单支点排桩支护结构设计示例(最新整理)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ka0 tan(45 16 / 2) 0.754
cik=11.3kpa
ea0k=30×0.568-2×11.3×0.754=0 ②zj=11.2m 时(基坑底面处) 为了将水平荷载分布表为直线,求 zj≤11.2m 范围内的平均土性指标, 平均重度:
mh =(18×2.8+19.1×1.6+19.6×3.9+20.2×2.9)/11.2=19.3KN/m3
K pi ——第 i 层土的被动土压力系数
Kpi
tan
2
(45
ik
/
2)
Fra Baidu bibliotek
①zj=0 时 (基坑底面处)
pjk = mi zj=0
cik=22.2KN/㎡ Φjk=15.0° γjk=20.2KN/m3
Kkpj =tan(45°+15°/2)=1.303
epjk=0+2×22.2×1.303=57.9KN/m2 ②zj=9.0m 时(设 hd=9m 桩端处) 为了将水平抗力分布表为直线,求基坑底面以下 zj=9m 范围内的平均土性指标 平均重度:
基坑支护结构设计
一.基坑侧壁安全等级的确定
基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成
各项预定功能。不同的基坑工程,其功能要求则不同。为了区别对待各种不同的情况,《建
筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧 壁划分为不同的安全等级。建筑基坑支护结构设计应根据表 1 选用相应的侧壁安全等级及重
1.水平荷载标准值(主动土压力) 《建筑基坑支护设计规程》中规定:对于粉土及粘性土,支护结构水平荷载标准值可按 下式计算。
e k c k ajk ajk ai 2 ik ai
式中 σajk——作用于深度 zj 处的竖向应力标准值;
ajk k 0k
式中 σγk—计算点深度 zj 处自重竖向应力; 计算点位于基坑开挖面以上时:
建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基
坑分级和变形监控值的规定如表 1-2。
基坑变形监控值(cm)
表2
级坑类别
围护结构墙顶位移监 围护结构墙体最大位移监
控值
控值
地面最大沉降监控值
一级基坑
3
3
3
二级基坑
6
8
6
三级基坑
8
10
10
注:1.符合下列情况之一,为一级基坑:
要性系数。
基坑侧壁安全等级及重要性系数
表1
安全等
破坏后果
γ0
级
支护结构破坏、土体失稳或过大变形对基坑周围环境及
一级
1.10
地下结构施工影响很严重;
支护结构破坏、土体失稳或过大变形对基坑周围环境及
二级
1.00
地下结构施工影响一般;
支护结构破坏、土体失稳或过大变形,对基坑周围环境
三级
0.90
及地下结构施工影响不严重
③水压力:在地下水位较高的地区,基坑内外存在着水位差,将对支护结构产生水压力。 《建筑基坑支护技术规程》中建议,对于粘性土可采用水压力与土压力合算的方法,即对作 用在支护结构上的土压力,用土的天然重度和总应力抗剪强度指标进行计算,不另计水压力。
作用在支护结构上的荷载,可按《建筑基坑支护技术规程》给出的支护结构水平荷载标 准值及水平抗力标准值计算表达式进行计算。
力两部分,其中表观粘聚力比真粘聚力要大的多。而超固结土一旦遇水,表观粘聚力迅速下 降至真粘聚力。因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。根据长 春地区的工程经验,将 c 值乘以 0.4~0.5 的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指 标。
平均重度:
m
i hi hi
cm 平均粘聚力:
ci hi hi
m
平均内摩擦角:
i hi hi
根据长春地区的工程经验,鉴于本工程的实际情况,将 c 值乘以 0.4~0.5 的折减系数,
给出设计计算参数c、φ和γ值如表(二)所示:
某基坑工程主要计算参数
表3
层号
岩土 名称
层厚 m
杂填土 粉
平均粘聚力: cmh=(11.3×2.8+21.9×1.6+18.2×3.9+22.2×2.9)/11.2=18.0KN/m2 平均内摩擦角: φmh=(16.0×2.8+18.0×1.6+20.5×3.9+15.0×2.9)/11.2=17.6° 平均主动土压力系数:
K am =tan2(45°-17.6°/2)=0.536
Ep2 hp2
Eai=1/2×105.6×11.2×1.2=709.6KN ha1=11.2/3+0.7=4.4m Ea2=105.6×0.7×1.2=88.7KN ha2=0.7/2=0.35m Ep1=75.3×0.7×1.2=63.3KN hp1=0.7/2=0.35m Ep2=1/2(105.6-75.3)×0.7×1.2=12.7KN hp2=0.7/3=0.2m
稳定性好,安全可靠。
固定端式锚桩,虽然比自由端式锚桩的入土深度大,但其桩体的最大弯矩值小,截面配
筋量少,锚杆轴向拉力亦小,对桩与锚杆的设计均有利,而且造价相差不大。因此,采用固
定端式锚桩比自由端式锚桩更为合理。
单支点锚桩的锚点位置变化时,桩体沿深度方向的水平位移和弯矩则不同。从理论上讲,
随着锚点位置的降低,锚点处的弯矩值 M1 增大,桩的最大弯矩值 Mmax 减小,T1 增大。当
Kpm tan(45 14.6 / 2) 1.294
pjk =20.2×9.0=181.8KN/m2
epjk=181.8×1.674+2×33.0×1.294=389.7KN/㎡
z
图(3-4)水平抗力标准值计算简图
四.单支点桩锚支护结构设计计算(等值梁法)
《建筑基坑支护技术规程》规定,对单支点支护结构,可以用“等值梁”法确定其嵌固深 度及结构内力。
锚点降至某一位置时,有 M1=Mmax,若继续降低则出
qo
现 M1>Mmax。因此,当 M1=Mmax 时,Mmax 为最小,
同时锚桩的入土深度及造价比也达到最小。故根据
Tc1
M1=Mmax 确定锚点的位置是最优的。 但在实际工程中,常常为了抢工期,不能等待
锚杆达到一定强度后才开挖,。因此,确定锚点设置
Kai—— 第 i 层土主动土压力系数。
K ai tan2 45 ik / 2
式中 φik——第 i 层土的内摩擦角的标准值。 由于土压力呈直线变化,按上述公式计算主动土压力时,可取三个计算点,即基坑顶面
处(Z=0)、基坑底面处(Z=H)、基坑底面以下(Z>H)。 当按上述公式计算的基坑开挖面以上水平荷载标准值小于零时,则取其值为零。 按上述公式计算主动土压力: ①zj=0 时(基坑顶面处) σa0k=18.0×0+30=30KN/m2 Kao=tan2(45°-16°/2)=0.568
研究表明:单支点支护结构的弯矩零点与基坑底面以下土压力为零的点位置相近,计算
时可取该点作为弯矩零点。
h
hd
T1 h
c1 h
设:基坑底面至弯矩零点的距离为 hcl,
根据
e e alk
plk
ealk 1.3(mj hcl Kpi 2 cik Kpi )
可求得 hC1
hcl
105.6 /1.3 2 1.303 20.2 1.689
深度应留有一定余地,不能太大,以保证安全。综
合考虑支护结构变形和受力两方面的因素,单支点
锚桩的锚点设置深度应取 hT0=0.4H 左右为宜。 单支点桩锚支护结构的计算简图,如图(3)所
图(3)
示:
3.“等值梁“法计算内力
(1)确定弯矩零点的位置
用“等值梁”法计算单支点支护结构,首先要知道弯矩零点的位置。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构
变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定
基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标 c、φ 值。 对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚
19.6
22.2 15.0
20.2
粘土
⑥
1.6
45.0 15.0
20.1
20.2 15.0
20.1
粘土
⑦
4.5
94.6 14.5
20.3
37.8 14.5
20.3
粉质
⑧
1.5 106.3 14.0
19.9
42.5 14.0
19.9
粘土
三.荷载计算
作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。 ①土压力:土压力是指土体作用在支护结构上的侧向压力,它是由土体的自重产生的。 ②地面荷载:地面临时荷载一般包括建筑材料、临时堆放待运弃土及施工机械等。地面 临时荷载可按 20~30KN/m2 计算,它基本上可以包罗现场各种各样的临时荷载。
重要工程或支护结构做主体结构的一部分;
开挖深度大于 10m;
与临近建筑物、重要设施的距离在开挖深度以内的基坑;
基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于 7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
1.“等值梁”法的基本原理 “等值梁”法基本原理如图(3)所示:
a
cb
a
c
a
cb
a
c
图(3)
图中 ab 梁一端固定,另一端简支,其弯矩图的正负弯矩在 c 点转折,若将 ab 梁在 c 点切断,
并于 c 点置一自由支承,形成 ac 梁 ,则梁上的弯矩将保持不变,即称 ac 梁为 ab 梁上 ac 段的“等
k mj z j
式中 γmj—深度 zj 以上土的加权平均重度; zj—计算点深度。 计算点位于基坑开挖面以下时:
k
h
mh
式中 mh —开挖面以上土的加权平均重度;
σ0k—当支护结构外侧,地面作用满布附加荷载 q0 时,基坑外侧任意点附加竖向应力标 准值,可按下式确定:
0k q0
cik——第 i 层土粘聚力标准值;
①+
质
2.8
②
粘土
粉质
③
1.6
粘土
粉质
④
3.9
粘土
粘土
⑤
4.3
实验给出参数
C
φ
γ
kPA
°
KN/m3
22.6 16.0
18.0
48.6 18.0
19.1
40.5 20.5
19.6
55.4 15.0
20.2
设计计算参数
C
φ
γ
kPA
°
KN/m3
11.3 16.0
18.0
21.9 18.0
19.1
18.2 20.5
hd
图(3-3)水平荷载标准值计算简图 2.水平抗力标准值(被动土压力) 基坑内侧水平抗力标准值 epjk,按下式计算
epjk pjk Kpi 2 cik Kpi
式中
pjk
—作用于基坑底面以下深度
zj
处的竖向应力标准值
pjk =γmjzj
γmj——深度 zj 以上土的加权平均天然重度 zj—基坑底面至计算点的距离
值梁”。
ac 梁为静定结构,可按静力平衡条件求解 ac 梁段的内力。
2.单支点桩锚支护结构的计算简图
当桩的入土深度较深(hd=hmax)时,桩前、桩后均出现被动土压力,支护结构在土中
处于嵌固状态,可视为上端简支,下端嵌固的超静定梁。桩体中弯矩值大大减小,并出现正
负两个方向的弯矩。这种工作状态,所要求桩的截面模量较小,桩体入土部分的位移也较小,
T1 h
T c1
E a1
E p1 E p2
E a2
h a1
h a2
e e p1k a1k
p1 h p2 h
c1 h
p1 h p2 h
qo
T c1
E a1
E p1 E p2
E a2
h a1
h a2
e e p1k a1k
图(4)
hd
图(3-7)
得
Tcl
Ea1 ha1
Ea2 ha2 Ep1 hp1 hTl hcl
Kam tan (45 17.6 / 2) 0.732
ahk =19.3×11.2+30=246.2 KN/㎡
eahk=246.2×0.536-2×18.0×0.732=105.6KN/㎡
③zj>11.2 时(基坑底面以下)
ajk =19.3×11.2+30=246.2 KN m 2
eajk=246.2×0.536-2×18.0×0.732=105.6KN/m2 qo
m =(1.4×20.2+1.6×20.1+4.5×20.3+1.5×19.9)/9.0
=20.2KN/m3 平均粘聚力: cm=(.4×22.2+1.6×20.2+4.5×37.8+1.5×42.5)/9.0 =33.0KN/m2 平均内摩擦角: Φm=(15.0×1.4+15.0×1.6+14.5×4.5+14.0×1.5)/9.0 =14.6° 平均被动土压力系数: Kpm=tan2(45+14.6/2)=1.674
0.7m
(2)计算支点力 Tcl
计 算 简 图 如 图 ( 4), 根 据 M c 0 得
Tcl
Ea1 ha1
Ea2 ha2 Ep1 hp1 hTl hcl
Ep2 hp2
(3)计算支点力 Tcl (取桩间距 Sa=1.2m 作为计算单元)
计算简图如图(3-7),根据 M c 0
qo
h
cik=11.3kpa
ea0k=30×0.568-2×11.3×0.754=0 ②zj=11.2m 时(基坑底面处) 为了将水平荷载分布表为直线,求 zj≤11.2m 范围内的平均土性指标, 平均重度:
mh =(18×2.8+19.1×1.6+19.6×3.9+20.2×2.9)/11.2=19.3KN/m3
K pi ——第 i 层土的被动土压力系数
Kpi
tan
2
(45
ik
/
2)
Fra Baidu bibliotek
①zj=0 时 (基坑底面处)
pjk = mi zj=0
cik=22.2KN/㎡ Φjk=15.0° γjk=20.2KN/m3
Kkpj =tan(45°+15°/2)=1.303
epjk=0+2×22.2×1.303=57.9KN/m2 ②zj=9.0m 时(设 hd=9m 桩端处) 为了将水平抗力分布表为直线,求基坑底面以下 zj=9m 范围内的平均土性指标 平均重度:
基坑支护结构设计
一.基坑侧壁安全等级的确定
基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成
各项预定功能。不同的基坑工程,其功能要求则不同。为了区别对待各种不同的情况,《建
筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧 壁划分为不同的安全等级。建筑基坑支护结构设计应根据表 1 选用相应的侧壁安全等级及重
1.水平荷载标准值(主动土压力) 《建筑基坑支护设计规程》中规定:对于粉土及粘性土,支护结构水平荷载标准值可按 下式计算。
e k c k ajk ajk ai 2 ik ai
式中 σajk——作用于深度 zj 处的竖向应力标准值;
ajk k 0k
式中 σγk—计算点深度 zj 处自重竖向应力; 计算点位于基坑开挖面以上时:
建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基
坑分级和变形监控值的规定如表 1-2。
基坑变形监控值(cm)
表2
级坑类别
围护结构墙顶位移监 围护结构墙体最大位移监
控值
控值
地面最大沉降监控值
一级基坑
3
3
3
二级基坑
6
8
6
三级基坑
8
10
10
注:1.符合下列情况之一,为一级基坑:
要性系数。
基坑侧壁安全等级及重要性系数
表1
安全等
破坏后果
γ0
级
支护结构破坏、土体失稳或过大变形对基坑周围环境及
一级
1.10
地下结构施工影响很严重;
支护结构破坏、土体失稳或过大变形对基坑周围环境及
二级
1.00
地下结构施工影响一般;
支护结构破坏、土体失稳或过大变形,对基坑周围环境
三级
0.90
及地下结构施工影响不严重
③水压力:在地下水位较高的地区,基坑内外存在着水位差,将对支护结构产生水压力。 《建筑基坑支护技术规程》中建议,对于粘性土可采用水压力与土压力合算的方法,即对作 用在支护结构上的土压力,用土的天然重度和总应力抗剪强度指标进行计算,不另计水压力。
作用在支护结构上的荷载,可按《建筑基坑支护技术规程》给出的支护结构水平荷载标 准值及水平抗力标准值计算表达式进行计算。
力两部分,其中表观粘聚力比真粘聚力要大的多。而超固结土一旦遇水,表观粘聚力迅速下 降至真粘聚力。因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。根据长 春地区的工程经验,将 c 值乘以 0.4~0.5 的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指 标。
平均重度:
m
i hi hi
cm 平均粘聚力:
ci hi hi
m
平均内摩擦角:
i hi hi
根据长春地区的工程经验,鉴于本工程的实际情况,将 c 值乘以 0.4~0.5 的折减系数,
给出设计计算参数c、φ和γ值如表(二)所示:
某基坑工程主要计算参数
表3
层号
岩土 名称
层厚 m
杂填土 粉
平均粘聚力: cmh=(11.3×2.8+21.9×1.6+18.2×3.9+22.2×2.9)/11.2=18.0KN/m2 平均内摩擦角: φmh=(16.0×2.8+18.0×1.6+20.5×3.9+15.0×2.9)/11.2=17.6° 平均主动土压力系数:
K am =tan2(45°-17.6°/2)=0.536
Ep2 hp2
Eai=1/2×105.6×11.2×1.2=709.6KN ha1=11.2/3+0.7=4.4m Ea2=105.6×0.7×1.2=88.7KN ha2=0.7/2=0.35m Ep1=75.3×0.7×1.2=63.3KN hp1=0.7/2=0.35m Ep2=1/2(105.6-75.3)×0.7×1.2=12.7KN hp2=0.7/3=0.2m
稳定性好,安全可靠。
固定端式锚桩,虽然比自由端式锚桩的入土深度大,但其桩体的最大弯矩值小,截面配
筋量少,锚杆轴向拉力亦小,对桩与锚杆的设计均有利,而且造价相差不大。因此,采用固
定端式锚桩比自由端式锚桩更为合理。
单支点锚桩的锚点位置变化时,桩体沿深度方向的水平位移和弯矩则不同。从理论上讲,
随着锚点位置的降低,锚点处的弯矩值 M1 增大,桩的最大弯矩值 Mmax 减小,T1 增大。当
Kpm tan(45 14.6 / 2) 1.294
pjk =20.2×9.0=181.8KN/m2
epjk=181.8×1.674+2×33.0×1.294=389.7KN/㎡
z
图(3-4)水平抗力标准值计算简图
四.单支点桩锚支护结构设计计算(等值梁法)
《建筑基坑支护技术规程》规定,对单支点支护结构,可以用“等值梁”法确定其嵌固深 度及结构内力。
锚点降至某一位置时,有 M1=Mmax,若继续降低则出
qo
现 M1>Mmax。因此,当 M1=Mmax 时,Mmax 为最小,
同时锚桩的入土深度及造价比也达到最小。故根据
Tc1
M1=Mmax 确定锚点的位置是最优的。 但在实际工程中,常常为了抢工期,不能等待
锚杆达到一定强度后才开挖,。因此,确定锚点设置
Kai—— 第 i 层土主动土压力系数。
K ai tan2 45 ik / 2
式中 φik——第 i 层土的内摩擦角的标准值。 由于土压力呈直线变化,按上述公式计算主动土压力时,可取三个计算点,即基坑顶面
处(Z=0)、基坑底面处(Z=H)、基坑底面以下(Z>H)。 当按上述公式计算的基坑开挖面以上水平荷载标准值小于零时,则取其值为零。 按上述公式计算主动土压力: ①zj=0 时(基坑顶面处) σa0k=18.0×0+30=30KN/m2 Kao=tan2(45°-16°/2)=0.568
研究表明:单支点支护结构的弯矩零点与基坑底面以下土压力为零的点位置相近,计算
时可取该点作为弯矩零点。
h
hd
T1 h
c1 h
设:基坑底面至弯矩零点的距离为 hcl,
根据
e e alk
plk
ealk 1.3(mj hcl Kpi 2 cik Kpi )
可求得 hC1
hcl
105.6 /1.3 2 1.303 20.2 1.689
深度应留有一定余地,不能太大,以保证安全。综
合考虑支护结构变形和受力两方面的因素,单支点
锚桩的锚点设置深度应取 hT0=0.4H 左右为宜。 单支点桩锚支护结构的计算简图,如图(3)所
图(3)
示:
3.“等值梁“法计算内力
(1)确定弯矩零点的位置
用“等值梁”法计算单支点支护结构,首先要知道弯矩零点的位置。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构
变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定
基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标 c、φ 值。 对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚
19.6
22.2 15.0
20.2
粘土
⑥
1.6
45.0 15.0
20.1
20.2 15.0
20.1
粘土
⑦
4.5
94.6 14.5
20.3
37.8 14.5
20.3
粉质
⑧
1.5 106.3 14.0
19.9
42.5 14.0
19.9
粘土
三.荷载计算
作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。 ①土压力:土压力是指土体作用在支护结构上的侧向压力,它是由土体的自重产生的。 ②地面荷载:地面临时荷载一般包括建筑材料、临时堆放待运弃土及施工机械等。地面 临时荷载可按 20~30KN/m2 计算,它基本上可以包罗现场各种各样的临时荷载。
重要工程或支护结构做主体结构的一部分;
开挖深度大于 10m;
与临近建筑物、重要设施的距离在开挖深度以内的基坑;
基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于 7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
1.“等值梁”法的基本原理 “等值梁”法基本原理如图(3)所示:
a
cb
a
c
a
cb
a
c
图(3)
图中 ab 梁一端固定,另一端简支,其弯矩图的正负弯矩在 c 点转折,若将 ab 梁在 c 点切断,
并于 c 点置一自由支承,形成 ac 梁 ,则梁上的弯矩将保持不变,即称 ac 梁为 ab 梁上 ac 段的“等
k mj z j
式中 γmj—深度 zj 以上土的加权平均重度; zj—计算点深度。 计算点位于基坑开挖面以下时:
k
h
mh
式中 mh —开挖面以上土的加权平均重度;
σ0k—当支护结构外侧,地面作用满布附加荷载 q0 时,基坑外侧任意点附加竖向应力标 准值,可按下式确定:
0k q0
cik——第 i 层土粘聚力标准值;
①+
质
2.8
②
粘土
粉质
③
1.6
粘土
粉质
④
3.9
粘土
粘土
⑤
4.3
实验给出参数
C
φ
γ
kPA
°
KN/m3
22.6 16.0
18.0
48.6 18.0
19.1
40.5 20.5
19.6
55.4 15.0
20.2
设计计算参数
C
φ
γ
kPA
°
KN/m3
11.3 16.0
18.0
21.9 18.0
19.1
18.2 20.5
hd
图(3-3)水平荷载标准值计算简图 2.水平抗力标准值(被动土压力) 基坑内侧水平抗力标准值 epjk,按下式计算
epjk pjk Kpi 2 cik Kpi
式中
pjk
—作用于基坑底面以下深度
zj
处的竖向应力标准值
pjk =γmjzj
γmj——深度 zj 以上土的加权平均天然重度 zj—基坑底面至计算点的距离
值梁”。
ac 梁为静定结构,可按静力平衡条件求解 ac 梁段的内力。
2.单支点桩锚支护结构的计算简图
当桩的入土深度较深(hd=hmax)时,桩前、桩后均出现被动土压力,支护结构在土中
处于嵌固状态,可视为上端简支,下端嵌固的超静定梁。桩体中弯矩值大大减小,并出现正
负两个方向的弯矩。这种工作状态,所要求桩的截面模量较小,桩体入土部分的位移也较小,
T1 h
T c1
E a1
E p1 E p2
E a2
h a1
h a2
e e p1k a1k
p1 h p2 h
c1 h
p1 h p2 h
qo
T c1
E a1
E p1 E p2
E a2
h a1
h a2
e e p1k a1k
图(4)
hd
图(3-7)
得
Tcl
Ea1 ha1
Ea2 ha2 Ep1 hp1 hTl hcl
Kam tan (45 17.6 / 2) 0.732
ahk =19.3×11.2+30=246.2 KN/㎡
eahk=246.2×0.536-2×18.0×0.732=105.6KN/㎡
③zj>11.2 时(基坑底面以下)
ajk =19.3×11.2+30=246.2 KN m 2
eajk=246.2×0.536-2×18.0×0.732=105.6KN/m2 qo
m =(1.4×20.2+1.6×20.1+4.5×20.3+1.5×19.9)/9.0
=20.2KN/m3 平均粘聚力: cm=(.4×22.2+1.6×20.2+4.5×37.8+1.5×42.5)/9.0 =33.0KN/m2 平均内摩擦角: Φm=(15.0×1.4+15.0×1.6+14.5×4.5+14.0×1.5)/9.0 =14.6° 平均被动土压力系数: Kpm=tan2(45+14.6/2)=1.674
0.7m
(2)计算支点力 Tcl
计 算 简 图 如 图 ( 4), 根 据 M c 0 得
Tcl
Ea1 ha1
Ea2 ha2 Ep1 hp1 hTl hcl
Ep2 hp2
(3)计算支点力 Tcl (取桩间距 Sa=1.2m 作为计算单元)
计算简图如图(3-7),根据 M c 0
qo
h