第八章化学光谱
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 8.1 分子吸收光谱示意图
电磁波谱与波谱分析方法 电磁波谱区域与类型:
γ
射 线
X 射
远 紫 外
线线
紫 外 线
无
可 见 光
近 红 外 线
中远 线红线红
外外
微 波
线 电 磁 波
0.1nm 10nm 200nm 400nm 800 nm 2.5μm 25μm 100cm 1m
分子结构与吸收光谱的关系: 500μm
8.3 核磁共振谱 8.3.1 核磁共振的产生 (1) 原子核的自旋与核磁共振 (2)(2) 核磁共振仪和核磁共振谱图 8.3.2 化学位移 (1) 化学位移的产生 (2) 化学位移的表示方法 (3) 影响化学位移的因素 8.3.3 自旋偶合与自旋裂分 (1)自旋偶合的产生 (2) 偶合常数 (3) 化学等同核和磁等同核 (4) 一级谱图和n+1规律
8.3.4 NMR谱图举例 8.3.5 13C 核磁共振谱简介 8.4 紫外吸收光谱 8.4.1 紫外光与紫外吸收光谱 8.4.2 电子跃迁类型 8.4.3 紫外谱图解析 8.5 质谱 8.5.1 质谱的基本原理 8.5.2 质谱解析
表8.1 测定有机化合物结构的主要波谱方法
波谱方法
代号 提供的信息
K为化学键的力常数(N·cm-1)(牛[顿]·厘米-1)
•键的振动频率与力常数(与化学键强度有关)
成正比,而与成键的原子质量成反比。
• 同一类型化学键,由于环境不同,力常数 并不完全相同,因此,吸收峰的位置不同
• 引起分子偶极矩发生变化的振动才会出现
红外吸收峰。
RCCR
R
H
CC
HR
无红外吸收峰
化学键极性越强,振动时偶极矩变化 越大,吸收峰越强。
C-H拉伸(或伸缩)
烷烃
2960-2850cm-1
C-H弯曲
-CH2-, 1460cm-1 -CH3 , 1380cm-1
异丙基,两个等强度的峰 三级丁基,两个不等强度的峰
吸收 振 峰动
化合物
C-H拉伸 (或伸缩)
C=C,CC,C=C-C=C
苯环(拉伸或伸缩)
C-H弯曲
烯烃
>3000 (中) 3100-3010
透光度以下式表示:
T% I 100% I0
I:表示透过光的强度; I0:表示入射光的强度。
吸收峰的强度
吸收峰的位置
图8.2 1–己烯红外光谱图
8.2.1 分子的振动和红外光谱
(1) 振动方程式 分子中成键的两个原子的简谐振动:
Hooke定律:
√ ν=
1 2π
k(
1 m1
+
m1 2)
式中:m1,m2为成键原子的质量(g);
UV
MS
1. 碳骨架 2. 与碳原子相连的氢 3. 原子的化学环境
主要的官能团 分子中π电子体系 1. 相对分子质量 2. 分子式 3. 分子中结构单元
8.1 分子吸收光谱和分子结构
电磁波的性质: E= hν = hc /λ h- 普朗克(Planck)常量: 6.63 × 10-34 J• s ν- 频率( Hz), ν= c ·σ λ- 波长 (nm) c―光速: 3 × 108 (m·s-1) σ-波数(cm-1) 分子吸收光谱:
第八章 有机化合物的波谱分析
8.1 分子吸收光谱和分子结构 8.2 红外吸收光谱 8.2.1 分子的振动和红外光谱 (1)振动方程式 (2)(2) 分子振动模式 8.2.2 有机化合物基团的特征频率 8.2.3 有机化合物红外光谱举例 (1)烷烃 (2)(2) 烯烃 (3)(3) 炔烃 (4)(4) 芳烃
核磁共振波谱
(nuclear magnetic
resonance spectroscopy)
红外光谱 (infrared spectroscopy) 紫外可见光谱 (ultraviolet-visible spectroscopy)
质谱 (mass spectrometry)
NMR 吸收 光谱 IR
伸缩振动 化学键的振动方式
弯曲振动
(2) 分子振动模式
对称伸缩振动 (νs) 反对称伸缩振动(νas)
摇摆振动 (ω ) 面外弯曲振动 卷曲振动 (τ)
摇摆振动 (ρ) 面内弯曲振动 剪切振动 (δs)
值得注意的是:不是所有的振Байду номын сангаас都能引起红外吸
收,只有偶极矩(μ)发生变化的,才能有红外吸收。
H2、O2、N2 电荷分布均匀,振动不能引起红外吸 收。
1680-1620 强
1000-800
RCH=CH2
R2C=CH2 顺RCH=CHR 反RCH=CHR
1645(中) 910-905强 995-985强
H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。
结论:
产生红外光谱的必要条件是: 1. 红外辐射光的频率与分子振动的频率相当,才能
满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2. 必须是能引起分子偶极矩变化的振动才能产生红 外吸收光谱。
有机化合物基团的特征频率
总结大量红外光谱资料后,发现具有同一类型化 学键或官能团的不同化合物,其红外吸收频率总是出 现在一定的波数范围内,我们把这种能代表某基团, 并有较高强度的吸收峰,称为该基团的特征吸收峰(又 称官能团吸收峰)。
E2 电νh子能= Δ级E:= EU2V-E1
ΔE 吸收光谱
ΔE
振原动子能 核级自:旋能IR级:NMR分子结构
E1
8.2 红外吸收光谱
红外光谱的功能:鉴别分子中的某些官能团 电磁波光谱 电磁波辐射:
λ 2.5~25 μm σ 4000~400 cm-1 区域
σ -波数 化合物吸收了红外光的能量,使得分子 振动能级发生跃迁,由此产生红外光谱。
分子发生振动能级跃迁时,也伴随着转动 能级的跃迁。
红外光谱 一、红外光谱的表示方法 红外光谱是研究波数在4000-400cm-1范围内不同
10%<T%<40%(波长的红外光通过化合物后被吸收的谱图。 谱图以波长或波数为横坐标,以透光度为纵坐标而形成。
T%<10%(vs) 10%<T%<40%(s)40%<T%<90%(m)T%>90%(w)v可变b宽
红外光谱的八个峰区
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认.
1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。
重要官能团的红外特征吸收
吸收 振 峰动
化合物
电磁波谱与波谱分析方法 电磁波谱区域与类型:
γ
射 线
X 射
远 紫 外
线线
紫 外 线
无
可 见 光
近 红 外 线
中远 线红线红
外外
微 波
线 电 磁 波
0.1nm 10nm 200nm 400nm 800 nm 2.5μm 25μm 100cm 1m
分子结构与吸收光谱的关系: 500μm
8.3 核磁共振谱 8.3.1 核磁共振的产生 (1) 原子核的自旋与核磁共振 (2)(2) 核磁共振仪和核磁共振谱图 8.3.2 化学位移 (1) 化学位移的产生 (2) 化学位移的表示方法 (3) 影响化学位移的因素 8.3.3 自旋偶合与自旋裂分 (1)自旋偶合的产生 (2) 偶合常数 (3) 化学等同核和磁等同核 (4) 一级谱图和n+1规律
8.3.4 NMR谱图举例 8.3.5 13C 核磁共振谱简介 8.4 紫外吸收光谱 8.4.1 紫外光与紫外吸收光谱 8.4.2 电子跃迁类型 8.4.3 紫外谱图解析 8.5 质谱 8.5.1 质谱的基本原理 8.5.2 质谱解析
表8.1 测定有机化合物结构的主要波谱方法
波谱方法
代号 提供的信息
K为化学键的力常数(N·cm-1)(牛[顿]·厘米-1)
•键的振动频率与力常数(与化学键强度有关)
成正比,而与成键的原子质量成反比。
• 同一类型化学键,由于环境不同,力常数 并不完全相同,因此,吸收峰的位置不同
• 引起分子偶极矩发生变化的振动才会出现
红外吸收峰。
RCCR
R
H
CC
HR
无红外吸收峰
化学键极性越强,振动时偶极矩变化 越大,吸收峰越强。
C-H拉伸(或伸缩)
烷烃
2960-2850cm-1
C-H弯曲
-CH2-, 1460cm-1 -CH3 , 1380cm-1
异丙基,两个等强度的峰 三级丁基,两个不等强度的峰
吸收 振 峰动
化合物
C-H拉伸 (或伸缩)
C=C,CC,C=C-C=C
苯环(拉伸或伸缩)
C-H弯曲
烯烃
>3000 (中) 3100-3010
透光度以下式表示:
T% I 100% I0
I:表示透过光的强度; I0:表示入射光的强度。
吸收峰的强度
吸收峰的位置
图8.2 1–己烯红外光谱图
8.2.1 分子的振动和红外光谱
(1) 振动方程式 分子中成键的两个原子的简谐振动:
Hooke定律:
√ ν=
1 2π
k(
1 m1
+
m1 2)
式中:m1,m2为成键原子的质量(g);
UV
MS
1. 碳骨架 2. 与碳原子相连的氢 3. 原子的化学环境
主要的官能团 分子中π电子体系 1. 相对分子质量 2. 分子式 3. 分子中结构单元
8.1 分子吸收光谱和分子结构
电磁波的性质: E= hν = hc /λ h- 普朗克(Planck)常量: 6.63 × 10-34 J• s ν- 频率( Hz), ν= c ·σ λ- 波长 (nm) c―光速: 3 × 108 (m·s-1) σ-波数(cm-1) 分子吸收光谱:
第八章 有机化合物的波谱分析
8.1 分子吸收光谱和分子结构 8.2 红外吸收光谱 8.2.1 分子的振动和红外光谱 (1)振动方程式 (2)(2) 分子振动模式 8.2.2 有机化合物基团的特征频率 8.2.3 有机化合物红外光谱举例 (1)烷烃 (2)(2) 烯烃 (3)(3) 炔烃 (4)(4) 芳烃
核磁共振波谱
(nuclear magnetic
resonance spectroscopy)
红外光谱 (infrared spectroscopy) 紫外可见光谱 (ultraviolet-visible spectroscopy)
质谱 (mass spectrometry)
NMR 吸收 光谱 IR
伸缩振动 化学键的振动方式
弯曲振动
(2) 分子振动模式
对称伸缩振动 (νs) 反对称伸缩振动(νas)
摇摆振动 (ω ) 面外弯曲振动 卷曲振动 (τ)
摇摆振动 (ρ) 面内弯曲振动 剪切振动 (δs)
值得注意的是:不是所有的振Байду номын сангаас都能引起红外吸
收,只有偶极矩(μ)发生变化的,才能有红外吸收。
H2、O2、N2 电荷分布均匀,振动不能引起红外吸 收。
1680-1620 强
1000-800
RCH=CH2
R2C=CH2 顺RCH=CHR 反RCH=CHR
1645(中) 910-905强 995-985强
H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。
结论:
产生红外光谱的必要条件是: 1. 红外辐射光的频率与分子振动的频率相当,才能
满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2. 必须是能引起分子偶极矩变化的振动才能产生红 外吸收光谱。
有机化合物基团的特征频率
总结大量红外光谱资料后,发现具有同一类型化 学键或官能团的不同化合物,其红外吸收频率总是出 现在一定的波数范围内,我们把这种能代表某基团, 并有较高强度的吸收峰,称为该基团的特征吸收峰(又 称官能团吸收峰)。
E2 电νh子能= Δ级E:= EU2V-E1
ΔE 吸收光谱
ΔE
振原动子能 核级自:旋能IR级:NMR分子结构
E1
8.2 红外吸收光谱
红外光谱的功能:鉴别分子中的某些官能团 电磁波光谱 电磁波辐射:
λ 2.5~25 μm σ 4000~400 cm-1 区域
σ -波数 化合物吸收了红外光的能量,使得分子 振动能级发生跃迁,由此产生红外光谱。
分子发生振动能级跃迁时,也伴随着转动 能级的跃迁。
红外光谱 一、红外光谱的表示方法 红外光谱是研究波数在4000-400cm-1范围内不同
10%<T%<40%(波长的红外光通过化合物后被吸收的谱图。 谱图以波长或波数为横坐标,以透光度为纵坐标而形成。
T%<10%(vs) 10%<T%<40%(s)40%<T%<90%(m)T%>90%(w)v可变b宽
红外光谱的八个峰区
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认.
1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。
重要官能团的红外特征吸收
吸收 振 峰动
化合物