物质代谢的相互联系和调节控制(1)
生物化学-第十一章-物质代谢调节控制

一、酶活性的调节
A
B
E1
C E2
D E3
催化反应速度最慢的酶:关键酶或限速酶
酶结构调节 酶数量调节 (快速调节) (迟缓调节)
1、变构调节
活性中心
代谢物
非共价键
E
别位
变构酶 E 酶结构发生改变
变构效应剂
变构激活剂 变构抑制剂
酶活性↑ 酶活性↓
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多 。
呼吸链 蛋白质合成 尿素合成 三羧酸循环 氧化磷酸化 血红素合成 蛋白质降解 核酸合成
分布区域 线粒体 核糖体 胞浆、线粒体 线粒体 线粒体 胞浆、线粒体 溶酶体、蛋白酶体 细胞核
• 多酶体系的隔离分布:使物质代谢互不干扰
酶活性的调节方式: 1、快速调节,也叫酶活性调节。
2、迟缓调节,也叫酶含量调节。
• 受体分类
按受体在细胞的部位不同,分为:
Ι 膜受体 Ⅱ 细胞内受体
细胞膜受体和细胞内受体
细胞膜受体的类型 1. 离子通道偶联受体 2. G蛋白偶联受体 3. 酶偶联受体
离子通道偶联受体
G蛋白偶联受体
G蛋白
全称:鸟苷酸结合蛋白 特点: ① 由a、b、g亚基组成的异聚体; ②具有GTP酶(GTPase)的活性,能结合GTP或GDP; ③ 其本身的构象改变可活化效应蛋白。
乙酰CoA
乙酰CoA羧化酶
丙二酰CoA
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
+ 糖原合酶
G-6-P –
糖原磷酸化酶
促进糖的储存
抑制糖的氧化
2、共价修饰
18代谢及基因表达调控答案

物质代谢的相互联系和调节控制一、填充题1.操纵子中没有基因产物的基因是启动子和操纵基因。
2.代谢途径的终产物浓度可以控制自身形成的速度,这种现象被称为反馈调节。
3.连锁代谢反应中的一个酶被激活后,连续地发生其他酶被激活,导致原始信使的放大。
这样的连锁代谢反应系统称为级联放大系统。
4.酶对细胞代谢的调节是最基本的代谢调节,主要有二种方式激活或抑制以改变细胞内已有酶的催化活性和影响酶合成或降解,改变酶的含量。
5.沟通糖、脂代谢的关键化合物是_____乙酰辅酶A__ 。
6.不同代谢途径可以通过交叉点代谢中间物进行转化,在糖、脂、蛋白质及核酸的相互转化过程中三个最关键的代谢中间物是6-磷酸葡萄糖、丙酮酸和乙酰辅酶A。
7.1961年,法国生物学家Monod和Jacob提出了关于原核生物基因结构及表达调控的_操纵子__学说。
8.糖原磷酸化酶可同时受到变构效应和共价修饰两种调节。
9.操纵子由启动子、操纵基因和结构基因三种成分组成。
10.乳糖操纵子中,直接作用于阻遏蛋白并引起操纵子转录的物质是乳糖(诱导物)。
11.哺乳动物的代谢调节可以在细胞内酶水平、细胞水平、激素水平和神经水平四个水平上进行。
12.真核细胞中酶的共价修饰形式主要是磷酸化和脱磷酸化,原核细胞中酶共价修饰形式主要是核苷酰化和脱核苷酰化。
13.乳糖操纵子的结构基因包括LacZ、LacY和LacA。
二、选择题1.关于操纵子的组成成员哪个是错误的?( D )(A) 结构基因(B) 操纵基因(C) 起动基因(D) 终止因子2.利用磷酸化来修饰酶的活性,其修饰位点通常在下列哪个氨基酸残基上?( D )(A) 半胱氨酸(B) 苯丙氨酸(C) 赖氨酸(D) 丝氨酸3.下列与能量代谢有关的过程除哪个外都发生在线粒体中?( A )(A)糖酵解(B)三羧酸循环(C)脂肪酸的β—氧化(C)氧化磷酸化4.在什么情况下,乳糖操纵子的转录活性最高?( A )(A)高乳糖,低葡萄糖(B)高乳糖,高葡萄糖(C)低乳糖,低葡萄糖(D)低乳糖,高葡萄糖5.关于色氨酸操纵子,下列正确的描述是( A )(A) 色氨酸与操纵区结合,使结构基因关闭(B) 色氨酸与阻遏蛋白结合后,能与操纵区结合,使结构基因关闭(C) 色氨酸与阻遏蛋白结合后,不能与操纵区结合,使结构基因开放(D) 色氨酸与操纵区结合,使结构基因开放6.关于反馈调节错误的是( B )(A) 代谢产物对代谢过程的调节(B) 代谢底物对代谢过程的调节(C) 受调节的酶是变构酶(D) 终产物对代谢的调节7.磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于( A )(A)别(变)构调节酶(B)共价调节酶(C)诱导酶(D)同工酶8.阻遏蛋白结合的位点是:(c )(A)调节基因(B)启动因子(C)操纵基因(D)结构基因9.下面哪一项代谢是在细胞质内进行的( c )(A)脂肪酸的β-氧化(B)氧化磷酸化(C)脂肪酸的合成(D)TCA10.在乳糖操纵子模型中,操纵基因专门控制是否转录与翻译。
第十一章物质代谢的相互联系及其调节

CTP
血红素合成 ALA合成酶
血红素
(2)变构酶的特点及作用机制
变构酶常由多个亚基构成; 变构效应剂可通过非共价键与调节亚基结合,引起酶构
象改变(T态和R态)或亚基的聚合、分离从而影响酶 的活性; 变构酶的酶促反应动力学不符合米曼氏方程式; 变构效应剂常常是酶的底物、产物或其他小分子中间代 谢物。 变构调节过程不需要能量。
(CH2)4CO HS Co
OH
AO
CH
3
CO
P
丙酮酸脱氢 酶
O CH HC TT
S
二氢硫辛酸 转乙酰酶
C C S Co
H3
A
H SH
(CH2)4CO OH
2 3
HP
S
(CH2)4CO OH
S
S
FAD H2
二氢硫辛酸
脱氢酶 FA D
丙酮酸氧化脱羧
NFAA
D+
NADH +H+
乙酰 丙二酸单 β-酮脂酰转移酶 酰转移酶 合成酶
第一节
物质代谢的相互联系
一、物质代谢的特点
物质代谢的整体性 物质代谢的可调节性 组织器官代谢的特色性 不同来源代谢物代谢的共同性 能量储存的特殊性 NADPH为合成代谢提供还原当量
二、物质代谢的相互联系
(一)能量代谢上的相互联系
物质代谢过程中所伴随的能量的贮存、释放、转移和利 用等称为能量代谢。
现出激素的生物学效应。 根据激素作用受体部位不同,激素可分为:细胞膜受
体激素和细胞内受体激素。
三、整体水平的代谢调节
1.应激状态下的代谢调节
应激是机体在一些特殊的情况下,如严重创伤、感染、中 毒、剧烈的情绪变化等所作出的应答性反应。
《生物化学》-物质代谢的调节与控制

1.酶量调节机理
酶量调节的两种基本调节机制是诱导和阻遏
诱导:一些分解代谢的酶类只在有关的底物或底物 类似物存在时才被诱导合成。依赖于诱导物才能合 成的酶称为诱导酶。
阻遏:对于合成代谢的酶类,在产物或产物类似物 足够量存在时,其合成被阻遏。(反馈阻遏)
共价修饰调节是酶蛋白中的活性基团(-OH、SH、-COOH、-NH2)在其他酶的作用下发生共价 修饰,从而改变酶的活性。
共价修饰调节具有级联放大作用,效率高。
(三)酶量变化对代谢的调节(基因表达的调节控制)
细胞内酶浓度的改变也可以改变代谢速度。
主要是通过调节酶蛋白的合成过程实现的。 (1)活化基因则合成相应的酶,酶量增加; (2)钝化基因则停止酶的合成,酶量降低。
柠檬酸
+
–
乙酰辅酶A羧化酶 6-磷酸果糖激酶
促进脂酸的合成 抑制糖的氧化
2.共价修饰调节
(1)有些酶,在其它酶的催化下,其分子结构中的某 些基团,如:Ser、Thr或Tyr 的-OH 基,能与特殊的 化学基团,如ATP分子上脱下的磷酸基或腺苷酰基 (AMP),共价结合或解离,从而使酶分子活性形式发生 改变。这种修饰作用称为共价修饰调节。这种被修饰 的酶称为共价调节酶。
葡萄糖
分解代 谢产物
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多。
乙酰CoA
丙二酰CoA
乙酰CoA羧化酶
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
G-6-P
+
–
糖原合酶
糖原磷酸化酶
第十五章物质代谢的相互联系和调节控制

第十五章物质代谢的相互联系和调节控制第十五章物质代谢的相互联系和调节控制一:填空题1.生物体内的代谢调节在三种不同的水平上进行,即________________、________________和________________。
2.代谢途径的终产物浓度可以控制自身形成的速度,这种现象被称为________________。
3.连锁代谢反应中的一个酶被激活后,连续地发生其它酶被激活,导致原始信使的放大。
这样的连锁代谢反应系统,称为________________系统。
4.酶对细胞代谢的调节是最基本的代谢调节,主要有二种方式:________________和________________。
5.高等生物体内,除了酶对代谢的调节外,还有________________和________________对代谢的调节。
6.生物合成所需的基本要素是________________、________________和小分子前体。
7.不同生物大分子的分解代谢均可大致分为三个阶段:将大分子降解为较小分子的________________;将不同的小分子转化为共同的降解产物________________;经________________完全氧化。
8.构通糖、脂代谢的关键化合物是________________。
9.不同代谢途径可以通过交叉点代谢中间物进行转化,在糖、脂、蛋白质及核酸的相互转化过程中三个最关键的代谢中间物是________________、________________和________________。
10.真核生物DNA的复制受到三个水平的调控:________________、________________和________________的调控。
11.遗传信息的表达受到严格的调控,包括________________即按一定的时间顺序发生变化,和________________即随细胞内外环境的变化而改变。
物质代谢联系与调节

01
02
03
某些物质可以诱导细胞内产生诱导酶,这种作用叫做酶的诱导生成作用。
一些分解代谢的酶类只在有关底物or底物类似物存在时才能诱导合成;
一些合成代谢的酶类在产物或产物类似物足够存在时,其合成被阻遏。
1.酶的诱导和阻遏
1
诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是酶底物的类似物或底物本身。
脂肪转变为糖是有限的。脂类分子的甘油部分经糖异生可以生成糖,而FA部分分解产生的乙酰CoA进入TCA后全部氧化为CO2和H2O。因此,在动物中,脂肪转变为糖是有限的,而在植物和微生物中存在乙醛酸循环,乙酰-CoA可产生OA,可异生为糖,因此,在植物和微生物中,脂肪可以转变为糖。
糖代谢与脂代谢的相互联系
细胞代谢的调节,主要是通过控制酶的作用而实现的。这种酶水平的调节,是最基本的调节方式。激素和神经调节是随着生物进化、发展而完善起来的调节机制,但是它们仍然是通过“酶水平”的调节而发挥其作用。所有这些调节又受生物遗传因素的控制。
DNA的复制、转录在细胞核里进行。转录出的mRNA、tRNA、rRNA从核孔穿出进入细胞质,在粗面内质网上进行蛋白质的生物合成。
当诱导物存在时,诱导物和阻遏蛋白结合时,改变阻遏蛋白的构象,不能与操纵基因结合,于是RNA聚合酶起作用,使底物基因进行转录和翻译,生成酶蛋白。
酶生成的阻遏作用(repression) 在没有代谢产物时,阻遏蛋白不能与操纵基因结合,因而结构基因就转录翻译,生成酶蛋白。
当代谢产物存在时,代谢终产物和阻遏蛋白结合,使阻遏蛋白构象发生变化,可与操纵基因结合,从而使结构基因不能进行转录,酶的生成受到阻遏。
核酸代谢与糖、脂及蛋白质代
代谢的相互关系及调控

第十一章代谢的相互关系及调节控制I 主要内容本章重点讲了两个方面问题,一是生物体内不同物质代谢的相互联系,二是生物体内物质代谢的调控。
一、物质代谢的相互联系糖代谢、脂代谢、蛋白质代谢和核酸代谢是广泛存在于各种生物体内的四大物质代谢途径,不同途径之间的相互关系集中体现为各有所重,相互转化,又相互制约的关系。
二、代谢调节的一般原理代谢的调节控制方式有分子水平调节、细胞水平调节、激素水平调节和神经水平调节四种,其中神经水平调节是高等动物所特有的,细胞水平是所有生物体共有的,各种类型的调节都是由细胞水平来实现的。
细胞水平调控是一切调控的最重要基础,细胞水平调节主要分为酶的区域化分布调节、底物的可利用性、辅因子的可利用性调节、酶活性的调节、酶量调节五种形式。
(一)酶的区域化分布调节(二)底物的可利用性(三)辅助因子的可利用性(四)酶活性调节酶活性调节是通过对现有酶催化能力的调节,最基本的方式是酶的反馈调节,亦即通过代谢物浓度对自身代谢速度的调节作用,反馈调节作用根据其效应的不同分为正反馈调节和负反馈调节。
反馈是结果对行为本身的调节或输出对输入的调节,在物质代谢调节中引用反馈是指产物的积累对本身代谢速度的调节。
反馈抵制调节包括顺序反馈调节、积累反馈调节、协同反馈调节和同功酶调节四种。
(五) 酶量的调节细胞内的酶可以根据其是否随外界环境条件的改变而改变分为组成酶和诱导酶。
组成酶是催化细胞内各种代谢反应的酶,如糖酵解、三羧酸循环等。
诱导酶则是其含量可以随外界条件发生变化的一些酶类。
它的产生或消失可以使细胞获得或失去代谢某一种物质的能力。
1.原核生物基因表达调控操纵子学说是F. Jacob 和 J. Monod 于1961年首先提出来用于解释原核生物基因表达调控的一个理论。
该理论认为一个转录调控单位包括:结构基因、调节基因、启动子和操纵基因四个部分,其中操纵基因加上它所控制的一个或几个结构基因构成的转录调控功能单位称为操纵子。
大学生物化学课件物质代谢的联系和调节

(3)肝在蛋白质代谢中的作用
1. 合成多种血浆蛋白质
(四)共同代谢池
体外摄入的营养物或体内各组织细胞的代谢物, 只要是同一化学结构的物质,在进行中间代谢 时,不分彼此,参加到共同的代谢池中参与代 谢,机会均等。 葡萄糖、 氨基酸
(五)ATP是机体能量利用的共同形式 (六) NADPH是合成代谢所需还原当量
第二节 物质代谢的相互联系
一、在能量代谢上的相互联系
全部清蛋白、凝血酶原、纤维蛋白原、Apo A、B、C、 E,部分a1, a2, β球蛋白。
2. AA合成与分解的主要器官。
3. 生成尿素的器官。 肝昏迷氨中毒
(4)肝参与多种维生素和辅酶的代谢 (略)
1. 肝在脂溶性维生素吸收和血液运输中的作用 胆汁酸参与维生素A,D,E,K的吸收。 血液中的运输:视黄醇结合蛋白 维生素D结合蛋白
(二)糖代谢与AA代谢的联系
1. 糖
NEAA (12种)
2. AA 糖 (18种,糖异生,除Leu, Lys)
必需AA 生糖AA 生酮AA 生糖兼生酮AA
(三)脂类代谢与AA代谢的相互联系
1. AA CH3CO-ScoA
FA、胆固醇
2. AA 是合成PL的原料 丝AA、乙醇胺、甲硫AA、胆碱(p160) 肉碱(β-氧化,p156)
饥饿:脂肪动员,脂肪组织分解TG为甘油和FA,释放入血。
6 . 肾:
糖异生、糖酵解、酮体生成 肾髓质,无线粒体,只能酵解供能 肾皮质,主要利用FA、酮体供能
物质代谢的相互联系和代谢调节

(无活性) 磷酸化酶激酶(活性)
104
ATP ADP
5
106
Ⅲ 、举例:糖原磷酸化酶的共价修饰调节
去磷酸化
磷酸化
Ⅳ 、特点:
①快速调节(比别构调节慢);
②酶促、共价修饰;
③被修饰的酶有两种形式,一种为活性形式, 另一种为非活性形式。
④对调节信号有放大效应,调节效率比别构 调节高;
酶级联系统 调控示意图
肾上腺素或 胰高血糖素
1、腺苷酸环化酶
(无活性)
腺苷酸环化酶(活性)
三、脂代谢与蛋白质代谢的相互联系
1、脂肪转化为蛋白质
甘油 脂肪
磷酸二羟丙酮
脂肪酸 乙酰CoA 氨基酸碳架 氨基酸 蛋白质
有限
2、蛋白质转化为脂肪
生酮AA α-酮酸
乙酰乙酸 乙酰辅酶A
蛋白质 生糖AA
丙酮酸
磷酸二羟丙酮
脂肪酸 脂肪
α-磷酸甘油
四、核酸代谢与其他物质代谢的相互关系
1、糖、脂肪、蛋白质为核酸的合成提供原料和能量
Ⅲ、别构调节的一种重要方式 ——前馈和反馈调节
前馈:意思是“输入对输出的影响”。 底物对代谢过程的调节作用。
反馈:意思是“输出对输入的影响”。 代谢产物对代谢过程的调节作用。
前馈和反正馈调控(+):使代谢过程加快。 负调控(-):使代谢过程减慢。
其调节机理是通过酶的变构效应来实现的。
+ 或—
前馈 S0 E0 S1 E1 S2
2.糖、脂肪、蛋白质的代谢是相互关联的
(殊途同归——TCA)
3.三者之间的相互转化
一、糖代谢与脂肪代谢的相互联系(转化)
1、糖转化为脂肪
⑴糖
有氧氧化乙酰CoA,NADPH 从头合成 脂肪酸
物质代谢的相互联系和代谢调节

1
腺苷酸环化酶(活性)
意义:酶的共价修饰反应是酶 促反应,只要有少量信号分子 (如激素)存在,即可通过加 速这种酶促反应,而使大量的 另一种酶发生化学修饰,从而 获得放大效应。这种调节方式 快速、效率极高。
2、ATP
cAMP
2 102
3、蛋白激酶
3
(无活性) 蛋白激酶(活性
)
ATP 4、磷酸化酶激
ADP
脂肪
甘油 脂肪酸
磷酸二羟丙酮
乙酰CoA
氨基酸碳架
氨基酸
蛋白质
有限
2、蛋白质转化为脂肪
生酮AA 蛋白质
生糖AA
α-酮酸
乙酰乙酸
丙酮酸
磷酸二羟丙酮
乙酰辅酶A 脂肪酸
α-磷酸甘油
脂肪
四、核酸代谢与其他物质代谢的相互关系 1、糖、脂肪、蛋白质为核酸的合成提供原料和能量
PRPP
糖
糖、脂 CO2 ATP
Gln Gly Asp 甲酸盐
乙醛酸循环 琥珀酸
(植物)
糖异生 糖 糖异生(次要)
TCA
主要
ATP(供能)
二、糖代谢与蛋白质代谢的相互联系 1、糖转化为蛋白质
①碳源:糖经EMP和TCA循环产生3-PGA、PEP、丙酮酸、α-酮戊二酸和草酰乙酸等,它们 均可形成相应的AA。
②能源:ATP。 ③提供还原力: NADH、NADPH
糖 →→α-酮酸→→氨基酸→+蛋N白H3质
物质代谢的相互联系和代谢调节
第一节 物质代谢间的相互联系 一、糖代谢与脂类代谢的相互关系 二、 糖代谢与蛋白质代谢的相互关系 三、脂类代谢与蛋白质代谢的相互关系 四、核酸与糖类、脂类、蛋白质代谢的相互关系
1.各物质的代谢是相互影响、相互制约的
十四物质代谢的相互联系和调节控制

(二)糖代谢与蛋白质代谢的相互关系
糖代谢与蛋白质代谢的相互联系
01
糖 →→ α-酮酸 氨基酸 蛋白质
02
NH3
03
蛋白质 氨基酸 α-酮酸 糖
04
(生糖氨基酸)
05
1
由脂肪合成蛋白质的可能性是有限的,实际上仅限于Glu。
2
蛋白质间接地转变为脂肪。
(三)脂类代谢与蛋白质代谢的相互关系
01
脂肪
02
甘油
03
磷酸二羟丙酮
04
脂肪酸
05
乙酰CoA
06
氨基酸碳架
07
氨基酸
08
蛋白质
09
蛋白质
10
氨基酸
11
酮酸或乙酰CoA
12
脂肪酸
13
脂肪
14
(生酮氨基酸)
脂类代谢与蛋白质代谢的相互联系
蛋白质代谢为嘌呤和嘧啶的合成提供许多原料;糖类产生二羧基氨基酸的酮酸前身,又是戊糖的来源。
核苷酸的一些衍生物具重要生理功能(如CoA, NAD+,NADP+,cAMP,cGMP)。
核酸生物合成需要糖和蛋白质的代谢中间产物参加,而且需要酶和多种蛋白质因子。
各类物质代谢都离不开具高能磷酸键的各种核苷酸,如ATP是能量的“通货”,此外UTP参与多糖的合成,CTP参与磷脂合成, GTP参与蛋白质合成与糖异生作用。
代谢调节的四级水平: 酶水平调节 细胞水平调节 激素水平调节 神经水平调节
多细胞整体水平调节
(二)酶水平的调节
1、酶活性的调节 1)酶的别构效应 酶活性的前馈和反馈调节 2)产能反应与需能反应的调节 3)酶的共价修饰与级联放大机制 2、基因表达的调节 1)原核生物基因表达调节 2)真核生物基因表达调节
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2ADP
Pi
ATP
ADP+Pi
+ -酮戊二酸
糖
脂肪
酵解 磷酸二羟丙酮
α-磷酸甘油
甘油
磷酸二羟丙酮
糖代谢
脂肪
脂肪酸 -氧化 乙酰CoA乙醛酸循环琥珀酸 糖异生 糖 (植物)
TCA
糖代谢与蛋白质代谢的相互联系
糖 →→ α-酮酸 NH3 氨基酸
蛋白质
蛋白质 氨基酸 α-酮酸 糖
(生糖氨基酸)
脂类代谢与蛋白质代谢的相互联系
甘油 脂肪
磷酸二羟丙酮
脂肪酸 乙酰CoA 氨基酸碳架
氨基酸
NADPH
乙酰CoA
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
生物氧化的三个阶段
大分子降解 成基本结构 单位
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰
CoA等)
共同中间物进 入三羧酸循环, 氧化脱下的氢由 电子传递链传递 生成H2O,释放 出大量能量,其 中一部分通过磷 酸化储存在ATP 中。
能量的“通货”,此外UTP参与多糖的合成,CTP参与磷脂合成 ,GTP参与蛋白质合成与糖异生作用。
•核苷酸的一些衍生物具重要生理功能(如CoA、NAD+,NADP+,
cAMP,cGMP)。
脂肪代谢和糖代谢的关系
三酰甘油
3-磷酸甘油 脂肪酸
甘油
氧
合
化
成
丙酮酸
乙酰 CoA
植物或微 生物
三羧酸 循环
乙醛酸 循环
之
天冬氨酸 苯丙酰氨
间 的
异亮氨酸 甲硫酰氨
亮氨酸 色氨酸
代 谢 联
苏氨酸 缬氨酸
谷氨酸 谷氨酰氨
系
组氨酸
脯氨酸
乙酰乙酰CoA
乙酰CoA
胆固醇
草酰乙酸 苹果酸
延胡索酸 琥珀酸
琥珀酰CoA -酮戊二酸
乙醛酸
柠檬酸 异柠檬酸
精氨酸
糖代谢与脂类代谢的相互联系
有氧氧化 乙酰CoA,NADPH 从头合成 脂肪酸
氨基酸
蛋白质
蛋白质 氨基酸 酮酸或乙酰CoA (生酮氨基酸)
脂肪酸 脂肪
核酸与糖、脂类、蛋白质代谢的联系
• 核酸是细胞内重要的遗传物质,控制着蛋白质的合成,影响细
胞的成分和代谢类型
• 核酸生物合成需要糖和蛋白质的代谢中间产物参加,而且需要
酶和多种蛋白质因子。
• 各类物质代谢都离不开具备高能磷酸键的各种核苷酸,如ATP是
代谢的基本要略
代谢的基本要略在于:形成ATP、还原力和构造单元,以 用于生物合成。 由ATP、还原力和构造单元可合成各类生物 分子,并进而装配成生物不同层次的结构。生物合成和生物 形态建成是一个耗能和增加有序结构的过程,需要由物质流 、能量流和信息流来支持。
脂肪
多糖
蛋白质
脂肪酸、甘油
葡萄糖、 其它单糖
2磷酸烯醇丙酮酸
丙酮酸 激酶
PEP羧激酶 2草酰乙酸
2丙酮酸
丙酮酸羧化酶
太阳能 化学能
ATP ADP+Pi
生物合成 细胞运动 膜运输
ATP携带能量由能源传递给细胞的 需能过程
还原性有机物
NADP+
分解代谢
氧化物
NADPH+H+
还原性生物 合成产物
还原性生物合成反应
氧化前体
通过NADPH循环将还原力由分解代谢 转移给生物合成反应
生物系统中的能流
糖的分解代谢和 糖异生的关系
天冬氨酸
(PEP) 丙氨酸
(胞液) (线粒体)
(转氨基作用) 谷氨酸
第二节 代 谢 调 节
一、代谢调节的概念 二、酶水平的调节 三、细胞结构对代谢途径的分隔控制调节 四、激素调节和跨膜信号转导
代谢的调节
代谢调节的四级水平: 酶水平调节 细胞水平调节 激素水平调节 神经水平调节
氨甲酰 天冬氨酸 —
天冬氨酸
氨基酸
磷酸烯醇式丙酮酸
+羧
+化 +
—
酶
丙酮酸 乙酰CoA
草酰乙酸
拧檬酸
蛋白质
-酮戊二酸
氨基酸合成的反馈调控
赤藓糖-4-磷酸
+
磷酸烯醇式丙酮酸
天冬氨酸
脱氧庚酮糖酸-7-磷酸 脱氢奎尼酸 莽草酸
天冬氨酰磷酸 天冬氨酰半醛
Lys 高丝氨酸
谷氨酸
ATP+NH4+ ADP+Pi
谷氨酰胺合酶
第十三章 物质代谢的相互联系和调节控制
第一节 物质代谢的相互联系
第二节 代谢调节
第一节 物质代谢的相互联系
一、代谢途径交叉形成网络 二、分解代谢和合成代谢的单向性 三、ATP是通用的能量载体 四、NADPH 以还原力形式携带能量 五、代谢的基本要略
一、 代谢途径交叉形成网络
1、糖代谢与脂类代谢的相互关系 2、糖代谢与蛋白质代谢的相互联系 3、脂类代谢与蛋白质代谢的相互联系 4、核酸与糖、脂类、蛋白质代谢的联系
+ 或—
前馈 S0 E0 S1 E1 S2
+ 或—
反馈
En-1 Sn
反馈调节中酶活性调节的机制
代谢物
别
构
活性
中
中心
心
6-磷酸葡萄糖对糖原合成的前馈激活作用
ATP
G
ADP
6-P-G
UTP
1-P-G
+
UDPG
UDPG
糖原 合成酶
糖原
核酸 嘧啶核苷酸
葡萄糖
磷酸烯醇式丙酮酸羧 化反应的调节控制
1,6-二磷酸果糖
Gly Ala
反硝化作用 氧化亚氮
Met
分支酸 预苯酸 氨基苯甲酸
Try Phe Trp
Thr
酮丁酸
Ile
Gln
Trp His
氨甲酰磷酸
葡萄糖胺6-磷酸
CTP AMP
糖酵解与三羧酸循环途径的调节
-
己糖激酶
G G-6-P
+
+
Pi
磷酸果 糖激酶
F-6-P F-1.6-2P
+-
ADP+Pi ATP
+-
AMP + ATP
蛋白质 核酸
淀粉、糖原
脂肪
糖
类
氨基酸
核苷酸
1-磷酸葡萄糖
6-磷酸葡萄糖
脂
生糖氨基酸
核糖-5-磷酸
脂肪酸
类
甘氨酸
天冬氨酸
磷酸二羟丙酮
甘油Biblioteka 谷氨酰氨氨丙氨酸
基 酸
甘氨酸 丝氨酰 苏氨酸
生酮氨基酸
亮氨酸 赖氨酸
PEP 丙酮酸
丙二单酰CoA
半胱氨酸
酪酰氨
核 苷
天冬氨酸 天冬酰氨
色氨酸 笨丙氨酸
异亮氨酸
酸
酪氨酸
多细胞整体水平调节
二、酶水平的调节
1、酶的别构效应 酶活性的前馈和反馈调节
2、产能反应与需能反应的调节 3、酶的共价修饰与级联放大机制
酶活性的前馈和反馈调节
前馈(feedforward )和反馈(feedback )是来自电子工程 学的术语,前者的意思是“输入对输出的影响”,后者的意思是 “输出对输入的影响”,这里分别借用来说明底物和代谢产物对 代谢过程的调节作用。这种调节可能是正调控,也可能是负调控, 其调节机理是通过酶的变构效应来实现的。
糖原(或淀粉) 1,6-二磷酸果糖
磷酸二羟丙酮 磷酸烯醇丙酮酸
草酰乙酸 苹果酸 延胡索酸 琥珀酸
糖分解和糖异生途径中 相对独立的单向反应
二磷酸果糖 磷酸酯酶
糖原(或淀粉)
1-磷酸葡萄糖 6-磷酸葡萄糖
己糖激酶 葡萄糖
6-磷酸果糖 6-磷酸葡萄糖磷酸酯酶
果糖 激酶 1,6-二磷酸果糖
3-磷酸甘油醛磷酸二羟丙酮