扫描电镜的综述及发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电镜的综述及发展

1 扫描电镜的原理

扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。

扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。

扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成

扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。

真空系统

真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。

真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。

成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。

之所以要用真空,主要基于以下两点原因:

电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM 时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。

为了增大电子的平均自由程,从而使得用于成像的电子更多。

电子束系统

电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。

电子枪

电子枪用于产生电子,主要有两大类,共三种。

一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。

另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30~100小时之间,价格便宜,但成像不如其他两种明亮,常作为廉价或标准SEM配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。

电磁透镜

热发射电子需要电磁透镜来成束,所以在用热发射电子枪的SEM上,电磁透镜必不可少。通常会装配两组:

汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成像会焦无关。

物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。

成像系统

电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级

电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成像,但习惯上,仍然将X射线分析系统划分到成像系统中。

有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子。

2 扫描电镜的特点

(1)能够直接观察样品表面的结构,样品的尺寸可大至120mm*80mm*50mm。

(2)样品的制备过程简单,不用切成薄片。

(3)样品可以在样品室中作三维空间的平移和旋转,因此可以从各种角度对样品进行观察。

(4)景深大,图像富有立体感,可直接观察各种试样凹凸不平表面的细微结构。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(5)图像的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨

率介于光学显微镜与透射电镜之间,可达3nm。

(6)电子束对样品的损伤与污染程度较小。

(7)能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等)。

(8)在观察形貌的同时,还可利用从样品发出的其他信号做微区成分及晶体学分析。

图1 传统扫描电镜的主体结构

3 近代扫描显微镜的发展

扫描电子显微镜早在1935年便已经被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。现在扫描电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。

4 现代扫描电镜的发展

近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体产业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词“环扫”,即环境扫描电镜。

4.1低电压扫描电镜

在扫描电镜中,低电压是指电子束流加速电压在1kV左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边沿效应更加明显,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。

相关文档
最新文档