仍 然受到限制。随着现代脉冲技术的发展,产生了一些新的能确 定碳原子级数的新方法,如J调制法、APT法、INEPT法和DEPT 法等,其中INEPT法和DEPT法已被广泛应用。
通常解析按以下步骤进行: (1)确定分子式并根据分子式计算不饱和度。 (2)从13C NMR的质子宽带去偶谱,了解分子中含C的数目、类型和 分子的对称性。如果13C的谱线数目与分子式的C数相同,表明分子 中不存在环境相同的含C基团,如果13C的谱线数小于分子式中的C
数,说明分子式中存在某种对称因素,如果谱线数大于分子中C数
精品课件
4.3.3 各类化合物的13C化学位移
Chemical Shift Table
精品课件
1.饱和碳的化学位移值
饱和烷烃:饱和烷烃的碳为sp3杂化,其化学位移值一般在-2.5-55ppm。
与1H NMR相似,也可进行经验计算,这里不做详细介绍。
精品课件
2.烯碳的化学位移值
烯碳为sp2杂化,其化学位移为100-165ppm。
一般五价磷与碳的1JCP为50-180Hz,2JCP、3JCP在5-15Hz,三价磷的
1JCP < 50Hz,2JCP、3JCP为3-20Hz。
精品课件
3.13C-D的偶合常数
在13C NMR中常使用氘代溶剂,因此常遇到碳与氘的自旋偶 合。13C-D的偶合常数比13C-1H的偶合常数小得多,1JCH/1JCD与两 种核旋磁比的比值相近,即1JCD只有1JCH的1/6左右。
,对于烃类化合物来说,sp3碳的δ值范围在0-60ppm;sp2杂化 碳的δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm 。2.诱导效应
当电负性大的元素或基团与碳相连时,诱导效应使碳的核 外电子云密度降低,故具有去屏蔽作用。随着取代基电负性增强
,或取代基数目增大,去屏蔽作用也增强, δ值愈向低场位移。
δC值范围内。
与1H NMR相似,也可进行经验计算,这里不做详细介绍。
精品课件
5.羰基碳的δC值
羰基在1H NMR谱中没有相应的信号,而在13C NMR谱中却有特征 的吸收峰。羰基化合物中,由于C=O中π键易极化使羰基碳上的电子云 密度变小,化学位移值比烯碳更趋于低场,一般为160-220ppm。除醛 基外,其他羰基碳的质子偏共振去偶谱中表现为单峰,而且没有NOE效 应,峰的强度较小,因此在碳谱中羰基是容易辨认的。
1.质子宽带去偶法
2.偏共振去偶法
3.门控去偶法
4.反转门控去偶法
5.选择质子去偶
精品课件
谱图去偶作用对比
精品课件
13C NMR spectrum with the protons coupled
3
4
3 21
56
4
1 2
5 6
精品课件
13C NMR spectrum with the protons decoupled by the broadband decoupler
精品课件
4.2 核磁共振碳谱的测定方法 1.灵敏度低 13C核的天然丰度很低,只有1.108%,而1H的天然丰度
为99.98%。13C核的旋磁比γC也很小,只有γH核翔的1/4。 信号灵敏度与核的旋磁比γC的立方成正比,因此,相同数目 的1H核和13C核,在同样的外磁场中,相同的温度下测定时,
其信噪比为11.59 × 10-4,即13C NMR的灵敏度大约只有1H NMR
19F对13C的偶合也符合n+1规律,其偶合常数1JCF的数值很大,并 为负
值,1JCF为-150-360Hz(在谱图上以绝对值存在)、2JCF为20-60Hz、 3JCF为4-20Hz、4JCF为0-5Hz。
2.13C-31P的偶合常数
13C与31P的偶合也符合n+1规律,其偶合常数与磷的价数有关,
精品课件
4.2.2 核磁共振碳谱中几种去偶技术
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、 3JCCCH也有一定的表现,使各种谱峰交叉重叠,谱图难以解析。为了提 高灵敏度和简化谱图,人们研究了多种质子去偶测定方法,以最大限 度地获取,13C NMR信息。
4.不能用积分高度来计算碳的数目
13C NMR的常规谱是质子全去偶谱。对于大多数碳,尤其
是质子化碳,它们的信号强度都会由于去偶的同时产生的NOE
效应而大大增强,如甲酸的去偶谱与偶合谱相比,信号强度净
增近2倍。季碳因不与质子相连,它不能得到完全的NOE效应,
故碳谱中季碳的信号强度都比较弱。由于碳核所处的环境和弛
常规宽带质子去偶13C谱
精品课件
4.3 13C的化学位移
化学位移范围:0~250ppm;核对周围化学环境敏感,重叠 少氢谱与碳谱有较多共同点; 碳谱化学位移规律: (1) 高场低场 碳谱:饱和烃碳原子、炔烃碳原子、烯烃碳原子、羧基碳原子 氢谱:饱和烃氢、炔氢、烯氢、醛基氢; (2) 与电负性基团,化学位移向低场移动;
氘的自旋量子数为1,所以-CD3-、-CD2-、-CD-的共 振峰按2nI+1规律分别显示七、五、三重峰,峰的裂距即为其偶合常 数。氘代溶剂的1JCD值约为18一34Hz。
4.13C金属原子的偶合常数
13C与金属原子核的偶合有时产生很大的偶合常数,如1JC-Hg可 大于100Hz,在进行有机金属化合物的NMR研究时应给予注意。
相关文档
最新文档