聚氯乙烯简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氯乙烯简介
1 聚氯乙烯是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。
由氯乙烯在引发剂作用下聚合而成的热塑性树脂,是氯乙烯的均聚物。
聚氯乙烯是世界上产量最大的塑料产品之一,价格便宜,应用广泛,聚氯乙稀树脂为白色或浅黄色粉末。
2 聚氯乙烯简称PVC,由氯乙烯在引发剂作用下聚合而成的热塑性树脂。
是氯乙烯的均聚物。
氯乙烯均聚物和氯乙烯共聚物统称为氯乙烯树脂。
PVC为无定形结构的白色粉末,支化度较小。
工业生产的PVC分子量一般在5万~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加;无固定熔点,80~8聚氯乙烯5℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态;有较好的机械性能,抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。
但对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并进一步自动催化分解,引起变色,物理机械性能也迅速下降,在实际应用中必须加入稳定剂以提高对热和光的稳定性。
PVC很坚硬,溶解性也很差,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。
PVC溶解在丙酮-二硫化碳或丙酮-苯混合溶剂中,用于干法纺丝或湿法纺丝而成纤维,称氯纶。
具有难燃、耐酸碱、抗微生物、耐磨并具有较好的保暖性和弹性。
行业发展模式1聚氯乙烯(PVC)是五大通用树脂之一,其产量仅次于聚乙烯(PE)。
PVC有优良的阻燃、
绝缘、耐磨损等化学性能,被广泛的应用于建材、轻工、农业等领域。
在其具体应用方面,按照PVC产品的主要性状可跟为硬制品和软制品,其中硬制品主要应用在管材、型材等建筑材料方面,而软制品主要应用在薄膜、电缆、人造革等方面。
PVC产品市场与房地产市场有着非常紧密的联系。
在房地产建筑中,PVC材料用途广泛,其中以型材、门窗、塑料管等硬制品最为常见。
以北美市场为例,建筑房屋方面的PVC用量占总量的75%以上,而国内应用于管材、型材、门窗等领域的PVC约占总体需求的65%左右。
2010年以来,针对商品房价格持续上升,房产市场泡沫加大,国家陆续出台了相关政策,以期合理的调控房价,但由于房地产行业与地方政府相关经济链条错综复杂,房地产调控政策一度形同虚有。
2011年,国家下发《国务院关于进一步做好房地产市场调控工作有关问题的通知》,国家“限购令”的逐步落实,使全国房地产行业一度陷入“有价无市”的尴尬局面,市场观望情绪空前,尤其是在2011年下半年以来,房地产企业集体遭遇市场寒流,而这次调控也被认为是“史上最严厉调控”。
从下图可以看出,2010年以来,我国房地产消费价格指数持续下降,尤其是到2011
年三季度末,消费价格指数降至2000年的水平。
2012年以来,房地产调控政策没有明显的放松迹象,全国房地产市场持续低迷,商品房成交量一蹶不振,全国主要的房地产中介公司业务量大幅下降,房地产企业纷纷捂紧钱袋,放缓了拿地和新开工的速度。
受此影响,PVC产品在建材市场的需求量有所减少。
前瞻资讯产业研究院《2014-2018年中国PVC型材行业市场前瞻与投资战略规划分析报告前瞻》认为,虽然房地产市场的低迷将对PVC产品市场产生一定影响,但从总体上看,2012年PVC产品市场发展前景依然较好。
PVC行业有望保持发展的首要动力来自于保障性住房建设。
2011年7月,住房城乡建设部下发《关于开展保障性安居工程建设政策落实情况监督检查工作的通知》,一方面,国家调控商品房价格的合理回归,另一方面又加大的了保障性住房的建设规模,这将在一定程度上补偿由于商品房市场不景气带来的PVC产品需求的下降。
另外,新农村建设进程的加快,也将带来PVC产品市场容量的增长;另一方面,同样作为PVC产品应用市场的农业、医疗器械等行业未来发展前景看好,也将给PVC产品和市场带来较稳定的需求。
结构简式这种材料的结构如下:[ ―CH2 ―CHCl― ]n
碳原子为锯齿形排列,所有原子均以σ键相连。
所有碳原子均为sp3杂化。
材料性质1密度1380 kg/m3
杨氏弹性模量(E) 2900-3400 MPa
拉伸强度(σt) 50-80 MPa
Elongation @ break 20-40%
Notch test 2-5 kJ/m2
玻璃转变温度87℃
熔点212℃
Vicat B1 85℃
导热率(λ)0.16 W/m.K
热膨胀系数(α)8 10-5 /K
热容(c) 0.9 kJ/(kg·K)
吸水率(ASTM) 0.04-0.4
折射率硬质成型品1.52~1.55
Price 0.5-1.25kg
聚氯乙烯的最大特点是阻燃,因此被广泛用于防火应用。
但是聚氯乙烯在燃烧过程中会释放出氯化氢和其他有毒气体,例如二恶英。
聚氯乙烯的燃烧分为两步。
先在240℃-340℃燃烧分解出氯化氢气体和含有双键的二烯烃,然后在400-470℃发生碳的燃烧。
基本分类
1、聚氯乙稀的分类
根据生产方法的不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC 树脂。
通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。
根据氯乙烯单体的获得方法来区分,可分为电石法、乙烯法和进口(EDC、VCM)单体法(习惯上把乙烯法和进口单体法统称为乙烯法)。
根据聚合方法,聚氯乙烯可分为四大类:悬浮法聚氯乙烯,乳液法聚氯乙烯、本体法聚氯乙烯、溶液法聚氯乙烯。
悬浮法聚氯乙烯是目前产量最大的一个品种,约占PVC总产量的80%左右。
下面图表列出这四种聚氯乙烯的基本特性。
2、聚氯乙稀的命名
悬浮法聚氯乙烯按绝对黏度分六个型号:XS-1、XS-2……XS-6;XJ-1、XJ-2……、XJ-6。
型号中各字母的意思:X-悬浮法;S-疏松型;J-紧密型;下面图表为国产悬浮法聚氯乙烯的特性。
乳液聚合生产所得的聚氯乙烯称乳液法聚氯乙烯(Emulsion poly-merixation)。
它是糊状树脂,分子量较高,颗粒较细。
乳液法聚氯乙烯的型号为RH-x-y,其中R-乳液法;H-糊状
树脂;x-树脂烯溶液的绝对黏度;y-糊黏度。
x分1、2、3型,1型绝对黏度为2.01-2.4mPa·s,2型绝对黏度为1.81~2.00mPa·s,3型绝对黏度为1.60~1.80mPa·s。
y分Ⅰ、Ⅱ、Ⅲ号,Ⅰ号糊黏度不大于3,000mPa·s,Ⅱ号糊黏度为3000~7000mPa·s,Ⅲ号糊黏度为7,000~10,000mPa·s。
基本性质稳定;不易被酸、碱腐蚀;对热比较耐受
聚氯乙烯具有阻燃(阻燃值为40以上)、耐化学药品性高(耐浓盐酸、浓度为90%的硫酸、浓度为60%的硝酸和浓度20%的氢氧化钠)、机械强度及电绝缘性良好的优点。
聚氯乙烯对光、热的稳定性较差。
软化点为80℃,于130℃开始分解。
在不加热稳定剂的情况下,聚氯乙烯100℃时即开始分解,130℃以上分解更快。
受热分解出放出氯化氢气体,使其变色,由白色→浅黄色→红色→褐色→黑色。
阳光中的紫外线和氧会使聚氯乙烯发生光氧化分解,因而使聚氯乙烯的柔性下降,最后发脆。
从这里不难理解,为什么一些PVC塑料时间久了就会变黄、变脆的原因。
具有稳定的物理化学性质,不溶于水、酒精、汽油,气体、水汽渗漏性低;在常温下可耐任何浓度的盐酸、90%以下的硫酸、50—60%的硝酸和20%以下的烧碱溶液,具有一定的抗化学腐蚀性;对盐类相当稳定,但能够溶解于醚、酮、氯化脂肪烃和芳香烃等有机溶剂。
聚氯乙烯工业聚氯乙烯树脂主要是非晶态结构,但也包含一些结晶区域(约5%),所以聚氯乙烯没有明显的溶点,约在80℃左右开始软化,热扭变温度(1.82MPa负荷下)为70-71℃,在加压下150℃开始流动,并开始缓慢放出氯化氢,致使聚氯乙烯变色(由黄变红、棕、甚至于黑色)。
工业聚氯乙烯重均相对分子质量在4.8-4.8万范围内,相应的数均相对分子质量为
2-1.95万。
而绝大多数工业树脂的重均相对分子质量在10-20万,数均相对分子质量在4.55-6.4万。
硬质聚氯乙烯(未加增塑剂)具有良好的机械强度、耐候性和耐燃性,可以单独用做结构材料,应用于化工上制造管道、板材及注塑制品。
硬质聚氯乙烯可以用增强材料。
发展历程
1912年,德国人Fritz Klatte合成了PVC,并在德国申请了专利,但是在专利过期前没有能够开发出合适的产品。
1926年,美国B.F. Goodrich公司的Waldo Semon合成了PVC并在美国申请了专利。
PVC在19世纪被发现过两次,一次是Henri Victor Regnault在1835年,另一次是Eugen Baumann在1872年发现的。
两次机会中,这种聚合物都出现在被放置在太阳光底下的氯乙烯的烧杯中,成为白色固体。
20世纪初,俄国化学家Ivan Ostromislensky和德国Griesheim-Elektron公司的化学家Fritz Klatte同时尝试将PVC用于商业用途,但困难的是如何加工这种坚硬的,有时脆性的的聚合物。
Waldo Semon和B.F. Goodrich Company在1926年开发了利用加入各种助剂塑化PVC的方法,使它成为更柔韧更易加工的材料并很快得到广泛的商业应用
生产方法
①悬浮聚合法使单体呈微滴状悬浮分散于水相中,选用的油溶性引发剂则溶于单体中,聚合反应就在这些微滴中进行,聚合反应热及时被水吸收,为了保证这些微滴在水中呈珠状分散,需要加入悬浮稳定剂,如明胶、聚乙烯醇、甲基纤维素、羟乙基纤维素等。
引发剂多采用有机过氧化物和偶氮化合物,如过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯、过氧化二碳酸二乙基己酯和偶氮二异庚腈、偶氮二异丁腈等。
聚合是在带有搅拌器的聚合釜中进行的。
聚合后,物料流入单体回收罐或汽提塔内回收单体。
然后流入混合釜,水洗再离心脱水、干燥即得树脂成品。
氯乙烯单体应尽可能从树脂中抽除。
作食品包装用的PVC,游离单体含量应控制在1ppm以下。
聚合时为保证获得规定的分子量和分子量分布范围的树脂并防止爆聚,必须控制好聚合过程的温度和压力。
树脂的粒度和粒度分布则由搅拌速度和悬浮稳定剂的选择与用量控制。
树脂的质量以粒度和粒度分布、分子量和分子量分布、表观密度、孔隙度、鱼眼、热稳定性、色泽、杂质含量及粉末自由流动性等性能来表征。
聚合反
聚氯乙烯应釜是主要设备,由钢制釜体内衬不锈钢或搪瓷制成,装有搅拌器和控制温度的传热夹套,或内冷排管、回流冷凝器等。
为了降低生产成本,反应釜的容积已由几立方米、十几立方米逐渐向大型化发展,最大已达到200m(见釜式反
应器)。
聚合釜经多次使用后要除垢。
以聚乙烯醇和纤维素醚类等为悬浮稳定剂制得的PVC 一般较疏松,孔隙多,表面积大,容易吸收增塑剂和塑化。
②乳液聚合法最早的工业生产PVC的一种方法。
在乳液聚合中,除水和氯乙烯单体外,还要加入烷基磺酸钠等表面活性剂作乳化剂,使单体分散于水相中而成乳液状,以水溶性过硫酸钾或过硫酸铵为引发剂,还可以采用“氧化-还原”引发体系,聚合历程和悬浮法不同。
也有加入聚乙烯醇作乳化稳定剂,十二烷基硫醇作调节剂,碳酸氢钠作缓冲剂的。
聚合方法有间歇法、半连续法和连续法三种。
聚合产物为乳胶状,乳液粒径0.05~2μm,可以直接应用或经喷雾干燥成粉状树脂。
乳液聚合法的聚合周期短,较易控制,得到的树脂分子量高,聚合度较均匀,适用于作聚氯乙烯糊,制人造革或浸渍制品。
乳液法聚合的配方复杂,产品杂质含量较高。
③本体聚合法聚合装置比较特殊,主要由立式预聚合釜和带框式搅拌器的卧式聚合釜构成(图2)。
聚合分两段进行。
单体和引发剂先在预聚合釜中预聚1h,生成种子粒子,这时转化率达8%~10%,然后流入第二段聚合釜中,补加与预聚物等量的单体,继续聚合。
待转化率达85%~90%,排出残余单体,再经粉碎、过筛即得成品。
树脂的粒径与粒形由搅拌速度控制,反应热由单体回流冷凝带出。
此法生产过程简单,产品质量好,生产成本也较低。
应用范围回收及循还再用
资源回收再利用:国际塑料回收代码:PVC的是3 (3字在三个循环再用箭号中心)塑料本体底部或包装上须列明,以便消费者及回收商能适当地分类。
聚乙烯废弃物
聚乙烯是塑料中产量最大、用途极广的热塑性塑料,它是由乙烯聚合而成,是部分结晶材料,可用一般热塑性塑料的成型方法加工。
聚乙烯可分为高密度聚乙烯、低密度聚乙烯和线型低密度聚乙烯三大类。
高密度聚乙烯的密度一般高于0.94g/cm3,而低密度聚乙烯和线型低密度聚乙烯的密度在0.91~0.94g/cm之间。
废旧聚乙烯薄膜主要来源有两方面:
1.薄膜生产中产生的边角料、残次品等。
这些废料清洁,品种明确,可粉碎压缩后直接送入挤出机造粒,回收过程较简单。
2.来自化学工业、电气工业、食品与消费品工业等废弃薄膜。
这些废膜均已被污染,有的已着色并印有商标,有的还含有砂子、木屑或碎纸等杂质。
聚乙烯由于价廉易得、成型方便,所以其制品应用范围很广,但用得最多的还是包装制品,估计在60%以上。
高密度聚乙烯主要用于包装用膜和瓶类、中空容器上;低密度聚乙
烯的最主要用途是包装用膜和农用膜;线型低密度聚乙烯主要用于薄膜、膜塑件、管材以及电线电缆上。
聚氯乙烯历史上曾经是使用量最大的塑料,现在某些领域上以被聚乙烯、PET所代替,但仍然在大量使用,其消耗量仅次于聚乙烯和聚丙烯。
聚氯乙烯制品形式十分丰富,可分为硬聚氯乙烯、软聚氯乙烯、聚氯乙烯糊三大类。
硬聚氯乙烯主要用于管材、门窗型材、片材等挤出产品,以及管接头、电气零件等注塑件和挤出吹型的瓶类产品,它们约占聚氯乙烯65%以上的消耗。
软聚氯乙烯主要用于压延片、汽车内饰品、手袋、薄膜、标签、电线电缆、医用制品等。
聚氯乙烯糊约占聚氯乙烯制品的10%,主要用产品有搪塑制品等。
pvc汽提控制工艺
PVC其实是一种乙烯基的聚合物质,其材料是一种非结晶性材料。
pvc材料在实际使用中经常加入稳定剂、润滑剂、辅助加工剂、色料、抗冲击剂及其它添加剂。
具有不易燃性、高强度、耐气侯变化性以及优良的几何稳定性。
PVC对氧化剂、还原剂和强酸都有很强的抵抗力。
然而它能够被浓氧化酸如浓硫酸、浓硝酸所腐蚀并且也不适用与芳香烃、氯化烃接触的场合。
PVC以其不易燃、耐热、可水洗等的优良特性常被用于工艺品制作。
PVC工艺品造型美观,用途广泛。
PVC杯垫,1、此产品采用环保PVC软胶材质无毒无味,弹性度好,不怕水,不怕脏,简单的清洗即可恢复如新。
2、正面采用点胶(微量社出)方式做LOGO 和图案,背面可采用印刷方式做LOGO和图案。
3、垫手感柔软,造型美观、LOGO文字清淅,给人一种高档次的视觉感!4、软pvc杯垫,既可用在酒吧,咖啡吧等娱乐场所,也可做为家居用品。
5、还可以把企业商标、名称,广告宣传用语等一系列和企业相关的卡通图案做上去以便宣传
汽提
汽提法让废水与水蒸汽直接接触,使废水中的挥发性有毒有害物质按一定比例扩散到气相中去,从而达到从废水中分离污染物的目的。
汽提法的基本原理
与吹脱法相同,只是所使用的介质不同,汽提是借助于水蒸汽介质来实现的。
汽提法分离污染物的工艺视污染物的性质而异,一般可归纳为以下两种:
简单蒸馏
对于与水互溶的挥发性物质,利用其在气——液平衡条件下,在气相中的浓度大于在液相中的浓度这一特性。
通过蒸汽直接加热,使其在沸点(水与挥发物两沸点之间的某一温度)下,按一定比例富集于气相。
蒸汽蒸馏
对于与水互不相溶或几乎不溶的挥发性污染物。
利用混合液的沸点低于两组分沸点这一特性,可将高沸点挥发物在较低温度下加以分离脱除。
例如:废水中的松节油、苯胺、酚、硝基苯等物质在低于100℃条件下,应用蒸馏法可将其分离。
汽提的主要设备汽提塔,有两大类:
填料塔塔内分层放入各种不同的填料
板式塔根据塔板结构不同又分为:
(1)泡罩塔(2)浮阀塔(3)筛板塔
板式塔的效率比填料塔高
汽提法的应用
汽提法最早是用于从含酚废水中回收挥发性酚
废水预热至100℃后,由汽提塔的顶部淋下,与上升的蒸气流相遇,在填料层中或塔板上进行传质、净化后的废水由集水槽排走。
蒸汽和酚混合气体从塔顶排出,由鼓风机压入再生段回收酚。
含酚蒸汽由再生段的底部送入,先与淋下的循环碱液逆流相遇,再与补充的新碱液(浓度10%)相遇,经化学吸收而脱酚,净化后的蒸汽进入汽提段循环使用。
碱液与酚反应生成酚钠
一、吹脱基本原理
废水中常常含有大量有毒有害的溶解气体,如CO2、H2S、HCN、CS2等,其中有的损害人体健康,有的腐蚀管道、设备,为了除去上述气体,常使用吹脱法。
吹脱法的基本原理是:将空气通入废水中,改变有毒有害气体溶解于水中所建立的气液平衡关系,使这些易挥发物质由液相转为气相,然后予以收集或者扩散到大气中去。
吹脱过程属于传质过程,其推动力为废水中挥发物质的浓度与大气中该物质的浓度差。
吹脱法既可以脱除原来就存在于水中的溶解气体,也可以脱除化学转化而形成的溶解气体。
如废水中的硫化钠和氰化钠是固态盐在水中的溶解物,在酸性条件下,它们会转化为H2S和HCN,经过曝气吹脱,就可以将它们以气体形式脱除。
这种吹脱曝气称为转化吹脱法。
用吹脱法处理废水的过程中,污染物不断地由液相转入气相,易引起二次污染,防止的方法有以下三类:①中等浓度的有害气体,可以导入炉内燃烧;②高浓度的有害气体应回收利用;③符合排放标准时,可以向大气排放。
而第二种方法是预防大气污染和利用三废资源的重要途径。
回收这些有害气体的基本方法如下:(1)用碱性溶液吸收挥发性气体,如用NaOH溶液吸收HCN,产生NaCN;吸收H2S,产生Na2S,然后再把吸收液蒸发结晶,进行回收。
(2)用活性炭吸附挥发性物质气体,饱和后用溶剂解吸。
(3)对挥发性气体如H2S进行燃烧,制取H2SO4。
二、吹脱装置及影响因素(一)吹脱装置吹脱装置是指进行吹脱的设备或构筑物,有吹脱池、吹脱塔等。
在吹脱池中,较常使用的是强化式吹脱池。
强化式吹脱池通常是在池内鼓入压缩空气或在池面上安设喷水管,以强化吹脱过程。
鼓气式吹脱池(鼓泡池)一般是在池底部安设曝气管,使水中溶解气体如CO2等向气相转移,从而得以脱除。
吹脱塔又分为填料塔与筛板塔两种。
填料塔塔内装设一定高度的填料层,液体从塔顶喷下,在填料表面呈膜状向下流动;气体由塔底送入,从下而上同液膜逆流接触,完成传质过程。
其优点是结构简单,空气阻力小。
缺点是传质效率不够高,设备比较庞大,填料容易堵塞。
筛板塔是在塔内设一定数量的带有孔眼的踏板,水从上往下喷淋,穿过筛孔往下,空气则从下往上流动,气体以鼓泡方式穿过筛板上液层时,互相接触而进行传质。
图4-27为筛板示意图。
通常筛孔孔径为6~8mm,筛板间距为200~300mm。
其优点是构造简单,制造方便,传质效率高,塔体比填料塔小,不易堵塞。
但操作管理要求高,筛孔容易堵塞。
(二)吹脱影响因素在吹脱过程中,影响吹脱的主要因素有以下几种。
(1)温度。
在一定压力下,气体在废水中的溶解度随温度升高而降低,因此,升高温度对吹脱有利。
(2)气液比。
应选择合适的气液比。
空气量过小,会使气液两相接触不好,反之空气量过大,不仅不经济,反而会发生液泛(即废水被空气带走),破坏操作。
所以最好使气液比接近液泛极限。
此时,气液相在充分滞流条件下,传质效率很高。
工作设计常用液泛极限气液比的80%。
(3)pH值。
在不同的pH值条件下,挥发性物质存在的状态不同。
(4)油类物质。
废水中如含有油类物质,会阻碍挥发性物质向大气中扩散,而且会堵塞填料,影响吹脱,所以应在预处理中除去油类物质。
(5)表面活性剂。
当废水中含有表面活性物质时,在吹脱过程中会产生大量泡沫,当采用吹脱池时,会给操作运转和环境卫生带来不良影响,同时也影响吹脱效率。
因此在吹脱前应采取措施消除泡沫。
原油常压精馏塔
原油的常压蒸馏就是原油在常压(或稍高于常压)下进行的蒸馏,所用的蒸馏设备叫做原油常压精馏塔
工艺特点
1)常压塔是一个复合塔原油通过常压蒸馏要切割成汽油、煤油、轻柴油、重柴油和重油等四、五种产品馏分。
按照一般的多元精馏办法,需要有n-1个精馏塔才能把原料分割成n个馏分。
而原油常压精馏塔却是在塔的侧部开若于侧线以得到如上所述的多个产品馏分,就像n个塔叠在一起一样,故称为复合塔。
(2)常压塔的原料和产品都是组成复杂的混合物原油经过常压蒸馏可得到沸点范围不同的馏分,如汽油、煤油、柴油等轻质馏分油和常压重油,这些产品仍然是复杂的混合物(其质量是靠一些质量标准来控制的。
如汽油馏程的干点不能高于205℃)。
35℃~150℃是石脑油(naphtha)或重整原料,130℃~250℃是煤油馏分,250 ℃~300℃是柴油馏分,300℃~350℃是重柴油馏分,可作催化裂化原料。
>350℃是常压重油。
(3)汽提段和汽提塔对石油精馏塔,提馏段的底部常常不设再沸器,因为塔底温度较高,一般在350℃左右,在这样的高温下,很难找到合适的再沸器热源,因此,通常向底部吹入少量过热水蒸汽,以降低塔内的油汽分压,使混入塔底重油中的轻组分汽化,这种方法称为汽提。
汽提所用的水蒸汽通常是400℃~450℃,约为3M PA的过热水蒸汽。
在复合塔内,汽油、煤油、柴油等产品之间只有精馏段而没有提馏段,这样侧线产品中会含有相当数量的轻馏分,这样不仅影响本侧线产品的质量,而且降低了较轻馏分的收率。
所以通常在常压塔的旁边设置若干个侧线汽提塔,这些汽提塔重叠起来,但相互之间是隔开的,侧线产品从常压塔中部抽出,送入汽提塔上部,从该塔下注入水蒸汽进行汽提,汽提出的低沸点组分同水蒸汽一道从汽提塔顶部引出返回主塔,侧线产品由汽提塔底部抽出送出装置。
(4)常压塔常设置中段循环回流在原油精馏塔中,除了采用塔顶回流时,通常还设置1~2个中段循环回流,即从精馏塔上部的精馏段引出部分液相热油,经与其它冷流换热或冷却后再返回塔中,返回口比抽出口通常高2 ~3层塔板。