硅基锗材料的外延生长及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅基锗材料的外延生长及其应用
摘要:硅是最重要的半导体材料,在信息产业中起着不可替代的作用。但是硅材料也有一些物理局限性,比如它是间接带隙半导体材料,它的载流子迁移率低,所以硅材料的发光效率很低,器件速度比较慢。在硅衬底上外延生长其它半导体材料,可以充分发挥各自的优点,弥补硅材料的不足。本文介绍了硅衬底上的锗材料外延生长技术进展,讨论了该材料在微电子和光电子等方面的可能应用,重点介绍了它在硅基高速长波长光电探测器研制方面的应用。
关键词:硅基;锗,外延;光电探测器
Epitaxy and application of Ge layer on Silicon substrate
Huiwen Nie1, Buwen Cheng2
(1.Hunan Chemical Engineering Machinery School, Hunan Industrial Technology College
2.State Key Laboratory on Integrated Optoelectronics, Institute
of Semiconductors, Chinese Academy of Sciences, Beijing 100083)
Abstract: Silicon is the most important semiconductor material and it is irreplaceable in the information industry. But Silicon also has some shortcomings, such as very low luminescence efficiency and low device speed due to the indirect bandgap and low carrier mobility. Growing other semiconductors on Si substrate can take the advantages of the different semiconductors and improve the performance of the
Si-based devices and integrated circuits. The progress of Ge growth on Si was introduced in the paper. The application of the Si-based Ge epitaxy layer was discussed, especially the application on Si-based high speed photodetectors operating at long wavelength.
Key words: Si-based, Germanium, Epitaxy, Photodetector
1引言
硅基光电集成将微电子技术和光子学技术进行融合,是
微电子技术的继承和发展,是信息技术发展的重要前沿研究
领域。其研究内容包括硅基高效光源、硅基高速光电探测器、硅基高速光调制器、低损耗光波导器件等。硅衬底上外延生长的锗(Ge)材料是硅基高速长波长光电探测器的首选材料
[1]。近几年来人们在硅基Ge材料外延生长方面取得了突破性进展,并用它研制出了3 dB带宽达40 GHz的高速光电探测器,解决了硅基光电集成的探测器研制难题。
Ge的电子和空穴迁移率都很高,Ge是所有半导体体材料中空穴迁移率最高的材料,所以Ge是研制高速集成电路的可选材料。人们曾经用Ge研制出了第一只半导体晶体管,但是由于Ge的氧化物不稳定,界面态控制困难,限制了其在集成电路方面的应用,使载流子迁移率并不高的Si材料成为集成电路和信息产业的支柱。硅集成电路遵循摩尔定律飞速发展着,但是随着特征线宽的进一步缩小,集成电路的集成度和性能的提高遇到了前所未有的挑战。人们在不断提出创新性的方案以使硅集成电路继续沿着摩尔定律发展,包括应变硅技术、高K介质技术等等。利用新的高迁移率半导体材料来替换(部分替换)Si材料,研制新型高速电路也是一个很好的途径。近年有很多的研究组开展了Ge高速集成电路方面的研究,取得了很多重要的进展。但是Ge材料的机械加工性能比硅差、Ge衬底材料的尺寸比较小、Ge材料价格昂贵、地球上Ge 的丰度小,这些将是限制Ge集成电路发展的重要障碍。在硅衬底上外延出Ge材料,并用它研制高速电路,则可以解决上述障碍,并且可以充分发挥Si和Ge的各自优势,实现Si CMOS 和Ge CMOS集成的高速集成电路,所以硅基Ge外延材料在新型高速集成电路方面将有可能发挥重要作用。
另外,由于Ge的晶格常数与GaAs的晶格常数匹配较好,硅基Ge外延材料可以作为GaAs系材料外延的衬底材料,制备化合物半导体材料与硅材料集成的新型材料,在多节高效太阳能电池、硅基高速电路、硅基光电单片集成等方面具有潜在的重要应用前景。所以硅基Ge材料是近年最重要的硅基异质外延材料之一。本文将重点介绍硅基Ge材料的外延生长方法及其在硅基光电探测器方面的应用。
2硅基Ge材料的生长
材料的平衡生长模式有三种:Frank-van der Merwe模式(FM,层状)、V olmer-Weber模式(VW,岛状)和
Stranski-Krastanow模式(SK,先是层状生长,然后是岛状生长)。图1示出了三种生长模式的生长过程。晶体薄膜的平衡生长按哪一种模式生长取决于衬底表面能、薄膜表面能和界面能。如果薄膜表面能和界面能之和总是小于衬底的表面能,即满足浸润条件,则是层状生长,反之,如果薄膜表面能与界面能之和总是大于衬底的表面能,则生长会是岛状生长模式。如果在开始生长时,满足浸润条件,是层状生长,但由于存在应变,随生长层数的增加,应变能增加,使界面能增加,从而使浸润条件不再满足,外延层会形成位错以释放应变或者在表面原子有足够的迁移率时,形成三维的岛,从而生长转化为岛状生