专题一、数字正射影像图的制作流程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7 附加信息的整饰
附加信息整饰包括标准分幅与图幅 整饰。对SPOT5正射影像进行1:1万标准 分幅,DOM范围为标准图幅的内图廓范 围,图名为分幅标准编号。图幅整饰包 括分别制作图廓整饰(图名、图幅号、接 合图表、公里格网、北图廓外中央的行 政区划注记、比例尺、秘密级别、生产 单位、内外图廓、公里格网等)、注记、 县(市)及乡(镇)级行政境界等整饰文件。
2、 GCP的类型
在很多软件中(比如:ERDAS和大部分数字摄影测 量系统),根据控制点的作用还对GCP进行了分类,主 要包括:平高点、平面点、高程点、检查点、连接点。
通常情况下我们选择的GCP大多都是平高点,即 GCP的平面值和高程值都参与模型计算,但是也有一 些情况需要选择其他类型的GCP。例如:当控制点的 平面精度满足精度要求,但是其高程值未知,或者精 度不够,这部分点就可以作为平面点参与模块计算。 同样的道理,高程点只确定其高程值,不参与平面计 算。如果使用多项式校正,模型计算并没有考虑到地 形起伏,高程点是不需要的,所有的地面控制点仅需 知道平面坐标即可。
2.3 多光谱影像数据配准
利用已经纠正的全色影像对多光谱影像进 行配准,影像配准实质上是在两幅或多幅影像 之间识别同名像点。影像配准的方法主要有按 灰度配准与按特征配准。
配准分为绝对配准和相对配准两种方式。 绝对配准是指将所有的影像都纠正到统一的坐 标系下,即所有影像都以DRG为基准进行的配 准。相对配准是指其它影像均以一幅已经精纠 正的高分辨率影像为基准而进行的配准。
2.4 影像分辨率融合
遥感数字融合是对较高空间分辨率 的全色影像与较低空间分辨率的多光谱 影像采用一定算法生成一组新的合成图 像的过程。这样做不仅使融合影像提高 空间分辨率、增加了影像的空间纹理信 息,而且能保持影像光谱原始信息,不 发生或尽可能少地发生信息失真,便于 提取解译因子。因此,对不同时空分辨 率影像进行融合的技术是遥感应用研究 的主流方向。
3.用1:5万DEM数据和1:5万数字栅格地形图、1: 2.5万土地利用现状图以及部分等级控制点对SOPT5 2.5m 分辨率卫星遥感影像数据进行正射校正,制作辖区内1:1 万正射影像图(该正射影像图的数学平面精度为1:5万, 图面反映的土地利用要素为1:1万)。
4.利用已有的等级测量控制点和具有 定位意义的线状地物对正射影像的精度进行 验证,确保成果合格后将1:1万正射影像图 和原有的土地利用现状图叠加,找出与正射 影像图不吻合的地类图斑,并以正射影像为 参考修改地类图斑边界,使其和正射影像的 边界线保持一致。
静态误差又可分为内部误差和外部误差两类变形 误差。内部误差主要是由传感器自身的性能、技术指 标偏离标称数值所造成的。它随传感器的结构不同而 异,误差较小。
外部变形误差指的是传感器本身处在正常工作的 条件下,由传感器以外的各因素所造成的误差。例如 传感器的外方位(位置、姿态)变化、传感介质的不均匀、 地球曲率、地形起伏、地球旋转等因素所引起的变形 误差等。
3、GCP的分布
GCP分布情况对于遥感影像校正精度的影响也很大。 通常我们要求GCP的分布均匀,并且影像的四角附近均 要有一个GCP,这样才能充分控制成图区域的精度。对 于山地地形较复杂的情况,也要根据实际情况多布置一 定的GCP。
GCP一定要布置在影像纹理清晰易于定位的地方,切 不可胡乱猜测,宁缺毋滥。应该选择能准确判点的位置 上,如线状地物的交角或地物拐角上,交角必须良好 (30°-150°)。道路交叉处、桥梁,花坛都是适于布 点的地方的。在老图选GCP,不要选择易于变化的地物 点,比如林地的边界,田埂,江河中沙洲的拐角。由于 房屋存在投影差,如果选择房屋上的角点,应该考虑其高 程值。
5.在MapGIS中,以正射影像图为背景, 叠加调整边界后的土地利用现状图,制作1: 1万外业工作底图;同时将原有的土地利用 现状图的图斑属性进行室内分析,判读正确 的属性则保留,对于通过室内判读不能确定 其属性的图斑,则进行外业调查确认。
6、最后是检查验收和数据入库工作。
二、SPOT5遥感正射影像图的制作过程
1、GCP的来源和质量
采集GCP有很多方法,主要根据数据源的来源加 以区分,包括:通过数字栅格地图(DRG)、数字正射 影像(DOM)、数字线划地图(DLG)或者外业测量等。
目前国内用到的大部分已有地图是纸质老地形图, 通过地图扫描技术将其扫描为栅格数据,并经过多项 式校正就成为数字栅格地图,这是获取GCP的最便捷、 最主要方法。DRG一般存在现势性差,精确度较差,地 图不够清晰直观的缺点,因此通过DRG采集GCP,最 好要选择比例尺较大的数据源才能保证GCP的精度。
三、正射纠正过程中涉及的几个坐标系
正射纠正处理过程,其实也就是我们常说的 摄影测量几何处理的过程。摄影测量中常用的坐 标系有两类,一类是用于描述像点位置的,称为 像方空间坐标系;另一类是用于描述地面点的位 置,称为物方空间坐标系。
四、正射纠正几何变形的主要误差来源
遥感影像的几何变形误差可分为静态误差和动态 误差两大类。静态误差是指在成像过程中,传感器相 对于地球表面呈静止状态时所具有的各种变形误差; 动态误差则主要是由于在成像过程中地球的旋转所造 成的图像变形误差。
这种方法是根据卫星上成像的物理过程,建 立一个由辅助参数(包括卫星的偏航、俯仰、翻 滚、地球的曲率、运动等参数)组成的空间变换 模型,按照这个模型对卫星图象进行纠正,这 种方法有较大的适应性,但计算复杂。对于地 形起伏大或影像侧视角大的地区,利用成像的卫 星轨道参数、传感器参数及DEM,对影像进行 严密的物理模型纠正。纠正时首先恢复影像的 成像模型,然后利用数字高程模型根据成像模 型来纠正投影差,利用现有的地图三维坐标或 外业控制点三维坐标对影像进行控制纠正,最 后得到正射纠正影像。
检查点是用于检测模型校正精度指标的参考数据, 并不参与影像的几何建模计算。它是通过影像校正后的 点位坐标与用户输入的理论坐标进行数据分析,而检定 影像校正的精度。
连接点通常是在空中三角测量的时候才使用。在 相邻相片上采集一些连接点可以确定像片之间的相对关 系,从而将一个测区内大量影像的相对关系纳入到一个 统一的系统中,然后根据已有平高点和影像模型参数进 行联合平差。因此连接点一般不需要大地坐标值,只需 要确定他们在相邻影像上的位置(或者像方坐标),经过 平差计算以后,连接点的三维坐标即被计算出来,那时 候它发挥的作用也相当于平高点了。
数字正射影像是经过校正的、含有 地理信息的影像数据,是近几年发展起 来的测绘地图产品,现势性较好,而且 DOM具有丰富的影像纹理信息、影像 判读非常直观, GCP采集的速度和精 度都比较高。主要的缺点是:由于像素 大小的影响,有些较小的地物难以识别, 定位不准确,只能精确到像素级大小。 数字线划地图是矢量化的地图,一般通 过DRG的矢量化+修测、数字摄影测量 的方法得到。它具有无限级缩放的特点, GCP数值的读取精度相当高。
所谓数字正射影像图(Digital Orthphoto Map)简称DOM,是利用数字高程模型对扫 描处理的数字化的航空像片或遥感影像,经 过逐像元进行处理,再按影像镶嵌,根据图 幅范围剪裁生成的影像数据。数字正射影像 图和通常我们所接触的地图一样,不存在变 形,它是地面上的信息在影像图上真实客观 的反映,但是所包含的信息远比普通地形图 丰富,而且其可读性更强。
2.5 影像增强与调色
用遥感处理软件对融合后的正射 影像进行锐化处理,使各种地类影像 纹理边界增强。进一步调色,使影像 尽可能接近于自然色彩,土地分类判 读清晰易读。
2.6 多景影像的镶嵌
大区域正射影像图成图区域涉及多景遥 感影像,为满足影像的无缝拼接、生成标准 分幅数字正射影像的需要,必须对已经过正 射纠正并分辨率融合的单景卫星影像进行数 字镶嵌,对相邻影像进行接边。在图像拼接 时,需要确定一幅参考图像作为输出拼接的 基准,决定拼接图像的对比度匹配、输出图 像的地图投影、像元大小和数据类型。在拼 接的过程中要时时注意图像的接边及匀光问 题。
主要流程:
1、控制点的选取 2、全色数据的正射校正 3、多光谱影像数据的配准 4、影像分辨率融合 5、影像的增强与调色 6、多景影像的镶嵌 Baidu Nhomakorabea、附加信息的整饰
2.1 控制点的选取
GCP是对航空像片和卫星遥感影像进行各种几何 校正和地理定位的重要数据源,它的数量、质量和分 布等指标直接影响了影像校正的精确性和可靠性。
GCP还有一个重要的来源就是:通过 空中三角测量技术获取。当进行大范围影 像的正射校正时候,可以通过外业测量少 量高精度的GCP,并运用空中三角测量技 术进行GCP的加密,然后将加密点作为单 片影像的GCP资料。这种方法通常能保证 成图精度,成图速度也很快,但是它要求 原始影像资料之间具有较大的重叠,较好 的相互关系,处理软件的算法优劣也直接 影响加密成果的精度。
制作正射影像图的目的是将其作为 土地调查的工作底图,方便内业解译和外 业实地调绘。
一、利用数字正射影像图开展土地调查的技术路线
1.将影像涉及区域的1:5万数字栅格地形图按公里 网坐标进行逐格网校正后,裁剪掉其内图廓以外的部分, 按空间坐标进行拼接(如果涉及跨两个投影带,则需要 进行投影换带计算),形成辖区内的地形参考数据,为 影像校正做好准备; 2.利用省厅提供的20米等高距的地形数据,按照1:5 万DEM数据制作的技术要求,制作辖区内的数字高程模 型(DEM)数据(如果涉及跨两个投影带,则需要进行 投影换带计算)。
在很多成熟的软件中,如果从已有地图上选点,应 尽量使用GCP自动查找和高程点自动读取功能,有助于 加快选点速度和质量。
2.2 全色波段数据正射纠正 由于遥感影像传感器空中位置与姿态的变
化以及地面高程的影响,使得遥感影像产生了 变形,数字纠正的目的就是要改正这种变形的 影响,并获得具有地理编码的正射数字影像, 这一改正过程被称为数字纠正。遥感影像的数 字纠正可以分为二维纠正与三维纠正,而二维 纠正是根据遥感影像上明显地物点的象素坐标 与相应的地面点坐标的对应关系,通过多项式 拟合实现的,因此也称多项式纠正,这种方法 简单易行,但它是一种近似的解法。三维纠正 又称为数字微分纠正,它是根据传感器成像模 型并考虑地面起伏对每一个象素的影响的严密 纠正方法,我们所采用的物理模型纠正(正射 校正)就属于三维纠正。
相关文档
最新文档