成都市第十二中学(川大附中)人教版七年级上册数学期末试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市第十二中学(川大附中)人教版七年级上册数学期末试卷
一、选择题
1.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =时,则x 的值为( ) A .14
-
B .116
C .
14
D .
12
2.4 =( ) A .1
B .2
C .3
D .4
3.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则
FOD ∠=( )
A .35°
B .45°
C .55°
D .125°
4.在22
3,2,7
-四个数中,属于无理数的是( ) A .0.23
B 3
C .2-
D .
227
5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .
410 +
4
15
x -=1 B .
410 +
4
15
x +=1 C .
410x + +4
15
=1 D .
410x + +15
x
=1 6.下列分式中,与2x y
x y ---的值相等的是()
A .2x y y x
+-
B .2x y x y
+-
C .2x y x y
--
D .2x y y x
-+
7.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③
D .④
8.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 9.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )
A .m=2,n=1
B .m=2,n=0
C .m=4,n=1
D .m=4,n=0
10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与
∠2的数量关系为( )
A .∠1=∠2
B .∠1=2∠2
C .∠1=3∠2
D .∠1=4∠2 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2 C .4
D .2 12.下列计算正确的是( )
A .-1+2=1
B .-1-1=0
C .(-1)2=-1
D .-12=1
二、填空题
13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.
14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
15.写出一个比4大的无理数:____________.
16.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.
17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.
18.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.
19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.
20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.A 学校有m 个学生,其中女生占45%,则男生人数为________. 22.方程x +5=
1
2
(x +3)的解是________. 23.8点30分时刻,钟表上时针与分针所组成的角为_____度. 24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.
三、压轴题
25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.
(1)长方形的边AD 长为 单位长度;
(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;
(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P
点出发时间相同。

那么当三角形BDQ ,三角形BPC 两者面积之差为1
2
时,直接写出运动时间t 的值.
27.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
28.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,
122
x x +,
123
3
x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,
()212
+-=
1
2,
()2133
+-+=43,所以数列2,-1,3的最佳值为
1
2
. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为
1
2
;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳
值的最小值为
1
2
.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);
(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.
29.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
说明:[
)a,b 表示在范围a b ~中,可以取到a ,不能取到b .
根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.
(购买商品得到的优惠率100%)=
⨯购买商品获得的总优惠额
商品的标价

请问:
()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?
()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.
30.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点
P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
31.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发
生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
32.阅读下列材料,并解决有关问题:
我们知道,(0)0(0)(0)x x x x x x >⎧⎪
==⎨⎪-<⎩
,现在我们可以用这一结论来化简含有绝对值的式子,例如
化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称
1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将
全体有理数不重复且不遗漏地分成如下三种情况:
(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:
(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-
综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪
=-≤<⎨⎪-≥⎩
通过以上阅读,请你类比解决以下问题:
(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 利用max
{
}
2,,x x x 的定义分情况讨论即可求解.
【详解】 解:当max
{
}
21
,,2
x x x =
时,x ≥0
1
2,解得:x =14
>x >x 2,符合题意;
②x 2=12,解得:x =2
x >x 2,不合题意;
③x =
1
2
x >x 2,不合题意;
故只有x =
1
4
时,max }
21,2
x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
2.B
解析:B 【解析】 【分析】
根据算术平方根的概念可得出答案. 【详解】
解:根据题意可得:

故答案为:B. 【点睛】
本题考查算术平方根的概念,解题关键在于对其概念的理解.
3.C
解析:C 【解析】 【分析】
根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】
解:根据题意可得:BOE AOF ∠=∠,
903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】
本题考查的是对顶角和互余的知识,解题关键在于等量代换.
4.B
解析:B 【解析】 【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】
0.23是有限小数,是有理数,不符合题意,
是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
22
7
是分数,是有理数,不符合题意, 故选:B. 【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.
5.B
解析:B 【解析】 【分析】
直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】
设乙独做x 天,由题意得方程:
410+
4
15x +=1. 故选B . 【点睛】
本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.
6.A
解析:A 【解析】 【分析】
根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x y
x y y x
++-=--, 故选:A . 【点睛】
本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.
7.A
解析:A 【解析】 【分析】
根据点到直线的距离,直线的性质,线段的性质,可得答案. 【详解】
①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;
②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;
③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;
④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.
故选A.
【点睛】
本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.
8.A
解析:A
【解析】
【分析】
首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.
【详解】
解:﹣(﹣1)=1,
∴﹣1<0<﹣(﹣1)<2,
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.
9.A
解析:A
【解析】
根据同类项的相同字母的指数相同可直接得出答案.
解:由题意得:
m=2,n=1.
故选A.
10.B
解析:B
【解析】
【分析】
延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.
【详解】
延长EP交CD于点M,
∵∠EPF是△FPM的外角,
∴∠2+∠FMP=∠EPF=90°,
∴∠FMP=90°-∠2,
∵AB//CD,
∴∠BEP=∠FMP,
∴∠BEP=90°-∠2,
∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,
∴∠1+90°-∠2+90°-∠2=180°,
∴∠1=2∠2,
故选B.
【点睛】
本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
11.C
解析:C
【解析】
【分析】
由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.
【详解】
3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)
=4;
故选C.
【点睛】
代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.
12.A
解析:A
【解析】
解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;
C,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.
二、填空题
13.2
【解析】
【分析】
把x=3代入方程计算即可求出a的值.
解:把x=3代入方程得:6+a=3a+2,
解得:a=2.
故答案为:2
【点睛】
此题考查了一元一次方程的解,方程的解即为能
解析:2
【解析】
【分析】
把x=3代入方程计算即可求出a 的值.
【详解】
解:把x=3代入方程得:6+a=3a+2,
解得:a=2.
故答案为:2
【点睛】
此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
14.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
15.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4

【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
16.5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3
解析:5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3=8;
∵点D是AC的中点,
∴AD=8÷2=4;
∵点E是AB的中点,
∴AE=5÷2=2.5,
∴ED=AD﹣AE=4﹣2.5=1.5.
故答案为:1.5.
此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.
17.20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
解析:20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB=90°,
∴∠2+∠3=90°.
∴∠3=90°−∠2.
∵a∥b,∠2=2∠1,
∴∠3=∠1+∠CAB,
∴∠1+30°=90°−2∠1,
∴∠1=20°.
故答案为:20.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.
18.100
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
19.(4n+1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=
解析:(4n+1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=1+4×3,
……
∴摆第n个图案需要火柴棒(4n+1)根,
故答案为(4n+1).
【点睛】
本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4
根火柴棒.
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,

解析:1或-7
【解析】
【分析】
设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.
【详解】
设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
21.【解析】
【分析】
将男生占的比例:,乘以总人数就是男生的人数.
【详解】
男生占的比例是,则男生人数为55%,
故答案是55%.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其
解析:55%m
【解析】
【分析】
-,乘以总人数就是男生的人数.
将男生占的比例:145%
【详解】
-=,则男生人数为55%m,
男生占的比例是145%55%
故答案是55%m.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.
22.x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
解析:x=-7
【解析】
去分母得,2(x+5)=x+3,
去括号得,2x+10=x+3
移项合并同类项得,x=-7.
23.75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
解析:75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
24.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得

故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题. 解析:5
【解析】
【分析】
把方程的解代入方程即可得出m的值.
【详解】
x=代入方程,得
把1
m⨯-=
141
m=
∴5
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
三、压轴题
25.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=1
2
(α+20°)-20°,
∴α=140°.
【点睛】
本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.
26.(1)4;(2)-3.5或-0.5;(3)t的值为11
16

13
16

13
8

11
8

【解析】
(1)先求出AB 的长,由长方形ABCD 的面积为12,即可求出AD 的长;
(2)由三角形ADP 面积为3,求出AP 的长,然后分两种情况讨论:①点P 在点A 的左边;②点P 在点A 的右边.
(3) 分两种情况讨论:①若Q 在B 的左边,则BQ = 3-3t .由|S △BDQ -S △BPC |=
12,解方程即可;②若Q 在B 的右边,则BQ = 3t -3.由|S △BDQ -S △BPC |=
12,解方程即可. 【详解】
(1)AB =1-(-2)=3.
∵长方形ABCD 的面积为12,∴AB ×AD =12,∴AD =12÷3=4.
故答案为:4.
(2)三角形ADP 面积为:
12AP •AD =12AP ×4=3, 解得:AP =1.5,
点P 在点A 的左边:-2-1.5=-3.5,P 点在数轴上表示-3.5;
点P 在点A 的右边:-2+1.5=-0.5,P 点在数轴上表示-0.5.
综上所述:P 点在数轴上表示-3.5或-0.5.
(3)分两种情况讨论:①若Q 在B 的左边,则BQ =AB -AQ =3-3t .
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,460.5t -=±,解得:t =138或118. 综上所述:t 的值为1116、1316、138或118
. 【点睛】
本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.
27.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;
(2)依题意设∠2=x ,列等式,解方程求出即可;
(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
28.(1)3;(2)1
2
;-3,2,-4或2,-3,-4.(3)a=11或4或10.
【解析】
【分析】
(1)根据上述材料给出的方法计算其相应的最佳值为即可;
(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a的数值即可.
【详解】
(1)因为|−4|=4,-4-3
2
=3.5,
-4-31
2
=3,
所以数列−4,−3,1的最佳值为3.
故答案为:3;
(2)对于数列−4,−3,2,因为|−4|=4,
43
2
--

7
2

432
||
2
--+

5
2

所以数列−4,−3,2的最佳值为5
2

对于数列−4,2,−3,因为|−4|=4,||
4
2
2
-+
=1,
432
||
2
--+

5
2

所以数列−4,2,−3的最佳值为1;
对于数列2,−4,−3,因为|2|=2,2
2
4
-
=1,
432
||
2
--+

5
2

所以数列2,−4,−3的最佳值为1;
对于数列2,−3,−4,因为|2|=2,2
2
3
-

1
2

432
||
2
--+

5
2

所以数列2,−3,−4的最佳值为1 2
∴数列的最佳值的最小值为2
2
3
-

1
2

数列可以为:−3,2,−4或2,−3,−4.
故答案为:1
2
,−3,2,−4或2,−3,−4.
(3)当2
2
a

=1,则a=0或−4,不合题意;

9
2
a
-+
=1,则a=11或7;
当a=7时,数列为−9,7,2,因为|−9|=9,
97
2
-+
=1,
972
2
-+

=0,
所以数列2,−3,−4的最佳值为0,不符合题意;

97
2
a
-+

=1,则a=4或10.
∴a=11或4或10.
【点睛】
此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.
29.(1)230元;(2) 790元或者810元;(3) 400,55%.
【解析】
【分析】
()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;
()2实际付款375元时,应考虑到20037520400
≤+<与40037530600
≤+<这两种情
况的存在,所以分这两种情况讨论;
()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.
【详解】
解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦
故购买一件标价为500元的商品,顾客的实际付款是230元.
()2设商品标价为x 元.
20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论
①抵扣金额为20元时,1x 203752
-=,则x 790= ②抵扣金额为30元时,1x 303752
-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.
()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x
+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到
2030405040080012001600
>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220
=
+= 故答案为400,55%
【点睛】
本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.
30.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.
【详解】
解:(1)25- ,35
(2)设运动时间为x 秒 13x 2x 2535+=+
解得 x 4=
352427-⨯=
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,
∵25305
-+=,
∴点P所在的位置表示的数为5 .
(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,
∴点P和点Q一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
31.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)10
3
或4(4)线段MN的长度不
发生变化,都等于11
【解析】
【分析】
(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;
(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;
(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为-14,8-4t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(3) ①点P、Q相遇之前,4t+2+2t =22,t=10
3

②点P、Q相遇之后,4t+2t -2=22,t=4,
故答案为
10
3
或4
(4)线段MN的长度不发生变化,都等于11;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=
1
2
AP+
1
2
BP=
1
2
(AP+BP)=1
2
AB=
1
2
×22=11
②当点P运动到点B的左侧时:
MN=MP﹣NP=
1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=1
2
AB=11
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
32.(1) 2
x=-和4
x= ;(2)
35(4)
11(43)
35(3)
x x
x x
x x
--<-


+-≤<

⎪+≥

【解析】
【分析】
(1)令x+2=0和x-4=0,求出x的值即可得出|x+2|和|x-4|的零点值,
(2)零点值x=3和x=-4可将全体实数分成不重复且不遗漏的如下3种情况:x<-4、-4≤x<3和x≥3.分该三种情况找出324
x x
-++的值即可.
【详解】
解:(1)2
x=-和4
x=,
(2)由30
x-=得3,
x=由40
x+=得4
x=-,
①当4
x<-时,原式()()
32435
x x x
=---+=--,
②当4
-≤3
x<时,原式()()
32411
x x x
=--++=+,
③当x≥3时,原式()()
32435
x x x
=-++=+,
综上所述:原式
()
35(4)
11(43)
353
x x
x x
x x
⎧--<-

=+-≤<

⎪+≥

,
【点睛】
本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

相关文档
最新文档