地质聚合物的性能与应用发展前景

地质聚合物的性能与应用发展前景
地质聚合物的性能与应用发展前景

地质聚合物的性能与应用发展前景

摘要

地质聚合物是一种新型高性能胶凝材料。由于其特殊的缩聚三维网络结构,使其在众多方面具有高分子材料、水泥和陶瓷等材料的特征。综述了国内外地质聚合物的制备研究及聚合反应机理,概述了地质聚合物具备的性能特点及其在土木工程、快速修补和有毒废料及放射性废料处理等领域广阔的应用发展前景。

关键词:地质聚合物聚合反应机理应用发展前景

目录

1 绪论 (3)

1.1地质聚合物的简介 (3)

1.1.1地质聚合物的概念 (3)

1.1.2地质聚合物的结构 (3)

1.1.2地质聚合反应机理 (4)

2 地质聚合物的性能特点 (5)

2.1高强度 (5)

2.2强的耐腐蚀性和较好的耐久性 (5)

2.3快硬早强 (5)

2.4耐高温 (6)

2.5渗透率低,耐冻融循环 (6)

2.6良好的界面结合能力 (6)

3 地质聚合物的应用发展前景 (6)

3.1 开发土木工程材料和快速修补材料 (6)

3.2 开发优质地质聚合物基涂料 (7)

3.3 开发工业有毒废渣和核废料固封材料 (7)

3.4 开发化学键合陶瓷 (7)

3.5 开发地质聚合物复合材料 (8)

3.6 开发防火和耐高温材料 (8)

4 结语 (8)

1 绪论

1.1地质聚合物的简介

1.1.1地质聚合物的概念

地质聚合物(Geopolymer)原意指由地球化学作用或人工模仿地质合成作用而制造出的铝硅酸盐矿物聚合物,其基本结构是由硅氧四面体和铝氧四面体聚合的具有非晶态和准晶态特征的三维网络凝胶体。

1.1.2地质聚合物的结构

地质聚合物具有以硅氧四面体和铝氧四面体为骨架组成的三维网状凝胶结构,其经验化学式为Mn[-(SiO2)Z-AlO2]n·wH2O。其中M为碱金属和金属阳离子等,n为聚合度数,Z为1、2、3等整数。同时,地质聚合物具有类沸石笼状结构,地质聚合物与沸石在结构上的主要区别在于地质聚合物是一种无定形体,而沸石是一种结晶态物质。因为有着与沸石类似的结构和制备方法,许多文献报道了在地质聚合物样品中出现了一定量的沸石相。依据Z值的不同地质聚合物可以分为PS、PSS和PSDS型,它们的结构如图1所示。

图1地质聚合物PS、PSS和PSDS结构图

通过投射电镜分析(TEM)可知地质聚合物具有孔径分布较宽的多孔结构。地质聚合物凝胶体是由直径为5-10nm的一次凝胶颗粒构成,而这些颗粒又围成

了纳米级孔道,这些孔道成为地质聚合物介孔(孔径2-50nm之间)的来源。同时,地质聚合物还含有大孔(孔径大于50nm)和微孔(孔径小于2nm)。大孔是由粉煤灰或高岭土颗粒之间的间隙所形成,而微孔是地质聚合物凝胶的笼状结构所形成的孔隙。

1.1.2地质聚合反应机理

由于地质聚合物的聚合反应涉及到很多方面的多种因素,其聚合机理尚未能够完全解释清楚,相关的研究仍在继续。目前,国内外学者大都以碱激发机理为基础来解释地质聚合物的聚合机理,其中以J.Davidovits教授提出的反应机理为代表,他把地质聚合反应的机理解释为“解聚—缩聚”的过程,认为地质聚合物形成过程中,首先硅酸盐原料在碱溶液的作用下促使其硅氧键和铝氧键的断裂,形成一系列处于低聚状态的硅氧四面体和铝氧四面体单元,这些低聚的四面体单元随着反应的进行,逐渐脱水重新聚合,从而形成地质聚合物。文献认为,地质聚合物的形成过程可分为4 个阶段:①铝硅酸盐矿物粉体原料在碱性溶液(NaOH,KOH)中的溶解;②溶解的铝硅配合物由固体颗粒表面向颗粒间隙的扩散;③凝胶相[Mx(AlO2)y(SiO2)z·nMOH·mH2O]的形成,导致在碱硅酸盐溶液和铝硅配合物之间发生聚合作用;④凝胶相逐渐排除剩余的水分,固结硬化成矿物聚合材料块体。

以偏高岭石为原料在NaOH和KOH的碱性环境中制备地质聚合物的反应式可以简要表示如下:

高岭石煅烧失去部分结构水以后,结构呈无定形状态,从而演变成为准有序的偏高岭石,具有较高的活化能。当其再水化时,能重新恢复成原始结构。认为地质聚合物的内部结构以硅铝氧链(-Si-O-Al-O-)、硅铝硅氧链(-Si-O-Al-O -Si-O-)和硅铝二硅氧链(-Si-O-Al-O-Si-O-Si-O-)等结构单元组成的三维网络结构。地质聚合物的这种结构与有机高分子材料的网络结构相类似,并且其结构单元链与链之间,以及链与矿物颗粒表面的[SiO4]和[AlO4]四面体通过脱羟基作用形成化学键,因而兼具一些有机聚合物与无机材料的性能。

2 地质聚合物的性能特点

2.1高强度

主要力学指标高于玻璃、水泥,可与钢、陶瓷、铝等金属材料相媲美。地质聚合物具有良好的早强特征,一般24h强度可达到15~30MPa,28d强度可达到32~60MPa。由于地质聚合物以共价键连接为主,与一般矿物颗粒或废弃物颗粒具有良好的界面亲和性,因此这类材料的抗折强度较高。与水泥基材料相比,当抗压强度相同时,地质聚合物具有更高的抗折强度。

2.2强的耐腐蚀性和较好的耐久性

聚合物在有机溶液、碱性溶液和盐水中很稳定,在浓硫酸中较稳定,在浓盐酸中稳定性较差。由于地质聚合物制备时都要加入大量活性的铝硅酸盐细粉如锻烧高岭土、粉煤灰、高炉矿渣等,地质聚合物形成后能够吸纳大量的碱金属离子,这种吸纳过程只要活性成分在没有被耗尽的情况下可以不断地进行下去,因此,可以极大的弱化材料中的碱一骨料反应。与普通水泥相比,地质聚合物中的碱骨料反应很弱,因而耐久性能良好。

2.3快硬早强

由于地质聚合物材料在强碱作用下反应迅速,能够在很短的时间内迅速聚合形

成广泛的网络结构,具有快硬早强的特点,因此受到了人们的广泛重视。

2.4耐高温

地质聚合物分子是由Al-Si-O键组成的无机高分子结构,其键合方式是共价结合,键与键间的强度大,键能量高,因此不容易被破坏。而且地质聚合物本身是个氧化物网络结构体系,在1000℃一2000℃之间不氧化,不分解。因此地质聚合物材料具有耐高温、不燃、隔热、保温等特点。

2.5渗透率低,耐冻融循环

地质聚合物能形成致密的结构,强度高,抗渗性能优良;而且孔洞溶液中电解质浓度较高,因而耐冻融循环的能力增强。

2.6良好的界面结合能力

传统硅酸盐水泥在与骨料结合的界面处容易出现氢氧化钙的富集和择优取向的过渡区,造成界面结合力薄弱。地质聚合物不存在硅酸钙的水化反应,其最终产物主要是以共价键为主的三维网络凝胶体,与骨料界面结合紧密,不会出现类似的过渡区。与水泥基材料相比,当抗压强度相同时,地质聚合物具有更高的抗折强度。

3 地质聚合物的应用发展前景

由于地质聚合物具有优异的高温性能、机械性能等特点,在很多工业领域都能找到其广阔的应用空间,如:交通及抢修工程、冶金、核废料处理等领域。

3.1 开发土木工程材料和快速修补材料

地质聚合物是目前胶凝材料中快硬早强性能最为突出的一类材料。用于土木工程中,可以大大缩短脱模时间,加快模板运转周期,提高施工速度。同时

由于地质聚合物具有早期强度高及界面粘结强度高的特点,可用作混凝土结构的快速修补材料。用它修建的机场跑道,1h后可以步行,4h后可以通车,6h 后可供飞机起降。

3.2 开发优质地质聚合物基涂料

地质聚合物水化后结构致密,具有良好的防水、防火等性能。利用白色的煅烧高岭土作为硅-铝反应物,用一定模数和浓度的水玻璃作为碱激发剂,并加入适量填料配制出了地质聚合物基涂料。该地聚物基涂料具有耐淡水、海水、盐和稀硫酸等化学侵蚀的特性。与有机涂料相比,地质聚合物基涂料具有耐酸性、防火阻燃性、环保性、防霉菌性等一系列优点。地质聚合物基涂料作为特种涂料将有广阔的应用前景。

3.3 开发工业有毒废渣和核废料固封材料

地质聚合物的最终产物为类沸石相,而沸石是具有骨架(又称三维网状、笼形)结构的含水硅酸铝,沸石材料能吸附有毒化学废料,所以地质聚合物是固化各种化工废料、固封有毒重金属离子及核放射元素的有效胶凝材料。传统水泥不适合固化许多含碱金属的化工废料,也不适合固化最终产品为含高浓度硫酸的金属矿山尾砂。与传统水泥不同,地质聚合物不含石灰,并且在碱金属或硫酸溶液中有很好的稳定性。

3.4 开发化学键合陶瓷

所谓化学键合陶瓷,实质上是区别于高温烧结陶瓷而言的。地质聚合物通过水化反应能达到与高温烧结陶瓷相媲美的结构,而且低温浇注地质聚合物便于成型各种复杂形状的制品。与陶瓷相比,地质聚合物装饰材料或制品不仅免除了高温烧结工艺,而且整体性好。

3.5 开发地质聚合物复合材料

利用地质聚合物特有的快硬早强、高抗折强度、耐腐蚀和导热系数低、可塑性好等特点,可以开发建筑用的地质聚合物GRC板材和块体材料。与水泥制品相比,地质聚合物制品不用湿态养护,养护周期短,原料丰富,成本低廉。同时地质聚合物具有较好的加工性能,其制品具有天然石材的外观,便于成型及制作各种耐久性装饰材料。

3.6 开发防火和耐高温材料

地质聚合物能经受1200℃的高温,可用于制作炉膛、冶金管道、隔热材料等,广泛应用于非铁铸造及冶金行业。

4 结语

地质聚合物具有原材料丰富、工艺简单、节约资源和能源等优点,又兼具有机高分子、陶瓷和水泥等材料的优良性能,使之越来越受到人们的重视。但是高性能地质聚合物的推广应用在国内也受到以下几个条件的限制。(1)地质聚合物的研究时间相对较短,尚缺少包括体积稳定性在内的长期耐久性数据,且脆性较大。(2)缺少相应的标准和规范,对其产品的组成配比、技术指标、施工方法及应用范围等没有详细的说明规定。(3)NaOH和Na2SiO3等碱性激发剂资源有限、价格较贵,其生产与应用给环境带来的负面影响,一定程度上也影响了这种材料的推广应用。

地质聚合物是一种有趣、又非常实用化的材料。目前在建筑材料领域已经得到了广泛的应用。由于其聚合反应和结构的复杂性,目前还有许多理论存在争议,但这并不妨碍该材料的广泛应用。随着研究的进一步深入,该材料会在多个领域得到应用。

发光性液晶共轭聚合物的研究进展[1]

发光性液晶共轭聚合物的研究进展 王国杰 李 敏3 陈欣方 (吉林大学材料科学系 长春 130023) 摘 要 综述了可用做发光材料的液晶共轭聚合物(LCCPs)的种类及其制备,介绍了LCCPs在制备发光器件中的取向方法,并对其光学性能进行了评述。 关键词 液晶聚合物 共轭聚合物 发光 Abstract The development of liquid crystalline conjugated polymers(LCCPs)used as light emitting materials is reviewed.The synthesis and properties of electroluminescent LCCPs,and various techniques for orienting LCCPs are presented. K ey w ords Liquid crystalline polymers,C onjugated polymers,Luminescence 1990年Burroughes等[1]在Nature上首次报道了聚合物半导体聚苯撑乙烯(PPV)的电致发光性。随后在1991年得到了Heeger等的进一步确证[2],从此,发光聚合物的研究在世界范围内广泛开展起来。相对于无机和有机小分子发光材料,共轭聚合物发光材料具有以下特点[3]:有良好的成膜性及加工性、可通过旋涂、浇铸等方法制成大面积薄膜;共轭聚合物有优良的粘附性、机械强度及稳定性;其电子结构、发光颜色等通过化学结构的改变和修饰可进行调节;虽然,聚合物自身的电导率很低,但作发光层的膜非常薄(100nm),因此即使驱动电压很低,加在聚合物膜上的电场强度仍足以产生器件发光所需要的电流密度,从而消除了掺杂带来的结构不稳定性。 液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子[4~14],它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。与各向同性发光聚合物相比,LCCP具有独特的长程有序性、光学各向异性。因而,可用于制备具有偏振发光性和发光视角可控的新型发光器件,并且其分子排列的各向异性可导致材料电荷传输的各向异性。具有取向的发光聚合物发射的偏振光用做液晶显示(LC D)的背照明,可明显提高LC D的亮度、对比度、发光效率和视角等。LCCP 在信息显示方面的应用前景和可观的实用价值,已经引起了科学界和工业界极大兴趣。本文将综述这一类新型功能高分子的研究进展。 1 液晶共轭聚合物的合成与性质 按照聚合物主链的不同,目前文献报道的液晶共轭聚合物可分为聚苯撑乙烯型、聚苯型、聚噻吩型、共聚噻吩型等四类。图1给出了文献报道的液晶共轭聚合物的分子结构。 1.1 聚苯撑乙烯型 二卤代苯与二烯苯通过Heck偶合反应可制备2,52二烷氧基聚苯撑乙烯[4](图1a)。反式聚苯撑乙烯衍生物主链刚硬,侧链烷氧基柔韧,因而,在一定条件下呈现出向列液晶相。此类LCCP的 王国杰 男,28岁,博士,从事高分子化学与物理研究。 3联系人 国家自然科学基金资助项目(29974013) 2000201209收稿,2000205230修回

大数据发展的几大方向

大数据发展的几大方向 大数据是目前最火热的一个词了,想必所有人,只要你接触网络,那你就应该听说过这个词。然而更多的人也只是听说过而已,对大数据并没有过多的了解,前几天我好多朋友就问我,大数据这么火,那它到底是做什么呢,这么火热的大数据前景究竟怎么样?今天我们就来探讨一下。 一、大数据的前景中国拥有世界上五分之一的人口,很多行业内专业人士断定中国在未来将成为大数据最重要的市场。中国的发展正在处于快速的上升期,中国产生的数据将是巨大的,而巨大的数据对大数据的发展将起到促进的作用,而大数据在中国市场的发展也将领先。如今,大数据作为中国官方重点扶持的战略性新兴产业,已逐步从概念走向落地“大数据”和“虚拟化”两大热门领域得到了广泛关注和重视,90%企业都在实用大数据。大数据将给中国的企业带来更广泛的发展机会,是值得大家重视的一个市场。 二、大数据发展的几大方向 方向一:大数据分析领域快速发展数据蕴藏价值,但是数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。方向二:分布式存储有了用武之地大数据的特点就是数量多且大,这就使得存储的管理面临着挑战,这个问题就需要新的技术来解决,分布式存储技术将作为未来解决大数据存储的重要技术。方向三:大数据与云技术的结合如果再找一个可以跟大数据并驾齐驱的IT热词,云计算无疑是跟大数据关系非常大的一个词语。方向四:大数据将成为企业IT核心随着大数据价值逐渐被发展,大数据将成为企业IT的核心,毕竟在这个以盈利为主导的行业环境中,谁能够为企业带来更多的价值就将会更重要。了解详情 三、大数据就业前景好,工资高。大数据技术人才在中国市场目前非常紧缺,因此

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

液晶聚合物增韧热固性树脂

液晶聚合物增韧热固性树脂 摘要:简要介绍液晶聚合物的基本概念,综述了近年来液晶聚合物的研究进展。由于现有的热固性树脂增韧方法存在种种缺陷,热致型液晶正取代橡胶性体、热塑性塑料等成为新一类热固性树脂增韧剂,与其它方法相比,该法增韧果好,改性体系衬热性、模量高。从液晶聚合物增韧、液晶单体/低聚物增韧、液晶固化剂增韧三个方面综述了现阶段热致型液晶增韧热固性树脂的研究进展。 关键词:液晶聚合物,增韧,热致型液晶,液晶单体/低聚物,液晶固化剂 1.液晶聚合物 1.1液晶聚合物的分类及性能 液晶聚合物是一种兼有固体和液体部分性质的过渡中间态---液晶态,其分子排列介于理想的液体和晶体之间,呈一维或二维的远程有序----分子排列在位置上显示无序性,但在分子取向上任有一定程度的有序性,表现出良好的各向异性。 根据分子排列有序性不同,大致可分为向列型(nematic)、近晶型(sematic)和胆甾型(cholesteric)三种类型。按液晶的形成条件又可分为溶致性、热致性和压敏性液晶。 液晶聚合物材料具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率以及良好的介电性和耐化学腐蚀性等一系列优异的综合性能。在电子电器、航空航天、光纤通讯、汽车工业、机械制造和化学工业等领域具有广阔的应用前景[1]。 1.2国内外液晶高分子聚合物的研究进展 1972年美国Du Pont公司研究成功的Kevlar系列溶致液晶纤维标志着合成高分子液晶开始走向市场,并引起人们广泛的兴趣。1984年Darto和Manufacturing 公司开发聚芳酯热致LCP并首次实现了热致LCP的工业化。 英国ICI公司的VICTRES-SRP LCP已经有4个品种投入生产,新一种拉伸强度高达200 MPa,悬臂缺口冲击强度为130 J/m2的新品种[2]。德国BASF公司的ULTRAX已经研制出三种基本新品种,其中两种是耐高温的特种工程塑料.另外,德国Hoechst公司将新型Vectra LCP作为热塑性工程塑料在世界X围内推广,目前投放市场的有30余种商品级及专用级产品[3]。 周其凤等[4]从分子设计的角度提出了“含二维液晶基元的液晶高分子”概念,并合成了一系列T型、X型二维液晶基元的液晶高分子.这类液晶高分子材料有别于一维液晶基元的液晶高分子材料,经过精心的分子设计,比如将二维液晶基元的其中一维方向的结构部分固定于分子主链之中而构成主链的结构成分,而使另一维方向上的结构部分作为侧基,因而可望制得力学各向异性较弱的高强度、高

2017公需课课后作业 大数据前沿技术及应用(六):大数据技术与发展前景

大数据前沿技术及应用(六):大数据技术与发展前景(仅适用于2017年公需课)课后作业成绩:100分已通过重新测试 正确20 题错误0 题使用时间10分23秒 试卷说明: ◇本卷共20题,作答时间为30分钟,总分100分,60分及格。 ◇试卷年份:2017年 一、单项选择题(每题分。每题的备选项中,只有1个最符合题意) 1. 下列选项中不属于大数据环境下的分析和挖掘方法具有的挑战是()。 A. 数据量的膨胀 B. 数据深度分析需求的增长 C. 自动化、可视化分析需求的出现 正确答案为:D 4. 据管理数据的模式分类,NoSQL 系统可以分为不包括()。 A. 键值系统 B. 文档存储系统 C. 图数据库 D. 语音管理系统 正确答案为:D 7. 大数据营销是基于()的基础上,描绘、预测、分析、指引消费者行为,从而帮助企业制定有针对性的商业策略。 A. 用户行为分析 B. 大数据分析 C. 用户数量分析 D. 云计算分析 正确答案为:B 5. 下列选项中不属于目前大数据计算模式重要发展趋势和方向有()。 A. 主流的Hadoop 平台改进后将与其他计算模式和平台共存 B. 混合计算模式将成为满足多样性大数据处理和应用需求的有效手段 C. 内存计算将成为高实时性大数据处理的重要技术手段和发展方向 正确答案为:D 3. ()是指通过互联网采集大量的行为数据。 A. 大数据营销 B. 互联网营销 C. 大数据分析 D. 互联网分析 正确答案为:A 6. 大数据给存储系统带来的挑战中不包括()。

A. 存储规模大 B. 存储管理复杂 C. 数据服务的种类和水平要求高 D. 安全要求高 正确答案为:D 2. 下列选项中不属于目前大数据分析与挖掘重要发展趋势和方向的是()。 A. 更加复杂、更大规模的分析和挖掘 B. 大数据的实时分析和挖掘 C. 大数据分析和挖掘的基准测试 正确答案为:D 二、多项选择题(每题分。每题的备选项中,有2个或2个以上符合题意,至少1个错项.错选,本题不得分;少选,所选每个选项得0.5分) 9. 在科学大规模数据的并行可视化工作中,主要涉及基本技术有()。 A. 数据流线化 B. 任务并行化 C. 管道并行化 D. 数据并行化 正确答案为:A,B,C,D 8. 实时流式大数据的处理的需求是()。 A. 大数据系统实现低延迟处理 B. 强大而又灵活的复杂事件处理引擎 C. 具有容错和去重能力 D. 对流量进行控制和动态节点增加和删除的能力 正确答案为:A,B,C,D 11. 在大数据环境下,目前最适用的存储与管理软件技术是()。 A. 分布式文件系统 B. 分布式数据库 C. 访问接口 D. 查询语言 正确答案为:A,B,C,D 12. 对大数据的使用者、研究者、开发者以及上级主管部门,提出如下建议有() A. 提高用户对大数据可用性的重要性的认识 B. 加强对大数据可用性评估和保证的关键技术的研究和开发。 C. 注重大数据可用性的评估,加强数据质量保证软件的开发和推广。 D. 尽快建立关于大数据可用性的标准,保证大数据的统一质量。 正确答案为:A,B,C,D 10. 大数据时代企业对数据的管理、查询及分析的需求变化主要集中在()。

有机导电聚合物研究进展a

有机导电聚合物研究进展 1 导电聚合物 各种人造聚合物俗称为塑料或化纤,天然聚合物主要有蛋白质和树脂等。上述有机固体通常是绝缘体,而增强它们的电导率是一个非常吸引人的研究领域。因为这类材料成本低廉、重量轻,更重要的是,可以把聚合物的可塑以及柔韧等优良机械特性与通常只有金属才具备的高电导特性结合在一起,从而将应用范围大大拓宽。 1977年,白川英树在一次聚乙炔合成的实验中,意外地加入了过多的催化剂(齐格勒—纳塔催化剂,以1963年诺贝尔化学奖得主Ziegler 和Natta命名,其作用是定向催化——用于严格控制聚合物的空间结构)。不料,在反应器中生成了一种光亮的反式聚乙炔薄膜。如果将薄膜暴露于卤族Br2或I2蒸汽,生成物的电导率可以提高1012倍[1],从此有机物不能导电的观念被打破。 2000 年度诺贝尔化学奖授予了三位致力于导电聚合物研究的科学家,他们是美国物理学家艾伦·黑格(Alan Heeger)、化学家艾伦·麦克迪尔米德(Alan MacDiarmid )和日本化学家白川英树(Hideki Shirakawa )。这是对导电聚合物研究的充分肯定。 导电聚合物根据材料的组成可以分成复合型导电聚合物材料和本征型导电聚合物材料两大类[2-4]。复合型导电聚合物材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。其导电作用主要通过其中的导电材料来完成。本征型导电聚合物材料也被称为结构型导电聚合物材料,其高分子本身具备一定的导电能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成:载流子为自由电子的电子导电型聚合物和载流子为能在聚合物分子间迁移的正负离子的离子导电型聚合物。 在电子导电聚合物的导电过程中,载流子在电场的作用下能够在聚合物内定向移动形成电流。电子导电聚合物的共同结构特征是分子内有大的线性共轭π电子体系,给自由电子提供了离域迁移条件,故又称为共轭聚合物。作为有机材料,聚合物是以分子形态存在的,其电子多为定域电子或具有有限离域能力的电子。π电子虽然具有离域能力,但它并不是自由电子。当有机化合物具有共轭结

光折变液晶材料的研究进展

第30卷 第3期 2008年6月光 学 仪 器OP TICAL INSTRUM EN TS Vol.30,No.3 J une ,2008 文章编号:100525630(2008)0320083205 3收稿日期:2007210209 作者简介:白俊霞(19812),女,山西汾阳人,硕士研究生,主要从事新型材料的研究。 光折变液晶材料的研究进展3 白俊霞,郝 伟 (北京工业大学,北京 100022) 摘要:介绍了液晶材料光折变效应的基本概念及基本机理及特性,根据光折变液晶材料的发展,分别对掺杂染料的液晶、聚合物分散液晶、掺杂铁电材料液晶等几种液晶材料的光折变效应的各个发展过程及其存在的问题和研究现状作了较为详细的阐述,并展望了其今后的实际应用及发展方向。 关键词:光折变;液晶材料;光电效应;液晶聚合物 中图分类号:O 43 文献标识码:A The developing of photorefractive liquid crystal material B A I J unx i a ,H A O W ei (Beijing University of Technology ,Beijing 100022,China ) Abstract :This paper int roduced t he basic conception ,mechanism and character of p hotoref ractive liquid crystal material ,according to p hotorefractive t he develop ment of liquid crystal materials ,respectively ,in dye 2doped liquid crystal ,polymer dispersed liquid crystal and ferroelectric liquid crystal material separately ,and laid out t he problem of different liquid crystal and research on t he stat us of it at t he same time ,we prospected t he application and develop ment direction of liquid crystal material. K ey w ords :p hotorefractive ;liquid crystal material ;p hotoemission ;polymer liquid crystal 1 引 言 光折变效应(p hotoref ractive effect )是光致折射率变化效应(p hoto 2induced refractive index change effect )的简称[1],当照射到非线性光学材料上的光发生变化时,物质内部电荷发生非均匀的重新分配,使得物质的折射率发生变化的现象。它在高密度光学信息储存、多媒体技术、相共轭、全息图象加工、中性网络的模拟、畸变图像的复原以及程序互联等方面具有重要的潜在应用价值。 2 液晶材料光折变效应的基本原理及特点 液晶材料的光折变效应可分为四个过程,如图1所示:(1)在非均匀光照射下,物质见光区域产生可移动的电荷;(2)产生电荷的输运;(3)捕获中心俘获移动的电荷,形成非零的空间电场;(4)在空间电场作用下,物质折射率发生变化[2]。 光折变效应主要有两个显著的特点,其一是光折变效应的大小只与入射光子的能量有关系,与光强没

碱激发地质聚合物的研究进展

碱激发地质聚合物的研究进展 指导老师: 学生姓名: 专业班级:材料工程801 摘要 碱激发胶凝材料是近年来发展的新型胶凝材料.许多固体废弃物均可作为它的原料.这将为充分利用工业固体废弃物开辟一条新的途径。本文主要介绍了碱激发胶凝材料的制备、应用及研究现状。从国内、国外两方面了介绍了碱激发胶凝材料的发展现状及理论科研成果。阐述了碱激发地质聚合物胶凝材料的优点,同时指出在该领域中存在的问题以及对未来的展望。 关键词:碱激发,地质聚合物,胶凝材料

Research progress on Alkali stimulate geological polymer Name: Longtao chen Instructor : Xiping lei Abstract Alkali stimulate cementitious material is the recent development of new cementious material. Many solid waste could be used as its raw material. It will to make full use of industrial solid wastes opened up a new way. This article mainly introduced the alkali stimulate cementitious material preparation, application and research actuality. Both from domestic and overseas are introduced alkali stimulate cementitious material development present situation and the theory of scientific research. Expounds the alkali stimulate geological polymer cementitious material advantages, in this field is also pointed out the existing problems and outlook for the future. Keywords: alkali inspired, geological polymer, gelled material

大数据技术进展与发展趋势

大数据技术进展与发展趋势 在大数据时代,人们迫切希望在由普通机器组成的大规模集群上实现高性能的以机器学习算法为核心的数据分析,为实际业务提供服务和指导,进而实现数据的最终变现。与传统的在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而言,机器学习模型的训练过程可以归结为最优化定义于大规模训练数据上的目标函数并且通过一个循环迭代的算法实现,如图4所示。因而与传统的OLAP相比较,基于机器学习的大数据分析具有自己独特的特点[24]。图4 基于机器学习的大数据分析算法目标函数和迭代优化过程(1)迭代性:由于用于优化问题通常没有闭式解,因而对模型参数确定并非一次能够完成,需要循环迭代多次逐步逼近最优值点。(2)容错性:机器学习的算法设计和模型评价容忍非最优值点的存在,同时多次迭代的特性也允许在循环的过程中产生一些错误,模型的最终收敛不受影响。(3)参数收敛的非均匀性:模型中一些参数经过少数几轮迭代后便不再改变,而有些参数则需要很长时间才能达到收敛。这些特点决定了理想的大数据分析系统的设计和其他计算系统的设计有很大不同,直接应用传统的分布式计算系统应用于大数据分析,很大比例的资源都浪费在通信、等待、协调等非有效的计算上。传统的分布式

计算框架MPI(message passing interface,信息传递接口)[25]虽然编程接口灵活功能强大,但由于编程接口复杂且对容错性支持不高,无法支撑在大规模数据上的复杂操作,研究人员转而开发了一系列接口简单容错性强的分布式计算框架服务于大数据分析算法,以MapReduce[7]、Spark[8]和参数服务器ParameterServer[26]等为代表。分布式计算框架MapReduce[7]将对数据的处理归结为Map和Reduce两大类操作,从而简化了编程接口并且提高了系统的容错性。但是MapReduce受制于过于简化的数据操作抽象,而且不支持循环迭代,因而对复杂的机器学习算法支持较差,基于MapReduce的分布式机器学习库Mahout需要将迭代运算分解为多个连续的Map 和Reduce 操作,通过读写HDFS文件方式将上一轮次循环的运算结果传入下一轮完成数据交换。在此过程中,大量的训练时间被用于磁盘的读写操作,训练效率非常低效。为了解决MapReduce上述问题,Spark[8] 基于RDD 定义了包括Map 和Reduce在内的更加丰富的数据操作接口。不同于MapReduce 的是Job 中间输出和结果可以保存在内存中,从而不再需要读写HDFS,这些特性使得Spark能更好地适用于数据挖掘与机器学习等需要迭代的大数据分析算法。基于Spark实现的机器学习算法库MLLIB 已经显示出了其相对于Mahout 的优势,在实际应用系统中得到了广泛的使用。近年来,随着待分析数据规模的迅速扩

地质聚合物的性能与应用发展前景

地质聚合物的性能与应用发展前景 摘要 地质聚合物是一种新型高性能胶凝材料。由于其特殊的缩聚三维网络结构,使其在众多方面具有高分子材料、水泥和陶瓷等材料的特征。综述了国内外地质聚合物的制备研究及聚合反应机理,概述了地质聚合物具备的性能特点及其在土木工程、快速修补和有毒废料及放射性废料处理等领域广阔的应用发展前景。 关键词:地质聚合物聚合反应机理应用发展前景

目录 1 绪论 (3) 1.1地质聚合物的简介 (3) 1.1.1地质聚合物的概念 (3) 1.1.2地质聚合物的结构 (3) 1.1.2地质聚合反应机理 (4) 2 地质聚合物的性能特点 (5) 2.1高强度 (5) 2.2强的耐腐蚀性和较好的耐久性 (5) 2.3快硬早强 (5) 2.4耐高温 (6) 2.5渗透率低,耐冻融循环 (6) 2.6良好的界面结合能力 (6) 3 地质聚合物的应用发展前景 (6) 3.1 开发土木工程材料和快速修补材料 (6) 3.2 开发优质地质聚合物基涂料 (7) 3.3 开发工业有毒废渣和核废料固封材料 (7) 3.4 开发化学键合陶瓷 (7) 3.5 开发地质聚合物复合材料 (7) 3.6 开发防火和耐高温材料 (8) 4 结语 (8)

1 绪论 1.1地质聚合物的简介 1.1.1地质聚合物的概念 地质聚合物(Geopolymer)原意指由地球化学作用或人工模仿地质合成作用而制造出的铝硅酸盐矿物聚合物,其基本结构是由硅氧四面体和铝氧四面体聚合的具有非晶态和准晶态特征的三维网络凝胶体。 1.1.2地质聚合物的结构 地质聚合物具有以硅氧四面体和铝氧四面体为骨架组成的三维网状凝胶结构,其经验化学式为Mn[-(SiO2)Z-AlO2]n·wH2O。其中M为碱金属和金属阳离子等,n为聚合度数,Z为1、2、3等整数。同时,地质聚合物具有类沸石笼状结构,地质聚合物与沸石在结构上的主要区别在于地质聚合物是一种无定形体,而沸石是一种结晶态物质。因为有着与沸石类似的结构和制备方法,许多文献报道了在地质聚合物样品中出现了一定量的沸石相。依据Z值的不同地质聚合物可以分为PS、PSS和PSDS型,它们的结构如图1所示。 图1地质聚合物PS、PSS和PSDS结构图 通过投射电镜分析(TEM)可知地质聚合物具有孔径分布较宽的多孔结构。地质聚合物凝胶体是由直径为5-10nm的一次凝胶颗粒构成,而这些颗粒又围成

大数据和人工智能在国内就业前景分析

伴随着大数据时代的到来,人工智能技术的火热,很多人开始了对大数据、人工智能技术的研究。 2018 年1 月教育部印发的《普通gao中课程方案和语文等学科课程标准》新加入了数据结构、人工智能、开源硬件设计等AI 相关的课程。这意味着职场新人和准备找工作的同学们,为了在今后十年内不被淘汰,你们要补课了,从初中开始。 但时光一去不复返,对于已经升入大学,但还没有接触到大数据、人工智能技术的小伙伴又该怎么办呢?面对诱人的就业前景,正在向你招手的大好机遇,怎么能不心动?怎么能不想踏入这两大行业? 据数据统计分析,大数据人工智能尖端人才远远不能满足需求。行业风口的人工智能,在中国人才缺口将超过500 万人,而中国人工智能人才数量目前只 有5 万(数据来自工信部教育考试中心)。 并且目前岗位溢价相当严重,2017 年人工智能在互联网岗位薪酬中位列第三,月薪20.1k,如果按照普遍的16 月薪酬计算,那么人工智能在2017 年一年的薪酬就是2.01*16=32.16 万。那么再来看一组2018 的薪酬数据:

所以如果你对自己的专业/工作不满意,现在正是进入人工智能ling域学习就业/转业的绝佳时机。 在面对众多的数学知识和编程知识里,自学会让大家耗费大量的时间金钱。因此,课工场成都基地大数据培训教育学院2018 重磅推出大数据人工智能课程,采用“T”字形的思维,以大数据的深度为主,以机器学习、云计算等作为宽度,相辅相成。成就无数大学生进入大数据人工智能ling域的梦想。 此外课工场成都基地大数据课程定期组织与一线名企的工程师进行面对面的就企业当下的项目讨论与研发,进而验证所学技术的正确方向。从宏观上讲述了大数据的特点,商业应用,发展和职业前景。然后对主流数据技术和生态圈进行了介绍,了解其他和大数据技术之间关系,然后对不同类型的大数据的分析和处理系统,解决方案和行业案例进行剖析和讲解。 以北京的中关村、西二旗等IT 公司密集的公司为技术背景,数据来源于一 线互联网公司的源数据,有一定的商业价值,并严格把控实际项目的前瞻性,如:Spark 的版本迭代,机器学习中的算法革新。学员实战项目贯穿整个教学环节,潜移默化的培养学生放眼全局,排查技术难点,既能独立思考,又能组织团队开发。 希望能帮到大家。

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

2017年公需课考题大数据技术与发展前景

2017年公需课考题大数据技术与发展前景1 【单选】()是一种高实时性的计算模式。 ? A. 批处理计算 ? B. 流式计算 ? C. 查询分析计算 ? D. 数据挖掘计算 ? A ? B ? C ? D ?正确答案:B 2 【单选】数据的可用性取决于() ? A. 数据分析 ? B. 数据集采 ? C. 数据质量 ? D. 数据需求 ? A ? B ? C

? D ?正确答案:C 3 【单选】批处理和复杂数据挖掘计算通常属于() ? A. 分析计算 ? B. 实时计算 ? C. 查询计算 ? D. 非实时计算 ? A ? B ? C ? D ?正确答案:D 4 【多选】目前大数据分析与挖掘重要发展趋势和方向有()? A. 更加复杂、更大规模的分析和挖掘 ? B. 大数据的实时分析和挖掘 ? C. 大数据分析和挖掘的基准测试 ? B

? C ?正确答案:A B C 5 【多选】从数据处理类型来看,大数据处理可分为()? A. 传统的查询分析计算 ? B. 复杂的数据挖掘分析计算 ? C. 数据纵向挖掘分析计算 ? D. 数据横向挖掘分析计算 ? A ? B ? C ? D ?正确答案:A B 6 【多选】大数据查询分析计算的典型系统包括() ? A. Hadoop36下的HBase 和Hive ? B. Facebook开发的Cassandra ? C. Google 公司的Dremel ? D. Cloudera 公司的实时查询引擎Impala ? A

? B ? C ? D ?正确答案:A B C D 7 【判断】云计算IT资源庞大、分布较为广泛,是异构系统较多的企业及时准确处理数据的有力方式()? A. 正确 ? B. 错误 ?正确 ?错误 ?正确答案:正确 8 【判断】最适合于完成大数据批处理的计算模式是Spark() ? A. 正确 ? B. 错误 ?正确 ?错误 ?正确答案:错误 9 【判断】大数据时代的安全与传统安全相比,变得更加复杂()

液晶高分子材料现状研究进展

液晶高分子材料的现状及研究进展 摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。 关键词:液晶高分子研究应用 前言 高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。 液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 这样人们自然会联想到具有这种结构的高分子材料。1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。 从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。 1液晶高分子材料的特性[3]

煤矸石地质聚合物的制备及研究

煤矸石地质聚合物的制备及研究 摘要通过正交试验揭示自燃煤矸石、水玻璃及矿渣掺量对胶结料强度的影响关系。极差、方差分析显示,各因素影响程度大小顺序为煤矸石掺量>矿渣掺量>水玻璃掺量。试验结果表明:以阜新高德矿煤矸石、矿渣、粉煤灰为主要原料,水玻璃和氢氧化钾为激发剂,可以制备煤矸石-矿渣-粉煤灰地质聚合材料。且当煤矸石:矿渣:粉煤灰=2:1:1,水玻璃:氢氧化钾=7:3,可以制备出满足42.5强度等级要求的水泥。本试验不仅拓宽了自燃煤矸石应用领域和掺混合材料硅酸盐水泥的品种,且可消纳大量的煤矸石,缓解堆积造成的环境污染,符合21世纪建材工业节约能源、减少污染、保护环境,且使其向高性能、绿色化等方向发展的先进理念。 关键词自燃煤矸石;正交设计;方差分析;地质聚合物 1.引言 地质聚合物作为新型绿色胶凝材料,可代替硅酸盐水泥制配出耐腐蚀性强、抗压强度高、凝结速度快的砂浆及混凝土。因此,被广泛应用于新型建筑材料、早强胶凝材料、替代金属陶瓷的高强结构材料。我国是一个以煤炭为主要能源的发展中国家。煤炭的开采导致大量煤矸石的堆积,占用耕地的增大,环境污染的越发严重,而且大多煤矸石含有粘土类矿物,具有和粘土相似的化学成分,若对其进行煅烧,可制得具有火山灰活性的煅烧煤矸石,能够作为地质聚合物的原料。以煤矸石为原材料制备地质聚合物是对固体废弃物资源化的利用。因此,针对我国丰富的原材料和设备条件,对煤矸石地质聚合物的制备工艺、形成机理等方面进行深入系统的研究,不但具有较高的学术价值,而且必将对我国的经济建设产生深远而有意的影响。 2.试验原材料 (1)自燃煤矸石 本试验所选用的煤矸石为辽宁省阜新市高德矿的自燃煤矸石,密度2.77g/cm3,比表面积为925m2/Kg,粒度分布见图1。化学成分分析见表1。 图1 自燃煤矸石粉筛分析曲线 Fig1 The sieve analysis curve of spontaneous coal gangue powder

大数据的应用领域和发展前景怎么样

大数据的应用领域和发展前景怎么样 随着大数据进军社会的各个领域,千锋教育培训机构在疯狂的输出大数据人才,力争打造大数据全才,就今年的综合情况来看,未来几年大数据在商业智能、政府服务和市场营销三个领域的应用非常值得看好,大多数大数据案例和预算将发生在这三个领域。 (1)商业智能 商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。 过去几十年,分析师们都依赖来自Hyperion、Microstrategy和Cognos 的BI产品分析海量数据并生成报告。数据仓库和BI工具能够很好地回答类似这样的问题:“某某人本季度的销售业绩是多少?”(基于结构化数据),但如果涉及决策和规划方面的问题,由于不能快速处理非结构化数据,传统的BI会非常吃力和昂贵。大多数传统BI工具都受到以下两个方面的局限: 首先,它们都是“预设-抓取”工具,由分析师预先确定收集什么数据用于分析。 其次,它们都专注于报告“已知的未知”(Known unknowns),也就是我

们知道问题是什么,然后去找答案。(而大数据会给出一些未知的未知,也就是你没有想到的一些问题的结果)传统BI工具主要用于企业运营,侧重于成本控制和计划执行报告。 而大数据技术最主要的功能/应用是ETL(Extract、Transform、Load)。将近80%的Hadoop应用都与ETL有关,例如在导入Vertica这样的分析数据库之前对日志文件或传感器数据的处理。 今天计算和存储硬件变得非常便宜,配合大量的开源大数据工具,人们可以非常“奢侈”地先抓取大量数据再考虑分析命题。可以说,低廉的计算资源正在改变我们使用数据的方式。此外,处理性能的大幅提高(例如内存计算)使得实时互动分析更加容易实现,而“实时”和“预测”将BI带到了一个新的境界——未知的未知。这也是大数据分析与传统BI之间最大的区别。未来几年,随着企业间的兼并和新产品的不断推出,传统的BI工具将与大数据分析并存。 (2)公共服务 大数据另外一个重大的应用领域是社会和政府。如今,数据挖掘已经能够预测疾病暴发、理解交通模型并改善教育。

地质聚合物

地质聚合物 姓名:黄宇文班级BG0906 摘要:地质聚合物是一类新发展起来的,兼有有机物、陶瓷、水泥的特点,又具有独特优异性能的新型胶凝材料。本文介绍了地质聚合物的反应机理、研究进展及开发应用。 关键词:胶凝材料地质聚合物碱激活反应机理 地质聚合物(Geopolymer)是近年来国际上研究非常活跃的非金属材料之一。它是以粘土、工业废渣或矿渣为主要原料,经适当的工艺处理,在较低温度条件下通过化学反应得到的一类新型无机聚合物材料。地质聚合物(Geopolymer)的概念在上个世纪70年代末首先由J.Davidovits提出。该材料是近年来新发展起来的、有可能在许多场合代替水泥,并有着比水泥更优异性能的新型材料。其英文的同义词还有Mineral Polymer,Geopolymeric Materials,Aluminosilicate Polymer,Inorganic Polymeric Materials等。中国地质大学的马鸿文教授建议将其译为“矿物聚合材料”。鉴于在国外Geopolymer一词使用最为广泛和我国早期介绍该材料的一些学者已将其称为“地质聚合物”,本文建议我国使用“地质聚合物”一词作为该材料的正式中文名称,并与Geopolymer 相对应。 地质聚合物被认为是由地球化学作用(Geochemistry)或人工模仿地质合成作用(Geosynthesis)而制造出的、以无机聚合物为基体的、坚硬的人造岩石。这种人造岩石具有天然岩石一样的硬度、耐久性和热稳定性。 地质聚合物具有强度高、硬化快、耐酸碱腐蚀等优于普通硅酸盐水泥的独特性能,同时具有材料丰富、工艺简单、价格低廉、节约能源等优点引起了国内外材料专家的极大兴趣。 1 地质聚合物的反应机理 法国J. Davidovits提出的“解聚—缩聚”机理,他认为地质聚合物的形成过程为:铝硅酸盐聚合反应是一个放热脱水的过程,反应以水为传质,在碱性催化剂的作用下铝硅酸盐矿物的的硅氧键和铝氧键断裂,发生断裂—重组反应;形成一系列的低聚硅(铝)四面体单元, 聚合后又将大部分水排除,少量水则以结构水的形式取代[SiO 4 ]中一个O的位置,最终生成Si—O—Al的网络结构。聚合作用过程即各种铝硅酸盐(Al 3+ 呈Ⅳ或Ⅴ次 配位)与强碱性硅酸盐溶液之间的化学反应。 以上聚合反应表明,任何硅铝物质都可作为制备人造矿物聚合物材料的原料。 现在大多数的研究者的理论都以J. Davidovits的理论作为地质聚合物反应机理的基础。这些理论的共同点在于地质聚合物的形成是铝硅酸盐在碱性条件下生成水合物后,水合物在进行缩水聚合生成聚合物。当地质聚合物的添加成分较复杂时,则添加成分的离子在硅铝网络结构中所占据的位置不同而得到不同性质的地质聚合物。 2 地质聚合物研究进展 20世纪30年代,美国的Purdon在研究了波特兰水泥(普通硅酸盐水泥)的硬化机理时发现,少量的NaOH在水泥硬化过程中可以起催化剂的作用,使得水泥中的硅、铝化合 物比较容易溶解而形成硅酸钠和偏铝酸钠,再进一步与Ca(OH) 2 反应形成硅酸钙和 铝酸钙矿物,使水泥硬化并且重新生成Na(OH)再催化下一轮反应,因此他提出了所谓的“碱激活”理论。 在这以后,前苏联投入了大量的人力、物力对碱激活材料进行了系统的研究。他们发现除了氢氧化钠以外,碱金属的氢氧化物、碳酸盐、硫酸盐、磷酸盐、氟化物、硅酸盐和铝硅酸盐等都可以作为反应的激活剂。到了1972年,法国的J.Davidovits教授申请了地聚合物历

相关文档
最新文档