5_8GHzCMOS混频器设计

5_8GHzCMOS混频器设计
5_8GHzCMOS混频器设计

基金项目:国家自然科学基金重点资助项目(90307016);国家预研项目(E0617010)518GHz CMOS 混频器设计

任怀龙1,默立冬1,吴思汉2,陈兴1,冯威1,廖斌1,吴洪江1

(11中国电子科技集团公司第十三研究所,石家庄050051;21国防科技信息研究中心,北京100028)摘要:介绍了C MOS 混频器主要技术指标的设计思路和技术。采用0118L m C MOS 工艺,使用Agilent 公司的ADS 软件设计出一种518GHz C MOS 混频器电路,结果表明,工作电压118V 时,RF 频率518GHz,本振频率5178GHz,中频频率20MHz 下,转换增益713dB 、输入1dB 压缩点-813dB m,噪声系数817,工作电流小于5mA,该电路已交付流片。

关键词:C MOS 混频器;转换增益;线性度

中图分类号:TN405 文献标识码:A 文章编号:1003-353X (2008)03-0257-04

Design of 518GHz CMOS Mixer

Ren Huailong 1

,Mo Lidong 1

,Wu Sihan 2

,Chen Xing 1

,Feng Wei 1

,Liao Bin 1

,

Wu Hongjiang 1

(11The 13th Resea r ch I nstitute ,CETC,Shi jia z huang 050051,China;21The Research Center o f De f ense T echnology In f ormation,Bei j ing 100028,China)

Abstract:The design techniques of improved CMOS mixers were illustrated.Based on 0118L m CMOS

process,a 518GHz C MOS mixer was designed with Agilent ADS.The simulated results show that this mixer achieves a conversion gain of 713dB,input 1dB gain compress of -813dBm,and a noise figure of 817dB,while consuming less than 5mA from a single 118V supply,the circuit is in manufacturing.

Key words:C MOS mixer;c onversion gain;linearity EEAC C:2570A

0 引言

近年来,无线通信系统,如无绳电话、手机、PDA 、W LAN 、导航仪等,已经成为人们日常生活中不可或缺的一部分。多种无线通信系统的蓬勃发展,使得对重量轻、体积小、功耗低、成本低的无线产品需求迅速增加,高集成度的射频收发机越来越受到关注。随着深亚微米C MOS 工艺的不断进步和成熟,其沟道长度不断减小,截止频率f T 不断增加,再加上C MOS 工艺与其他工艺相比具有价格低、集成度高、功耗小等特点,用C MOS 工艺设计

射频集成电路已经成为世界范围内的研究热点[1]

,人们不断提出基于C MOS 工艺的射频电路结构及设计技术,并逐渐推出成熟的C MOS 射频产品,取得了非常大的成绩。

混频器作为射频接收机中的关键部件,负责实现射频接收机的频率转换,其性能直接影响着整个接收机的性能,因此,混频器C MOS 设计技术的研究也是非常重要的课题之一。混频器的设计通常需要考虑转换增益、线性度、噪声系数、端口之间的隔离度以及功耗等性能指标,如低噪声的混频器可以减少对LNA 增益的要求;高转换增益的混频器可以减小中频噪声的影响,混频器的线性度决定了射频收发机的动态范围,其功耗也是接收机整体功耗主要组成部分。因此,研究设计高性能的混频器具有非常重要的应用价值。本文针对无限局域网的射频前端接收电路,设计了一种518GHz C MOS 混频器。

1 电路设计

111 混频器结构选择

根据电路设计及实现工艺的要求,可以应用的

集成电路设计与开发

Design and Development of IC

混频器结构有很多,一般分成两种:无源混频器和有源混频器。无源混频器包括二极管混频器、无源场效应晶体管混频器等,它具有很好的线性度,并且可以工作在很高的频率范围内,其明显的缺点是没有转换增益;有源混频器具有转换增益,可以减小来自中频的噪声影响,通常所用的有源混频器包括单晶体管有源混频器、双栅FE T 混频器、单平衡有源混频器和双平衡混频器[2]。为了改善混频器的线性度,人们还提出了一些新的混频器结构,其中最主要的有交叉耦合型和亚抽样型。对零中频接收机提出了双平衡子谐波混频器,可以很好地克服零中频接收机中存在的直流失调问题,使得射频和本振端口之间具有很好的隔离性能。

单晶体管有源混频器和双栅FE T 混频器电路结构简单,性能良好,但由于射频和本振信号的邻近影响,使得本振信号会通过滤波器和密勒(Miller)电容对射频信号产生干扰。与单平衡混频器相比,由于双平衡混频器全对称差分结构消除了中频IF 端口存在的来自射频和本振的馈通信号,提高了混频信号的质量,射频输入信号与两路反向的本振信号混频之后信号求和,消除了射频输入信号的穿通,克服了本振反馈,具有很好的端口隔离特性。同时,它具有较低的噪声系数,能提供较大的混频增益,对本噪声和伪信号噪声抑制能力强,被广泛应用于高性能的有源混频器。因此,目前在射频接收机中运用最多的还是吉尔伯特双平衡混频器结构。

图1 混频器原理图Fig 11 Gilbert cell mixer archi tecture

吉尔伯特结构混频器的基本结构如图1所示。射频信号从M 1和M 2的栅极输入,MOS 管工作在饱和区,将射频电压信号转化为电流信号;本振信号从M 3、M 4、M 5和M 6的栅极输入,MOS 管工作在开关状态。由开关电路对RF 电流信号进行开关调制,实现混频功能[3]。

112 提高混频器指标的技术

对于CMOS 混频器,设计目标和关键技术主要有:转换增益、线性度、噪声系数、端口之间的隔离度以及功耗,在具体实现时,通常需要在这几个指标之间进行折衷。由于吉尔伯特双平衡混频器结构的固有特性,它具有很好的端口隔离特性和较低的噪声系数,因此这里重点讨论提高C MOS 混频器线性度和转换增益的技术。

(1)线性度。在接收机中,射频输入信号经低噪声放大器后,再输入到混频器时,已经有较大的功率,为了保证信号的不失真并使整机有较高的信噪比,就要使混频器有很高的线性度。由于混频器的线性度直接决定接收机的动态范围,因此如何提高混频器的线性度,是混频器的关键设计技术之一。

吉尔伯特混频器通过互导管,把射频电压信号转换成电流信号,然后利用开关对对射频电流信号进行开关调制实现混频功能。因此,该电路的非线性主要是由互导管电压到电流的非线性转换关系和开关对的非理想开关特性造成的。随着沟道长度逐渐减小,MOS 管的I -V 非线性越来越严重,导致互导管M 1、M 2成为吉尔伯特混频器主要的非线性源。吉尔伯特类型的混频器中跨导的线性度决定了整个混频器的线性度下限。所以,在设计中重要的工作是加大跨导的线性,这可以通过逐段逼近的方法来实现。在CMOS 电路中,由于在小的输入范围内,跨导管呈现出合理的线性跨导,因此理论上讲,若混频器中输入级并联使用多组跨导管,并分别偏置在适当的电压下,跨导管总跨导g m 可以在较大的输入范围内都体现出良好的线性性能。图2中每一个差分对的跨导在一段输入范围内是线性的,结合在一起就构成了在更大范围内的线性跨导,如图3所示。

图2 跨导的线性化

Fig 12 C MOS g m cell

另一个提高混频器线性度最常用和最有效的方法是采用源级退化技术,即通过在图1的M 1和M 2的源级增加电阻,使阻抗提高,从而有效地提高混

任怀龙 等:518GHz CMOS 混频器设计

图3 逐段逼近法实现线性跨导的图示

Fig 13 Illus tration of li near transcond uctor by piecewi se

app roxi mation

频器的最大输入电压范围,实现增加线性度的目的[4]。

在设计时一般采用电感来形成阻抗Z s 构成源级退化。这样做的原因,一是理想的电感不存在热噪声,因而不会增加混频器的噪声系数;二是电感没有直流压降,这可增加混频器的净空电压以及线性度;三是使用电感可提高高频时的阻抗,能够滤除高频成分;四是对集成电路而言,低噪放与混频器直接相连,不需要功率匹配。

(2)转换增益。为了弥补中频滤波器的损耗以及降低混频器后续电路噪声对系统噪声的贡献,混频器需要有两种转换增益,即功率增益和电压增益。开关型混频器通常采用的转换增益公式为A v =g m R L (2/P ),其中,g m 为互导管的跨导;R L 为混频器负载。该公式的前提是LO 信号的幅度足够大,混频器中的开关对工作在理想开关状态。文献[6]对上述增益公式进行了修正,给出了更为精确的增益公式。

由公式可以看出,提高混频器转换增益可以通过提高互导管的跨导g m 和负载R L 来实现,提高跨导g m 可在输入级采用多组跨导管并联,每组跨导管与开关管形成改进的吉尔伯特混频器结构,设各跨导管的跨导依次为g m 1~g m n ,其等效总跨导

则为各跨导管跨导之和,即,g m =E n

n =1

g m n

[5]

;提高负载可采用高摆幅负载技术和有源负载技术。

另一种提高转换增益的方法是采用电流注入技术,改善开关对的开关特性,如图4所示。在吉尔伯特混频器的开关管中间额外加入两个电流源,形成两个注入电流。由于增加了电流注入,使流过负载电阻的直流减小,在保持电路直流工作点不变的情况下,增大负载电阻,从而使混频器的增益增大。采用电流注入还有以下优点:可以在电源电压不变的情况下有效提高混频器的线性度;可以减小由于MOS 管开关工作不理想所带来的闪烁噪声,

从而减小混频器的噪声系数。

图4 带电流注入的混频器Fig 14 Current injected mixer

113 混频器总体电路

本文设计的混频器总体电路。主要包括输入阻抗匹配、混频器单元和后级输出缓冲三个部分,如图5

图5 混频器电路原理图

Fig 15 Complete circui t diagram of the CMOS mixer

为实现输入阻抗匹配、射频信号和本振信号的直流电平分别通过R 1和R 2、R 3和R 4分压得到,输入信号通过和508匹配电阻相接,对于差分的输入信号,O 点相当于虚地,从而实现输入端508的阻抗匹配。

混频器单元采用逐段逼近法线性跨导技术,在混频器输入级使用了三组跨导管,以提高混频器的线性。另外,采取电流注入技术,用一个P MOS 管和一个电阻实现注入电流,通过PMOS 的源级接电阻来增大电流源的内阻,使得并联电流源内阻对负载电阻的影响减小,从而提高混频器的转换增益。

输出缓冲采用差分放大器的结构,与混频器单元的输出直接耦合。在设计时考虑放大器增益的同时也需要考虑它的线性度。

2 仿真结果与分析

使用Agilent 公司的ADS 仿真软件基于0118L m 混合CMOS 工艺模型对设计电路进行了优化仿真设计。优化时,折衷考虑转换增益、线性度、噪声系

任怀龙 等:518GHz C MOS 混频器设计

数和功耗等指标要求,对源级退化电感、偏置电流、匹配网络的电感、跨导放大器和开关管尺寸等参数进行优化。为了便于设计,跨导管取相同的宽长比,通过调节电阻的电流,来改变跨导管的直流偏置,利用各输入级在相同交流输入信号下不同的跨导特性进行互补,结合仿真,使输入级总跨导尽可能平坦,从而输出交流电流与输入电压成较好的线性关系。

最终优化结果:在RF 输入频率为518GHz,LO 输入频率为5178GHz,I F 输出频率为20MHz 的条件下,转换增益713dB,输入P -1 -813dB m,噪声系数817dB,电路工作电压118V,工作电流小于5mA 。仿真结果见图6

(a)

转换增益与有线源功率

(b)转换增益与IF

输出功率

(c)加到负载上的输出功率

图6 混频器的转换增益和输入P -1 仿真结果

Fig 16 Si mulati on res ults of convers ion gai n and gai n compres sion

3 版图设计

版图设计采用0118L m C MOS 工艺,大栅宽的MOS 管需要用多指版图实现,以减小栅电阻。为降低噪声,所有的晶体管周围要多放接触孔,晶体管的多指栅使用金属连接。同时要优化版图布局布线,避免因布局不好产生寄生的互联电阻和电容。

4 结论

介绍了提高C MOS 混频器主要技术指标的设计技术,讨论了一种518GHz C MOS 混频器的设计考虑,采用0118L m CMOS 工艺模型进行了设计分析,设计电路已经交付流片。本电路的设计为开展C MOS 混频器设计打下了基础,但还需在输出匹配和提高线性度方面做进一步深入研究,为研究C MOS 集成收发电路做储备。参考文献:

[1]陈新华,陈志恒,王志功,等.0135L m C MOS 工艺实现的119GHz 上变频器[J].东南大学学报,2001,31(4):10-13.[2]张国艳,黄如,张兴,等.CMOS 射频集成电路的研究进展[J].微电子学,2004,34(4):377-383.

[3]唐守龙,罗岚,陆生礼.MOSFET 输出阻抗对混频器线性度影响分析[J].应用科学学报,2005,23(2):169-173.[4]李鸣,唐守龙,罗岚,等.高线性度上变频混频器设计

[J].电子器件,2004,27(4):604-606.

[5]席占国,秦亚杰,苏彦锋,等.119GHz 高线性度上混频器

设计[J].固体电子学研究与进展,2007,27(1):49-53.[6]RUDE LL J C,OU J J,CHO T B,et al.A 119GHz wideband IF double conversion C MOS receiver for cordless telephone

applications[J].IEEE J SSC,1997,32(12):2071-2088.

(收稿日期:2007-11-

26)

作者简介:

任怀龙(1967)),男,河北平山人,高工,研

究方向为射频、高速集成电路设计;

默立冬(1975)),男,河北新乐人,硕士,研究方向为射频、高速集成电路设计;

吴思汉(1968)),男,安徽无为人,工程师,研究方向为模拟、射频集成电路设计;

陈兴(1979)),男,河北唐山人,研究方向为射频、高速集成电路设计;

冯威(1974)),男,河北正定人,研究方向为微波、射频、高速集成电路设计;

廖斌(1971)),男,湖北长沙人,高工,研究方向为微波、射频、高速集成电路设计;

吴洪江(1964)),男,河北衡水人,研究员,研究方向为微波、射频、高速集成电路设计。

任怀龙 等:518GHz CMOS 混频器设计

平衡混频器设计

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 ) 2cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以2 π 相位差分配到两只二极管上,故这类混频器称为 2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑∑ ∞-∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

场效应晶体管混频器原理及其电路

场效应晶体管混频器原理及其电路 混频器一般由输入信号回路、本机振荡器、非线性器件和滤波网络等4部分组成,如图1所示。这里的非线性器件本身仅实现频率变换,本振信号由本机振荡器产生。若非线性器件既产生本振信号,又实现频率变换,则图1变为变频器。所谓混频,是将两个不同的信号(如一个有用信号和一个本机振荡信号)加到非线性器件上,取其差频或和频。 图1 混频器的组成部分 混频器可根据所用非线性器件的不同分为二极管混频器、晶体管混频器、场效应管混频器和变容管混频器等。混频器又可根据工作特点的不同,分为单管混频器、平衡混频器、环形混频器、差分对混频器和参量混频器等。在设计混频器时应注意如下几点:(1)要求混频放大系数越大越好。混频放大系数是指混频器的中频输出电压振幅与变频输入信号电压振幅之比,也称混频电压增益。增大混频放大系数是提高接收机灵敏度的一项有力措施。(2)要求混频器的中频输出电路有良好的选择性,以抑制不需要的干扰频率。(3)为了减少混频器的频率失真和非线性失真以及本振频率产生的各种混频现象,要求混频器工作在非线性特性不过于严重的区域,使之既能完成频率变换,又能少产生各种形式的干扰。(4)要求混频器的噪声系数越小越好,在设计混频器时,必须按设备总噪声系数分配给出的要求,合理地选择线路和器件以及器件的工作点电流。(5)要考虑混频器的工作稳定性,如本机振荡器频率不稳定引起的混频器输出不稳等。(6)注意混频器的输入端和输出端的连接条件,在选定电路和设计回路时,应充分考虑如何匹配的问题。场效应管混频性能比三极管混频好,原因在于场效应管工作频率高,其特性近似平方率,动态范围大,非线性失真小,噪声系数低,单向传播性能好。场效应管混频器实际电路举例(1)有源混频器1)200MHz 场效应管混频器电路(有源混频器) 为提高混频增益,在下列的A、B电路中输入、输出端都有匹配网络完成阻抗匹配,获得大的变频增益;并且L3,C5均谐振ωL,起了抑制本振信号输出的作用。电路A)υs,υ L均从栅极注入(如图2所示)。 图2 υs,υL均从栅极注入电路图 电路B)υs从栅极注入,本振υL从源极注入(如图3所示)。

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

模拟乘法器MC1496 1596设计混频电路

班级: 姓名: 学号: 指导教师:林森 成绩: 电子与信息工程学院 信息与通信工程系

混频器的设计 1概述 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。 1.1混频器原理 混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,

变频器硬件设计方案

一.设计思路 通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元;开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSAl20组成。二.控制回路 1.整流电路 整流电路中,输人为380V工频交流电。YRl~YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。输人电源经二极管整流桥6R130G-160整流为直流,并经电的作用。发光二极管用于指示变频器的工作状态。Rl是启动过程中的限流电阻,由El~E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放于E1~E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗。继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。R1应选择大功率电阻,本电路中选择的是20W的水泥电阻,而且为了散热该电阻安装时应悬空。电路中的+5V、+12V和±15V电压是由开关电源提供的电压。LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用。UDCM是电压传感器的输出信号。通过外接插排连接至外接计算机控制电路。 2.开关电路 输出电压进行变换,为IPM模块和外接的计算机控制电路提供电源,提供的 电压为±该电路主要由PWM控制器TL3842P、MOSFETK1317和开关变压器组成, 其功能是对整流电路的流15V、+1直2V、+5v。

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

混频电路设计3

通信电路实验报告 ——谐振功率放大器设计及仿真 姓名:陈强华 学号: 班级: 专业:通信工程

实验三混频器设计及仿真 一、实验目的 1、理解和掌握二极管双平衡混频器电路组成和工作原理。 2、理解和掌握二极管双平衡混频器的各种性能指标。 3、进一步熟悉电路分析软件。 二、实验准备 1、学习二极管双平衡混频器电路组成和工作原理。 2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、 LO 本振输入频率:, RF 输入频率: 1MHz, IF 中频输出频率: 450KHz。 2、 LO 本振输入电压幅度: 5V, RF 输入电压幅度:。 3、混频器三个端口的阻抗为50Ω 。 4、在本实验中采用二极管环形混频器进行设计,二极管采用 DIN4148。 5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。 四、设计步骤 1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。两个输入端分别为射频端( RF)和本振( LO),输出端称为中频端( IF)其基本的原理如下图所示。

通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下: 输入的两个信号的频率分别为ωRF \ωLO ,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO ?ω (下变频),从而实现变频功能。在本试验中,我们采用二极管环形混频器,其的原理电路如图 3-2 所示,其中v V t RF RF RF = cosω ,v V t LO LO LO = cosω ,并且有V V LO RF >> ,因此二极管主要受到大信号v LO 控制,四个二极管均按开关状态工作,各电流电压的极性如图 3-2 所示。在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。因此,混频电路可以拆分成两个单平衡混频器。

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

多通道混频器电路的设计 protel 软件实训 课设 沈阳理工大学

成绩评定表 学生姓名张丽班级学号1203060101 专业通信工程课程设计题目多通道混频器电路 的设计 评 语 组长签字: 成绩 日期20 年月日

课程设计任务书 学院信息科学与工程学院专业通信工程 学生姓名张丽班级学号1203060101 课程设计题目多通道混频器电路的设计 实践教学要求与任务 1. 认真完成protel软件学习,熟练掌握基本操作。 2.绘制多通道混频器的电路原理图,要求布局符合电器规范、制图美观、可读性好。 3.采用protel绘制多通道混频器的电路原理图并用PCB完成相应的双面印刷版图。 4. 提交课程设计报告,要求条理清楚、图文并茂,体现制图的必要过程。 工作计划与进度安排 1:分析题目,查阅课题相关资料; 2:使用protel软件绘制多通道混频器电路的原理图; 3:绘制多通道混频器电路的双层印刷版原理图; 4:撰写课程设计报告,进行答辩验收。 指导教师: 201 5年1月5 日专业负责人: 201 5 年1 月5 日 学院教学副院长: 201 5 年1月5 日

摘要 混频是一种频率变换过程,是将信号从某一频率变换为另一频率,把已调制信号(调幅波或调频波)的载波频率从高频变换成固定的中频。设计的混频器电路,带有8个输入通道,2个输出通道。利用多通道设计方法,子图上建立一个输入通道,一个输出通道,就可以完成。通过熟悉对多通道混频器电路的Protel DXP设计,增强对复杂的电路的设计能力和对Protel DXP的应用能力。并对PCB板的整个设计过程有一个更为清晰的认识,掌握自上而下的层次原理图并实现双面印刷板设计。 关键字:混频器、Protel DXP、PCB

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

下模拟滤波器的仿真设计

下模拟滤波器的仿真设计 摘要:本文提出了用MATLAB简化设计模拟滤波器的方法,着重对巴特沃思滤波器的编程设计进行了研究,并绘制出其幅频特性曲线。 关键词:MATLAB设计模拟滤波器 在信号处理时,通常都会遇到有用信号中混入噪声的问题,因此需要用滤波器来消除或减弱噪声对信号的干扰。模拟滤波器的设计一般包括两个方面:首先是根据设计的技术指标即滤波器的幅频特性,确定滤波器的传递函数H(s);其次是设计实际网络实现这一传递函数。解决滤波器H(s)设计的关键是要找到这种逼近函数,目前已找到了多种逼近函数。然而,不论哪种设计都需要进行非常繁琐的计算,计算出结果还需要查表。MATLAB中提供了相当强的函数用于模拟滤波器的设计,通过编程可以很容易的实现低通、高通、带通、带阻滤波器,并画出滤波器的幅频特性曲线。本文主要研究用MATLAB实现巴特沃斯滤波器。 1设计低通滤波器: 要求在通带截止频率fc=2kHz处,衰减3dB,阻带始点频

率fz=4kHz处,衰减15dB。 按照传统的求法,计算n需要代入公式 n==2.468n取整,n=3. 然后查表,得传递函数模型。 由此可以看出,计算复杂,并且如果没有表,就写不出传递函数。 下面用MATLAB来设计该滤波器,计算阶数、截止频率,并画出滤波器幅频特性。 wp=2000*2*pi; ws=4000*2*pi; Rp=3; Rs=15; [N,Wn]=buttord(wp,ws,Rp,Rs,'s')%计算阶数和截止频率 Fc=Wn/(2*pi); [b,a]=butter(N,Wn,'s');%计算滤波器传递函数多项式系数[z,p,k]=butter(N,Wn,'s');%得到滤波器零点、极点和增益w=linspace(1,4000,1000)*2*pi; H=freqs(b,a,w); magH=abs(H); phaH=unwrap(angle(H)); plot(w/(2*pi),20*log10(magH),'k'); xlabel('频率(Hz)');

基于模拟乘法器MC1496的混频器设计

基于模拟乘法器MC1496的混频器设计

摘要 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 Matlab是一种电子技术界应用广泛的优秀科学计算软件,大量应用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。主要内容是基于MC1946的混频器应用设计与仿真,阐述混频器基本原理,并在Matlab中实现各信号波形的仿真。 关键词:MC1496模拟乘法器,混频器,Matlab

DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496 Abstract Integrated analog multiplier is to complete two analog multiplication electronics (voltage or current) In high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, times frequency, frequency modulation and demodulation process can be regarded as the multiplication of two signals process, and integrated analog multiplier is the realization of two analog, voltage or current multiplication of electronic devices. The function is realized by using integrated analog multiplier is much simpler than with a discrete device, and superior performance, therefore integrated analog multiplier in wireless communication, radio and television are more widely application. Mixer in communication engineering and electronic technology, are widely applied in modulation system, the input of the baseband signal through frequency conversion into high frequency modulated signals. In the process of demodulation, receive the high frequency signal is modulated by frequency conversion, into the corresponding intermediate frequency signals. Especially in a superheterodyne receiver, which has been widely applied mixer, mixing circuit is a professional application of electronic technology, and radio must master the key circuit. Matlab is an electronic technology widely used mathematical software, a large number of used in algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment. Main content is based on the MC1946 mixer application design and simulation, the basic principle of mixer, and realize the signal waveform in the Matlab simulation. Key Words: MC1496 analog multiplier, mixer, Matlab

晶体三极管混频器的设计

* 课程设计报告 题目:晶体三极管混频器的设计 学生姓名: ** 学生学号: ******* 系别:电气信息工程学院 专业:通信工程专业 届别: 2014届 指导教师: *** 电气信息工程学院制 2013年5月 晶体三极管混频器的设计

学生:*** 指导老师:*** 电气信息工程学院:10级通信工程专业 1 三极管混频器的设计内容及要求 1.1 设计内容 在本次课程设计中采用了Multisim 仿真软件对三极管混频器进行设计及绘制,并模拟仿真。从理论上对电路进行了分析。选择合适的预案器件,设计出满足要求的三极管混频器。 1.2设计要求 设计一个三极管混频器,要求中心频率为10MHZ ,本振频率为16.455MHZ 。 1.3 混频器工作原理及系统框图 一个实际应用中调幅收音机的混频电路的主要功能是使信号自某一频率变换成另外一个频率,实际上是一种频谱线性搬移电路。它能将高频载波信号或已调波信号进行频率变换,将其变换为频率固定的中频信号。而变换后的信号,它的频谱内部结构和调制类型保持不变,改变的仅仅是信号的载波频率。混频电路的类型较多,常用的模拟相乘混频器、二极管平衡混频器、环形混频器、三极管混频器等。其中三极管混频器最为常用,其工作原理图如下: f 中 图1 系统原理图 从图中可以看出混频电路主要有三大部分组成:本地振荡器、晶体管变频器电路和中频滤波网络,各部分独立工作。本地振荡器产生稳定的振荡信号(设其频率为L f ),输入的高频调幅波信号(设其频率为C f ),由于晶体管的非线性特 性,两个信号混合后会产生C L f f +、C L f f - 频率的信号,然后通过中频滤波网络, 取出C L f f - 频率的信号,调节好 L f 、C f 的大小使其差为中频频率,即所需要

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

广州科沃—工控维修的120 https://www.360docs.net/doc/d85506335.html, 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路广州科沃—电梯维修的120 https://www.360docs.net/doc/d85506335.html, 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

相关文档
最新文档