第2章 煤的自燃及特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章煤的自燃及其特性
煤自燃是煤矿生产中的主要自然灾害之一。自十七世纪以来,人们就开始对煤的自燃现象进行研究,提出了解释煤自燃的多种假说,但由于煤的化学结构非常复杂,人们至今还不能完全阐述清楚煤的自燃机理。尽管如此,人们仍在对煤的自燃机理孜孜探求。近些年来通过对煤自燃的宏观特性(氧化产热量、产物和耗氧量)与煤自燃过程中微观结构(官能团、自由基)的变化特征的深入研究,对煤自燃的认识不断深入。本章将较全面地介绍煤炭自燃研究方面的新进展,较深入地对煤自燃过程及影响因素进行分析,较系统地阐述煤在低温氧化过程中的自燃特性和煤自燃倾向性、自然发火期等的测试与确定方法。
第一节煤的基础特性
煤的自燃特性是由其基础特性决定的。在对煤的自燃特性进行研究之前,有必要了解一下煤的形成、分类、组成特点、热物理性质和表面特性等相关知识。
一、煤的形成及分类
煤是由植物形成的。根据成煤植物种类的不同,煤主要可分为两大类[1],即腐殖煤和腐泥煤。由高等植物形成的煤称为腐殖煤,它分布最广,储量最大;由低等植物和少量浮游生物形成的煤称为腐泥煤。通常所讲的煤,就是指腐殖煤。由高等植物转化为腐植煤要经历复杂而漫长的过程,一般需要几千万年到几亿年的时间。转化次序是:植物、泥炭、褐煤、烟煤、无烟煤。整个成煤作用可划分为几个阶段:植物向泥炭转化作用过程,泥炭向褐煤的转化为成岩作用过程,褐煤向烟煤、无烟煤的转化成为变质作用过程,成岩作用和变质作用又合称为煤化作用过程。
中国煤炭分类[2],首先按煤的干燥无灰基挥发分>37%、>10%、≤10%,将所有煤分为褐煤、烟煤和无烟煤。然后烟煤又按挥发分>10%~20%、>20%~28%、>28%~37%和>37%的四个阶段分为低、中、中高及高挥发分烟煤,同时还根据表征烟煤煤化程度的参数(粘结指数、胶质层最大厚度或奥亚膨胀度),将烟煤划分为长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤和贫煤。
褐煤的特点是:水分大,比重小,不粘结,含有不同数量的腐植酸;煤中无水无灰基氧含量常高达15~30%左右,化学反应性强,热稳定性差,块煤加热时破碎严重,存放在空气中易风化变质、碎裂成小块乃至粉末状,发热量低,煤灰熔点也大都较低。烟煤挥发较高,外表灰黑色,有光泽,发热量较高,较易着火与完全燃烧,煤质一般较无烟煤软,较多的烟煤在受热析出挥发份时粘结成块,称为有焦结性。无烟煤挥发分低,固定碳高,比重大,纯煤真比重最高可达1.90,燃点高,燃烧时不冒烟。我国煤种的主要特征及分布地区见下表:
[1]
二、煤的结构及基本性质
煤是分子量不同、分子结构相似但又不完全相同的一组“相似化合物”的混合物,其主要组成元素是碳、氢、氧、氮和硫。煤的结构十分复杂,一般认为它具有高分子聚合物的结构,但又不同于一般的聚合物,它没有统一的聚合单体。煤的大分子是由多个结构相似的“基本结构单元”通过桥键连接而成。这种基本结构单元类似于聚合物的聚合单体,它可分为规则部分和不规则部分。规则部分由几个或十几个苯环、脂环、氢化芳香环及杂环(含氮、氧、硫等元素)缩聚而成,成为基本结构单元的核或芳香核;不规则部分则是连接在核周围的烷基侧链和各种官能团。随着煤化程度的提高,构成核的环数增多,连接在核周围的侧链和官能团数量则不断变短和减少。
基本结构单元的缩合环上连接有数量不等的烷基侧链和官能团。煤分子上的官能团主要是含氧官能团,有羟基(-OH)、羧基(-COOH)、羰基(=C=O)、甲氧基(-OCH3)等,随煤化程度的提高,甲氧基、羧基很快消失,其它含氧基团在各种煤化程度的煤中均有存在。此外还有少量的含氮官能团和含硫官能团。
在煤大分子中结构单元之间的连接是通过次甲基键-CH2-、-CH2-CH2-、-CH2-CH2-CH2-,醚键-O-,次甲基醚键-CH2-O-、-CH2-S-,硫醚键-S-、-S-S-以及芳香碳-碳键C ar-C ar等桥键实现的。在低煤化程度的煤中桥键最多,主要形式是次甲基键、醚键、次甲基醚键;中等煤化程度的煤中桥键最少,主要形式是甲基键、醚键;到无烟煤阶段时桥键有所增多,主要形式是芳香碳-碳键。
煤是有着庞大内部表面积的多孔状聚合体,对于低变质煤更是如此。实际上,作为一种固态胶体,各种变质程度的煤都具有相当大的孔隙度,其比表面积与煤的变质程度极为关联。从孔的结构来看,微孔(直径<1.2×10-6 mm)和过渡孔(直径为1.2~30×10-6 mm)占总表面积的绝大多数,而其它孔所占的比表面积的比例微乎其微(不足1%)。煤的孔结构和比表面积主要取决于煤的变质程度和成煤环境,同时受构造破坏程度的影响,但煤的破坏对微孔和过渡孔不起作用,而主要是使大孔(直径大于30×10-6 mm)的数量增加,引起总的
比表面积的增大,增大的量值受破坏类型和破坏程度的控制。
煤的比热(在常温下1g 煤升高1℃时所需的热量)很小,水的比热(5℃时为
4.184kJ/kg.℃)大约为其4倍,因而煤的比热随煤中水分含量的增加而提高;同时,它随煤化程度的加深而降低。随着温度的升高,煤的比热会增大,在300℃左右达到最大值。此外,由于煤中矿物质的主要成分的比热较小,因此,矿物质含量的增加会使煤的比热有所下降。
煤的热导率是度量煤的导热性的指标,它是指煤体内部相距为1 m 的两个1 m 2的平行平面,若两平面的温差为1℃,每秒从一平面以垂直方向传导到另一平面的热量。由此可以理解煤的热导率是热量在煤中直接传导的速度,也即表征了煤的散热能力。煤的热导率很小,即散热能力很差,它受煤中水分、矿物质、变质程度和温度的影响。
煤的热导率可用下式计算[1]:
()22
100010000003.0t t
βαλ++= (kJ/m.h.K)
式中βα、为特定常数,粘结性煤的α和β相等,为0.0016,弱粘结性煤的α为0.0013,β为0.0010。从上式中可以看出,热导率随温度上升而增大,并且块煤或型块、煤饼的热导率比散状煤高。
第二节 煤的自燃假说
对于煤炭自燃的起因和过程,人们在17世纪就开始了探索研究。1686年,英国学者普洛特(Plot )发表了第一篇有关煤自燃的论文,他认为煤中含硫化矿物的氧化是造成煤堆自燃的原因。其后至现在的几百年中,为解释煤炭自燃的起因,各国学者先后提出了各种假说
[3,4,5],主要有黄铁矿作用、细菌作用、酚基作用、自由基作用、煤氧复合作用等假说,其中煤氧复合作用假说现已被国内外广泛认同。
一、黄铁矿作用假说
该假说最早由英国人(Polt 和Berzelius )于17世纪提出,是第一个试图解答煤自燃原因的假说,曾在19世纪下半叶广为流传。它认为煤的自燃是由于煤层中的黄铁矿(FeS 2)与空气中的水分和氧相互作用放出热量而引起的。早期,人们认为黄铁矿在空气中逐渐氧化而产生的热是煤炭自热的诱因,然而,现在已经确定煤中的黄铁矿促进含碳成分氧化的途径一方面是通过将煤分解成更小的碎片从而把更大的煤体表面积暴露到空气中,另一方面是通过自身氧化释放出的热量来提高煤温,从而使之氧化自热。此假说认为,煤炭自热是氧和水与煤中的黄铁矿按以下化学反应式作用生热的结果:
2FeS 2+7O 2+2H 2O → 2FeSO 4+2H 2SO 4+25.7kJ
这种放热反应促使煤炭发热,在适宜条件下而自燃。