acrobatx数字签名实用方法

Kettle开源ETL平台_安装配置及使用说明v1.1

KETTLE 开源ETL软件】【安装配置与使用说明】 2015 年09 月

修订记录

目录 修订记录 (2) 1.安装与配置 (4) 1.1ETL 与K ETTLE概述 (4) 1.2K ETTLE的下载与安装 (7) 1.2.1Windows下安装配置 ............................................ Kettle 8 1.2.2Linux 下安装配置.................................................. Kettle 10 1.2.3Kettle 下安装..................................................... JDBC数据库驱动15 1.2.4下配置资源库连接 (15) 1.2.5Kettle 下 Hadoop Plugin 插件配置 (17) 2.KETTLE组件介绍与使用 (19) 2.1K ETTLE SPOON使用 (19) 2.1.1组件树介绍 (20) 2.1.2使用示例.......................................................... 1 23 2.1.3使用示例.......................................................... 2 37 2.1.4使用Kettle 装载数据到..................................... HDFS 48 2.1.5使用Kettle 装载数据到 (iv) 52 2.1.6使用 Kettle 进行 hadoop的 mapreduce图形化开发 (52) 2.2K ETTLE PAN的使用 (63) 2.3K ETTLE KITECHEN的使用 (64) 2.4C ARTE添加新的ETL执行引擎 (65) 2.5E NCR加密工具 (68)

RSA数字签名算法的模拟实现

RSA数字签名算法的模拟实现 摘要 本程序为简易版RSA算法加密解密过程的模拟实现。 程序分为加密和验证两部分。根据课上所学的MD5加密过程,以及RSA算法,本程序采用MD5算法,先对文件内容进行加密,得到文字摘要;再利用RSA算法的私钥,对文字摘要进行加密,得到数字签名。在验证部分,用RSA公钥对数字证书签名解密,得到文字摘要S1,再将需要验证的文档用公用的MD5算法处理,得到文字摘要S2,检验文字摘要S1与S2的一致性,从而断定原文是否被篡改。程序采用树形图对文件进行直观的显示管理。采用文本文档存储数字签名。 关键词:RSA MD5 文字摘要数字签名

Abstract This program is simple version of the RSA algorithm encryption and decryption process simulation. The procedures are divided into two parts, encryption and authentication. Lessons learned based on the MD5 encryption process, as well as RSA algorithm, the procedures used MD5 algorithm, first pairs contents of the file carry on encrypt, to obtain text abstract; re-use RSA algorithm's private key, encryption for text abstract, obtain the digital signature. In the verification part, with the RSA algorithm's public key pairs of digital certificate signature decryption, get text abstract S1, and then using a public MD5 algorithm encryption the document which need to be verify, to obtain text abstract S2, text the consistency of S1 and S2, thereby conclude that original text whether the been tampered with. Program uses the file tree intuitively display management the files. Adopt text document storage digital signatures. Key words:RSA MD5 Text abstract Digital signature

互联网金融行业电子合同电子签名解决方案

互联网金融业务 手写电子签名解决方案 北京数字认证股份有限公司中国·北京市海淀区北四环西路68号左岸工社15层TEL:86-10-58045600FAX:86-10-58045678 邮政编码:100080 2015.7

目录 1.方案背景 (1) 2.现状分析 (1) 3.需求说明 (1) 4.解决方案 (2) 4.1.整体结构 (2) 4.2.身份认证设计.............................错误!未定义书签。 4.3.线下PC、PAD签约模式方案 (3) 4.3.1. 4.3.2.方案组成 (4) 业务流程 (4) 4.4.线上APP签约模式方案 (5) 4.4.1. 4.4.2.方案组成 (5) 业务流程 (5) 4.5.线上短信签约模式方案 (6) 4.5.1. 4.5.2.方案组成 (6) 业务流程 (7) 4.6.总体部署 (7) 5.司法鉴定服务 (8) 6.产品清单 (9) 7.方案特点 (10) 8.方案应用推广现状 (10)

1.方案背景 在当下多元化的互联网金融模式中,互联网金融门户模式正在快速崛起。互联网金融不是互联网和金融业的简单结合,而是在实现安全、移动等网络技术水平上,被用户熟悉接受后,自然而然为适应新的需求而产生的新模式及新业务。 为规范互联网金融公司网络营销平台业务,保证平台在后续交易中的合规性,维护有关各方的合法权益,提升平台公信力,需要在网络营销涉及的电子协议中加入依靠可靠的第三方电子认证机构提供合法的电子认证。 2.现状分析 互联网金融依托线上、线下平台,快速、便捷、持续地为客户提供服务,目前很多互联网金融公司已完成网贷平台建设,在交易过程中,涉及借款人、出借人、平台、小贷公司/担保机构四方参与者,由于依托互联网平台,交易中各方参与者的真实身份无法确定,而电子交易平台直接关系资金、财产等敏感内容,虚假的用户身份可能直接导致交易各方的财产损失。 各参与者之间需要在网贷平台上签署服务合同或其他文件,为使相关凭证符合《中华人民共和国电子签名法》中的规定要求,需通过电子签章与认证的方式确保平台出具的文档具有法律效力。 3.需求说明 结合互联网金融公司的运营模式和业务情况,交易各方需要在平台上签署电子合同,必须确保签名人身份真实,签名后电子合同符合司法机构的要求,具备法律效力,同时保证业务过程中的签署的安全性,可靠性。核心需求包括:强实名认证:投资人或借款人在平台注册时需要通过身份审核(公安部身份认证)、密码校验、身份证照片留存、人脸识别等。 互联网金融业务电子合同的合法性:电子合同需要具有与纸质合同同样的法

数字签名算法原理

实验1-5 数字签名算法 DSS 一.实验目的 通过对数字签名算法DSS的实际操作,理解DSS的基本工作原理。 二.实验原理 以往的文件或书信可以通过亲笔签名来证明其真实性,而通过计算机网络传输的信息则通过数字签名技术实现其真实性的验证。 数字签名目前采用较多的是非对称加密技术,其实现原理简单的说,就是由发送方利用哈希算法对要传送的信息计算得到一个固定位数的消息摘要值,用发送者的私有密钥加密此消息的哈希值所产生的密文即数字签名。然后数字签名和消息一同发给接收方。接收方收到消息和数字签名后,用同样的哈希算法对消息进行计算得出新的哈希值,然后用发送者的公开密钥对数字签名解密,将解密后的结果与新的哈希值相比较,如相等则说明报文确实来自发送方。 下面我们以DSA(Digital Signature Algorithm)为例,介绍数字签名算法。DSA源于ElGamal和Schnorr签名算法,被美国NIST采纳作为DSS(Digital Signature Standard)数字签名标准。DSS数字签名算法的具体实现过程课参见图1-5。 比较 a 签名过程 b 验证过程 图1-5 DSS算法的实现过程 首先介绍DSS算法的主要参数: 1. 全局公开密钥分量  1)素数p, 2511

互联网金融行业电子合同电子签名解决实施方案

互联网金融行业电子合同电子签名解决实施方案

————————————————————————————————作者:————————————————————————————————日期:

互联网金融业务 手写电子签名解决方案 北京数字认证股份有限公司中国·北京市海淀区北四环西路68号左岸工社15层TEL:86-10-58045600 FAX:86-10-58045678 邮政编码:100080 2015.7

目录 1.方案背景 (1) 2.现状分析 (1) 3.需求说明 (1) 4.解决方案 (2) 4.1. .................................................................................................................. 整体结构 2 4.2. ........................................................................................................ 身份认证设计 错误!未定义书签。 4.3. .......................................................................... 线下PC、PAD签约模式方案 4 4.3.1. .............................................................................................. 方案组成 4 4.3.2. .............................................................................................. 业务流程 4 4.4. ..................................................................................... 线上APP签约模式方案 5 4.4.1. .............................................................................................. 方案组成 5 4.4.2. .............................................................................................. 业务流程 5 4.5. ...................................................................................... 线上短信签约模式方案

10.工程量清单数据文件标准校验及数字签名工具校验规则说明

工程量清单数据文件标准校验及数字签名工具 校验规则说明 为配合《上海市建设工程工程量清单数据文件标准》实施工作,特开发“上海市建设工程工程量清单数据文件标准校验工具”(以下简称校验工具)提供给计价软件的企业、招标工程量清单编制单位、投标单位使用。 校验工具主要功能: 一、校验计价软件生成的招标清单文件、投标清单文件、最高投标限价清单文件是否满足《上海市建设工程工程量清单数据文件标准》中XSD标准。特别是对GUID唯一性校验(除材料暂估价-对应清单项子目序号)。 二、校验计价软件生成的招标清单文件、投标清单文件、最高投标限价清单文件的必要技术及业务规则: (一)招标文件校验 1、项目编码唯一性校验; 2、招标暂估价材料检验,检验招标清单文件中分部分项清单子目项(或单价措施项目清单子目)的“主要人材机明细”与其他项目下的“材料暂估价明细”是否一致。 (二)投标报价清单文件(最高投标限价清单文件)校验 1、相同标段投标报价清单(或最高投标限价清单)与招标清单 符合性校验。主要检验投标报价清单中是否存在投标人随意变更招标清单内容的情况,包括缺漏项,改变暂估价、暂列金额或者工程量等。

2、投标报价校验,主要检验投标报价中总价金额与依据单价计算出的结果是否一致。校验方法是从清单项综合单价开始逐级向上累计计算,分别检验文件中“分部分项合计”,“措施项目合计”,“措施项目中安全防护文明施工措施合计”,“其他项目合计”,“规费项目合计”,“税金项目合计”,“总合计”是否一致。计算精度为两位小数。 三、对通过校验的招标清单文件(ZBQD)、投标清单文件(TBQD)、最高投标限价清单文件(ZGXJQD)进行数字签名并进行压缩保存,文件压缩采用标准ZIP压缩。招标清单文件签名压缩后文件后缀名为ZBF4;投标清单文件签名压缩后文件后缀名为BS4;最高投标限价清单文件签名压缩后文件后缀名为XJ4。

pentaho介绍

一、Pentaho 整体架构 cc 二、Client tools 1. Report Designer 报表创建工具。如果想创建复杂数据驱动的报表,这是合适工具。 2. Design Studio 这是基于eclipse的工具,你可以使用它来创建手工编辑的报表或分析视图xaction 文件,一般用来对在report designer中无法增加修改的报表进行修改。 3. Aggregation Designer 帮助改善Mondrian cube 性能的图形化工具。 4. Metadata Editor 用来添加定制的元数据层到已经存在的数据源。一般不需要,但是它对应业务用户在创建报表时解析数据库比较容易。 5. Pentaho Data Integration 这是kettle etl工具。 6. Schema Workbench 帮助你创建rolap的图形化工具。这是为分析准备数据的必须步骤。 三、Pentaho BI suit community editon安装 硬件要求: RAM:At least 2GB Hard drive space:At least 1GB Processor:Dual-core AMD64 or EM64T 软件要求: 需要JRE 1.5版本,1.4版本已经不再支持。 修改默认的端口8080,打开\biserver-ce\tomcat\conf目录下的server.xml文件,修改base-urlhttp://localhost:8080/pe ntaho中的端口号。否则administration-console中不能连接到bi server。 四、配置数据库连接 如果要是pentaho bi server能连接到关系数据库,需要将相应数据库driver的jar包拷贝到server/biserver-ce/tomcat/common/lib目录。 为了能在administration console中创建数据库连接并测试,需要将相应的数据库driver 的jar包拷贝到server/administration console/jdbc目录。下面是具体关系数据库连接设置说明。 1、连接oracle数据库。

RSA算法和RSA数字签名算法的实现

RSA算法和RSA数字签名算法的实现

RSA算法和RSA数字签名算法的实现 摘要 RSA算法是一种公钥密码算法.实现RSA算法包括生成RSA密钥, 用RSA加密规则和解密规则处理数据。RSA数字签名算法利用RSA算法实现数字签名。本文详述了RSA算法的基本原理, RSA加密算法的实现以及如何利用RSA实现数字签名. 关键字 RSA算法, 数字签名, 公开密钥, 私人密钥, 加密, 解密 中图分类号 TP301 一、引言 随着网络技术的飞速发展,信息安全性已成为亟待解决的问题。公钥密码体制中,解密和加密密钥不同,解密和加密可分离,通信双方无须事先交换密钥就可建立起保密通信,较好地解决了传统密码体制在网络通信中出现的问题。另外,随着电子商务的发展,网络上资金的电子交换日益频繁,如何防止信息的伪造和欺骗也成为非常重要的问题。数字签名可以起到身份认证、核准数据完整性的作用。目前关于数字签名的研究主要集中基于公钥密码体制的数字签名。 公钥密码体制的特点是:为每个用户产生一对密钥(PK和SK);PK公开,SK保密;从PK推出SK是很困难的;A、B双方通信时,A通过任何途径取得B的公钥,用B的公钥加密信息。加密后的信息可通过任何不安全信道发送。B收到密文信息后,用自己私钥解密恢复出明文。 公钥密码体制已成为确保信息的安全性的关键技术。RSA公钥密码体制到目前为止还是一种认可为安全的体制。本文详述了RSA算法和用RSA算法实现数字签名的理论,以及它们在实际应用中的实现。 二、RSA算法和RSA数字签名算法的理论描述 1 RSA算法 RSA算法的理论基础是一种特殊的可逆模幂运算。 设n是两个不同奇素数p和q的积,即:n=pq, ?(n)=(p-1)(q-1)。 定义密钥空间 k={(n,p,q,d,e)|n=pq,p和q是素数,de≡1 mod ?(n),e 为随机整数}, 对每一个k=(n,p,q,d,e), 定义加密变换为E k(x)=x b mod n,x∈Z n; 解密变换为D k(x)=y a mod n,y∈Z n,Z n为整数集合。 公开n和b,保密p,q和a. 为证明加密变换E k和解密变换 D k满足D k(E k(x))=x,这里不加证明的引用下面两个定理: 定理1(Euler)对任意的a∈Z n *,有a?(n)≡1 mod n,其中 Z n *={x∈Z n |gcd(x,n)=1},?(·)表示Euler函数。 定理2 设p和q是两个不同的素数,n=pq, ?(n)=(p-1)(q-1),对任意的x∈Z n 及任意的非负整数k,有 x k?(n)+1≡x mod n. 现在来证明RSA算法的加密变换和解密变换的正确性。 证明:对于加密变换E k和解密变换D k。因为ab≡1 mod ?(n),所以可设

两种数字签名方案

两种数字签名技术 0902班贺信学号: 1.数字签名的基本概念 1.1 数字签名的定义 所谓数字签名就是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,目前主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。普通数字签名算法有RSA、ElGamal、Fiat-Shamir、Guillou- Quisquarter、Schnorr、Ong-Schnorr-Shamir 数字签名算法、DES/DSA,椭圆曲线数字签名算法和有限自动机数字签名算法等。特殊数字签名有盲签名、代理签名、群签名、不可否认签名、公平盲签名、门限签名、具有消息恢复功能的签名等,它与具体应用环境密切相关。 1.2 数字签名的基本要求 身份鉴别允许我们确认一个人的身份;数据完整性认证则帮助我们识别消息的真伪、是否完整;抗否认则防止人们否认自己曾经做过的行为。数字签名技术用来保证信息的完整性。“数字签名”是通过一个单向函数对要传送的报文进行处理后得到的,用以认证报文来源并

核实报文是否发生变化的一个字母数字串。数字签名可以解决否认、伪造、篡改及冒充等问题。类似于手书签名,数字签名也应满足一下基本要求: 1)收方能够确认或证实发方的签名,但不能伪造签名。 2)发方向收方发出签名的消息后,就不能再否认他所签发的消息,以保证他不能抵赖之前的交易行为。 3)收方对已收到的签名信息不能否认,即有收报认证。 4)第三者可以确认收发双方之间的信息传递,但不能伪造这一过程。 1.3 数字签名的原理 数字签名是通过密码技术对电子文档的电子形式的签名,并非是书面签名的数字图像化。它类似于手写签名或印章,也可以说它就是电子印章。我们对一些重要的文件进行签名,以确定它的有效性。但伪造传统的签名并不困难,这就使得数字签名与传统签名之间的重要差别更加突出:如果没有产生签名的私钥,要伪造由安全密码数字签名方案所产生的签名,计算上是不可行的。人们实际上也可以否认曾对一个议论中的文件签过名。但是否认一个数字签名却困难得多,这样做本质上证明在签名生成以前私钥的安全性就受到危害。这是由于数字签名的生成需要使用私钥,而它对应的公钥则用以验证签名。因而数字签名的一个重要性质就是非否认性,目前已经有一些方案,如数字证书,把一个实体(个人,组织或系统)的身份同一个私钥和公钥对"

信息安全之电子签名技术的实现

滨江学院 课程论文 题目数字签名的发展 院系计算机系 专业软件工程(动画方向)学生姓名陈婷 学号20092358009 指导教师朱节中 职称副教授 二O一二年五月二十日

数字签名的发展 陈婷 南京信息工程大学滨江学院软件工程(动画方向),南京210044 摘要: 数字签名是电子商务安全的一个非常重要的分支。随着电子商务的发展,电子签名的使用越来越多。实现电子签名的技术手段有很多种,但比较成熟的、世界先进国家目前普遍使用的电子签名技术还是基于PKI的数字签名技术。 关键词: 数字签名信息安全电子商务 1引言 1.1 研究背景 在当今信息社会,计算机网络技术得到了突飞猛进的发展。计算机网络日益成为工业、农业和国防等领域的重要信息交换手段,并逐渐渗透到社会的各个领域。在现实生活中,人们常常需要进行身份鉴别、数据完整性认证和抗否认。身份鉴别允许我们确认一个人的身份;数据完整性认证则帮助我们识别消息的真伪、是否完整;抗否认则防止人们否认自己曾经做过的行为。随着无纸化办公的发展,计算机网络的安全越来越受到重视,防止信息被未经授权的泄漏、篡改和破坏等都是亟待解决的问题。在Internet上,数字签名作为一项重要的安全技术,在保证数据的保密性、完整性、可用性、真实性和可控性方面起着极为重要的作用。同时由于信息技术的发展及其在商业、金融、法律等部门的普及, 数字签名技术又面临着新的挑战。 1.2 开发意义 数字签名是实现电子交易安全的核心技术之一,它在实现身份认证、数字完整性、不可抵赖性等功 能方面都有重要应用。尤其是在密钥分配、电子银行、电子证券、电子商务和电子政务等许多领域有重要 的应用价值。 2相关技术介绍 2.1PKI/CA 技术的介绍 PKI 就是公开密钥基础设施。它是利用公开密钥技术所构建的,解决网络安全问题的,普遍适用的一种基础设施。公开密钥技术也就是利用非对称算法的技术。说PKI 是基础设施,就意味着它对信息网络的重要。PKI 通过延伸到用户本地的接口,为各种应用提供安全的服务,如认证、身份识别、数字签名、

如何使用acrobat reader的数字签名功能

Adobe Acrobat 5.0的数字签名功能 Acrobat 5.0是Adobe公司的电子交换文档 PDF的制作器。pdf文档在国外应用的非常广泛,经常用于网络上的文档交换,一些书籍的电子版文档就是用他制作的,例如宝典系列等等。 Acorbat的功能非常强大,今天我们主要讨论的是它的数字签名功能。Acrobat5现在支持数字签名。数字签名就像传统的手写签名,表示个人或实体已签署文档。数字签名可以是手写签名、标志或其它图形,或简单解释签名目的的文本等几种格式之一。根据签名处理程序,签名甚至可能是不可见的。单击签名工具就可以在文档中的指定位置进行数字签名。通过数字签名,可以验证你的文档是否被修改过。并且是否已经签署通过。当别人拿来被签名的文档的时候,只要对方把用户证书email来,就可以验证他们的数字签名了。 目录 一、Adobe Acrobat 5.0的安装 二、如何实现数字签名 (一)、制作签名档 (二)、转换待签文档 (三)、如何签名 (四)、验证签名有效性 三、文档的安全属性 一、Adobe Acrobat 5.0的安装 安装过程非常简单,您只需要请选中并运行安装目录下的 SETUP.EXE 程序,Acrobat就开始进行安装。安装时您会遇到如下窗口,请在窗口中填写个人相关信息,注意,?序号?可以在安装目录下名为?SN?的文本文件中找到,如图1-1;

图1-1 后面出现的窗口无需进一步设置,只要连续点击?下一步?或?是?之类的按钮即可完成安装。 返回 二、如何实现数字签名 初次运行Acrobat,将会弹出注册窗口,请选择?请不要再显示此对话框?后点击?继续?按钮,如下图; Acrobat安装完成后会自动在Microsoft Word、Microsoft Excel等应用窗口的左上角添加将指定文档或表格转换成PDF格式文件的控件,如下图;

两种数字签名方案

两种数字签名技术 0902班贺信学号:14092400635 1.数字签名的基本概念 1.1 数字签名的定义 所谓数字签名就是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,目前主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。普通数字签名算法有RSA、ElGamal、Fiat-Shamir、Guillou- Quisquarter、Schnorr、Ong-Schnorr-Shamir 数字签名算法、DES/DSA,椭圆曲线数字签名算法和有限自动机数字签名算法等。特殊数字签名有盲签名、代理签名、群签名、不可否认签名、公平盲签名、门限签名、具有消息恢复功能的签名等,它与具体应用环境密切相关。 1.2 数字签名的基本要求 身份鉴别允许我们确认一个人的身份;数据完整性认证则帮助我们识别消息的真伪、是否完整;抗否认则防止人们否认自己曾经做过的行为。数字签名技术用来保证信息的完整性。“数字签名”是通过一个单向函数对要传送的报文进行处理后得到的,用以认证报文来源并

核实报文是否发生变化的一个字母数字串。数字签名可以解决否认、伪造、篡改及冒充等问题。类似于手书签名,数字签名也应满足一下基本要求: 1)收方能够确认或证实发方的签名,但不能伪造签名。 2)发方向收方发出签名的消息后,就不能再否认他所签发的消息,以保证他不能抵赖之前的交易行为。 3)收方对已收到的签名信息不能否认,即有收报认证。 4)第三者可以确认收发双方之间的信息传递,但不能伪造这一过程。 1.3 数字签名的原理 数字签名是通过密码技术对电子文档的电子形式的签名,并非是书面签名的数字图像化。它类似于手写签名或印章,也可以说它就是电子印章。我们对一些重要的文件进行签名,以确定它的有效性。但伪造传统的签名并不困难,这就使得数字签名与传统签名之间的重要差别更加突出:如果没有产生签名的私钥,要伪造由安全密码数字签名方案所产生的签名,计算上是不可行的。人们实际上也可以否认曾对一个议论中的文件签过名。但是否认一个数字签名却困难得多,这样做本质上证明在签名生成以前私钥的安全性就受到危害。这是由于数字签名的生成需要使用私钥,而它对应的公钥则用以验证签名。因而数字签名的一个重要性质就是非否认性,目前已经有一些方案,如数字证书,把一个实体(个人,组织或系统)的身份同一个私钥和公钥对

数字签名的制作方法整理-10页word资料

1。用keytool来创建一个密匙(同时指定时效,多久会过期,默认只给6个月) 2。用JARSigner用此密匙为JAR签名。 可以用同一个密匙来为多个JAR签名。 注意:大小写,签名一致,数字签名过期 为什么JAR要被签名?当用户启动一个Java Network Launching Protocol (JNLP,Java网络加载协议)文件或使用一个applet时,这个JNLP或applet可能请求系统提供一些非一般的访问。比如“文件打开”等进行这样的请求,就需要签名的JAR。 如果它是匿名的,系统会询问用户是否打算信任JAR的签署者。 1.首先生成签名文件,执行完成后,会在本目录内生成一个.keystore的密钥文件,2kByte大小。 yourProj是别名keypass后面是密文密码,keystore密码是存储密码(要改变此文时需要输入确认此密码) 在dos命令提示状态下输入 C:\Documents and Settings\Administrator>keytool -genkey -alias yourProj -keypass yourCompany:Kouling [回车],屏幕提示: 输入keystore密码:yourCompany:yourPassword 您的名字与姓氏是什么? [Unknown]:ChinayourCompany 您的组织单位名称是什么? [Unknown]:ChinayourCompany 您的组织名称是什么? [Unknown]:Company 您所在的城市或区域名称是什么? [Unknown]:City 您所在的州或省份名称是什么? [Unknown]:Province 该单位的两字母国家代码是什么 [Unknown]:CN CN=ChinayourCompany, OU=ChinayourCompany, O=Company, L=City, ST=Province, C=CN 正确吗? [否]:Y 2.为此密钥加有效期限:7200天,将近20年. [嘿嘿,足够用了吧?再也别想6个月] 输入命令: C:\Documents and Settings\Administrator>keytool -genkey -alias yourProj -keypass yourCompany:Kouling -selfcert -validity 7200 屏幕提示: 输入keystore密码:yourCompany:yourPassword 注意:-validity 7200 这个就是加时效的参数,7200单位是“天”。 检查密钥文件,输入命令: C:\Documents and Settings\Administrator>keytool -list 屏幕提示: 输入keystore密码:yourCompany:yourPassword Keystore 类型:jks

数字摘要技术与数字签名

数字摘要技术与数字签名 数字摘要技术 数字摘要技术(Digital Digest)也称作为安全HASH编码法(SHA:Secure Hash Algorithm)。数字摘要技术用于对所要传输的数据进行运算生成信息摘要,它并不是一种加密机制,但却能产生信息的数字"指纹",它的目的是为了确保数据没有被修改或变化,保证信息的完整性不被破坏。 数字摘要技术有如下主要特点: ·它能处理任意大小的信息,并对其生成固定大小的数据摘要,数据摘要的内容不可预见 ·对于相同的数据信息进行HASH后,总是能得到同样的摘要;如果数据信息被修改,进行Hash后,其摘要必定与先前不同 ·HASH函数是不可逆的,无法通过生成的数据摘要恢复出源数据 数字签名 数字签名(Digital Signature)用来保证信息传输过程中完整性、提供信息发送者的身份认证和不可抵赖性。使用公开密钥算法是实现数字签名的主要技术。 使用公开密钥算法,当你用自己的私钥加密了一个信息,并将其发送给一个朋友时,如果你的朋友能够使用你的公钥来解密出信息,他就能确定信息必定是从你那里发来的,而不是一些冒名顶替的。这实际上就是数字签名的原理。 由于公开密钥算法的运算速度比较慢,因此可使用HASH函数对要签名的信息进行摘要处理,减小使用公开密钥算法的运算量。因此,数字签名一般是结合了数字摘要技术和公开密钥算法共同使用。实现数学签名的过程如下: 签名信息 1.对信息M进行HASH函数处理,生成摘要H 2.用你的(发送者的)私钥加密H来获取数字签名S 3.发送{M, S} 验证签名信息 1. 接受{M, S} 并区分开它们 2. 对接收到的信息M进行HASH函数处理,生成摘要H* 3.取得发送者的公钥 4.用公钥解密S,来获取H 5.比较H和H*,如果H和H*是一样的,即说明信息在发送过程中没有被篡改,反之即反 由于对信息进行数字签名后,明文信息也通过网络进行传递,因此,在做完数字签名后,还要对整个信息(包括明文信息M和数字签名的密文信息S)进行加密,以保证信息的保密性。实际过程如下图所示:发送方:

pentaho-Kettle安装及使用说明(例子)

Kettle安装及使用说明 1.什么Kettle? Kettle是一个开源的ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程)项目,项目名很有意思,水壶。按项目负责人Matt的说法:把各种数据放到一个壶里,然后呢,以一种你希望的格式流出。Kettle包括三大块: Spoon——转换/工作(transform/job)设计工具(GUI方式) Kitchen——工作(job)执行器(命令行方式) Span——转换(trasform)执行器(命令行方式) Kettle是一款国外开源的etl工具,纯java编写,绿色无需安装,数据抽取高 效稳定。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。 2.Kettle简单例子 2.1下载及安装Kettle 下载地址:https://www.360docs.net/doc/d914301625.html,/projects/pentaho/files 现在最新的版本是 3.6,为了统一版本,建议下载 3.2,即下载这个文件pdi-ce-3.2.0-stable.zip。 解压下载下来的文件,把它放在D:\下面。在D:\data-integration文件夹里,我们就可以看到Kettle的启动文件Kettle.exe或Spoon.bat。 2.2 启动Kettle 点击D:\data-integration\下面的Kettle.exe或Spoon.bat,过一会儿,就会出现Kettle的欢迎界面:

稍等几秒,就会出现Kettle的主界面: 2.3 创建transformation过程 a.配置数据环境 在做这个例子之前,我们需要先配置一下数据源,这个例子中,我们用到了三个数据库,分别是:Oracle、MySql、SQLServer,以及一个文本文件。而且都放置在不同的主机上。 Oralce:ip地址为192.168.1.103,Oracle的实例名为scgtoa,创建语句为:create table userInfo( id int primary key,

实验三 DSA数字签名算法

实验三DSA数字签名算法 姓名: 学号: 学院:信息工程学院 指导老师:郑明辉

1.DSA算法原理 数字签名是数据在公开行信道中传输的安全保障,能够实现数据的公开、公正、不可抵赖等特点的方法,只能公开的密钥、密码签名算法。国际供认的公开密钥签字算法主要有RSA算法、ElGAMAL算法或者其变形的签名算法。 DSA(Digite Signature Arithmotic )是Schnore和ElGamal算法的变型。 美国国家标准技术研究所(NIST)1994年5月19日公布了数字签名标准的(DSS),标准采用的算法便是DSA,密钥长度为512~1024位。密钥长度愈长,签名速度愈慢,制约运算速度的只要因素是大数的模指数运算。 2.DSA签名中的参数 参数描述:Digital Signature Algorithm (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。算法中应用了下述参数: p:L bits长的素数。L是64的倍数,范围是512到1024; q:p - 1的160bits的素因子; g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1; x:x < q,x为私钥; y:y = g^x mod p ,( p, q, g, y )为公钥; H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。 p, q, g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及验证协议如下: 1. P产生随机数k,k < q; 2. P计算r = ( g^k mod p ) mod q s = ( k^(-1) (H(m) + xr)) mod q 签名结果是( m, r, s )。 3. 验证时计算w = s^(-1)mod q u1 = ( H( m ) * w ) mod q u2 = ( r * w ) mod q v = (( g^u1 * y^u2 ) mod p ) mod q 若v = r,则认为签名有效。 DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。 DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却做不到。 3.源码描述

DSA数字签名算法

DSA数字签名算法 1 引言 为了确保数据传输的安全性,不得不采取一系列的安全技术,如加密技术、数字签名、身份认证、密钥管理、防火墙、安全协议等。其中数字签名就是实现网上交易安全的核心技术之一,它可以保证信息传输的保密性、数据交换的完整性、发送信息的不可否认性、交易者身份的确定性等。DSA(Digital Signature Algorithm,数字签名算法,用作数字签名标准的一部分),它是另一种公开密钥算法,它不能用作加密,只用作数字签名。DSA使用公开密钥,为接受者验证数据的完整性和数据发送者的身份。它也可用于由第三方去确定签名和所签数据的真实性。DSA算法的安全性基于解离散对数的困难性,这类签字标准具有较大的兼容性和适用性,成为网络安全体系的基本构件之一。 2. 数字签名 2.1 数字签名的概念 数字签名在ISO7498—2标准中定义为:“附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。 数字签名是通过一个单向函数对要传送的信息进行处理得到的用以认证信息来源并核实信息在传送过程中是否发生变化的一个字母数字串。数字签名提供了对信息来源的确定并能检测信息是否被篡改。 数字签名要实现的功能是我们平常的手写签名要实现功能的扩展。平常在书面文件上签名的主要作用有两点,一是因为对自己的签名本人难以否认,从而确定了文件已被自己签署这一事实;二是因为自己的签名不易被别人模仿,从而确定了文件是真的这一事实。采用数字签名,也能完成这些功能: (1)确认信息是由签名者发送的; (2)确认信息自签名后到收到为止,未被修改过; 签名者无法否认信息是由自己发送的。 数字签名和手签的区别是:手签是模拟的,易伪造,而数字签名是基于数学原理的,更难伪造。

Pentaho 开放源码的商业智能平台技术白皮书

Pentaho 开放源码的商业智能平台 技术白皮书 摘要 所有组织都希望在业务过程和总性能中通过改善效率和有效性来提高收入,降低成本,达到改善收益的目的。而商业智能(BI) 软件供应商声称他们有相应技术来满足这种需求。 这些软件供应商销售用于构建这些解决方案(Solution)的产品或工具,但很少关注客户 面临的真正问题。客户为了新需求,而不断去联系新的供应商,买进新的工具,聘请新的顾问。最终,公司的BI initiative 变成了众多相互独立的解决方案(Solution),为了维护和协调它们,需要使用各种昂贵的调度管理程序来整合各个方案。 在现有方案中,每为解决一个特定问题,就设计一个应用平台,这样在实际应用中,一个业务问题被分割成许多单独的任务,如报表,分析,数据挖掘,工作流等等,而没有应用负责初始化,管理,验证或调整结果,最终需要人手动的来弥补这些不足。 这个白皮书描述了Pentaho 商业智能平台:一个面向解决方案(Solution)的BI 平台,其将开放源码组件/公开标准和流程驱动引擎集成在一起。它显示了这个BI 平台如何通过将BI 和工作流/流程管理相结合,并对之进行改善,并以开放源码的形式发布平台来解决BI 问题。 问题描述 传统的商业智能(BI) 工具昂贵、复杂,并且在效率和性能方面具有很大不足,难于让 企业获得真正益处。各个软件供应商均承诺其BI 将提供整合,分析和报表等必要功能, 将数据转换成蕴涵价值的知识,使管理者得到更及时有用的决策信息。不幸的是,这种 BI 系统和报表系统几乎并没有什么太大的差别,仅仅如此是不能满足需求的。 当传送一个报表,或遇到一个特定情形时,需要触发一些特定的应对操作:重新响应决 策,并需要发现引发这些变化的原因,或启动一个特定流程。在这些案例中,信息展示, 分析和传送(BI) 是一个较大流程里的一部分。我们需要这样的流程来解决商业问题。 (译者注:作者强调业务流程是商业问题的关键。BI只是业务流程的一部分。) 为澄清: 通常一个商业问题的解决方案(Solution)是一个包含商业智能(BI) 的流程。

相关文档
最新文档