电子商务与数据挖掘
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
在电子商务中,数据挖掘有助于发现业务发展的趋势,帮助企业做出正确的决策。本文对目前电子商务中的Web数据挖掘方法进行了总结,并对电子商务中的Web数据对象进行了分类,对网络数据挖掘的作用进行了分析,为今后电子商务中实用Web数据挖掘软件的开发与应用提供了参考。
关键词:电子商务 Web数据挖掘关联分析分类聚类
电子商务与web数据挖掘
1、电子商务和数据挖掘简介
1.1 电子商务
电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和开展商务业务活动。目前国内已有网上商情广告、电子票据交换、网上订购,网上、网上支付结算等多种类型的电子商务形式。电子商务正以其低廉、方便、快捷、安全、可靠、不受时间和空间的限制等突出优点而逐步在全球流行。电子商务是指以Internet网络为载体、利用数字化电子方式开展的商务活动。随着网络技术和数据库技术的飞速发展,电子商务正显示越来越强大的生命力。电子商务的发展促使公司内部收集了大量的数据,并且迫切需要将这些数据转换成有用的信息和知识,为公司创造更多潜在的利润。利用数据挖掘技术可以有效地帮助企业分析从网上获取的大量数据,发现隐藏在其后的规律性,提取出有效信息,进而指导企业调整营销策略,给客户提供动态的个性化的高效率服务
1.2 数据挖掘技术
数据挖掘(Data Mining),又称数据库中的知识发现(Knowledge Discovery in Database, KDD),是从大量的、不完全的、有噪声的、模糊的和随机的数据中,提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的知识。数据挖掘技术从一开始就是面向应用领域,它不仅是面向特定数据库的简单检索查询调用,而且,要对数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指定实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。数据挖掘技术在金融、保险、电信、大型超市等积累有大量数据的电子商务行业有着广泛的应用,如信用分析、风险分析、欺诈检验、用户聚类分析、消费者习惯分析等。
而电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即Web文档)和行为(即We服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术涉及到Internet技术学、人工智能、、信息学、学等多个领域。
1.3. 数据挖掘过程
挖掘数据过程可以分为3个步骤:数据预处理、模式发现、模式分析。1.3.1 数据预处理
实际系统中的数据一般都具有不完全性、冗余性和模糊性。因此,数据挖掘一般不对原始数据进行挖掘,要通过预处理提供准确、简洁的数据。预处理主要完成以下工作:包括合并数据,将多个文件或多个数据库中的数据进行合并处理;选择数据,提取出适合分析的数据集合;数据清洗、过滤,剔除一些无关记录,将文件、图形、图像及多媒体等文件转换成可便于数据挖掘的格式等。
1. 3. 2 模式发现
模式发现阶段就是利用挖掘算法挖掘出有效的、新颖的、潜在的、有用的以及最终可以理解的信息和知识。可用于Web的挖掘技术有路径选择、关联分析、分类规则、聚类分析、序列分析、依赖性建模等等。
1. 3. 3 模式分析
模式分析是从模式发现阶段获得的模式、规则中过滤掉不感兴趣的规则和模式。通过技术手段,对得到的模式进行数据分析,得出有意义的结论。常用的技术手段有:关联规则、分类、聚类、序列模式等。
电子商务是现代信息技术发展的必然结果,也是未来商业运作模式的必然选择。利用数据挖掘技术来分析大量的数据,可以挖掘出商品的消费规律与客户的访问模式,帮助企业制定有效的营销策略,充分发挥企业的独特优势,促进管理创新和技术创新,提高企业竞争力。
随着电子商务发展的势头越来越强劲, 面向电子商务的数据挖掘将是一个非常有前景的领域。它能自动预测客户的消费趋势、市场走向,指导企业建设个性化智能网站,带来巨大的商业利润,可以为企业创建新的商业增长点。但是在
面向电子商务的数据挖掘中也存在很多问题急需解决,比如怎样将服务器的日志数据转化成适合某种数据挖掘技术的数据格式,怎样解决分布性、异构性数据源的挖掘,如何控制整个Web上知识发现过程等。随着硬件环境、挖掘算法的深入研究及应用经验的积累,数据挖掘技术及在电子商务中的应用必将取得长足的进展。
2、Web数据挖掘对象的分类
Web数据有3种类型:HTML标记的Web文档数据,Web文档内连接的结构数据和用户访问数据。按照对应的数据类型,Web挖掘可以分为3类:2.1 Web内容挖掘:就是从Web文档或其描述中筛选知识的过程。
2.2 Web结构挖掘:就是从Web的组织结构和链接关系中推导知识。它的目的是通过聚类和分析网页的链接,发现网页的结构和有用的模式,找出权威网页。
2.3 Web使用记录挖掘:就是指通过挖掘存储在Web上的访问日志,来发现用户访问Web页面的模式及潜在客户等信息的过程。
3、电子商务中数据挖掘的方法
针对电子商务中不同的挖掘目标可以采用不同的数据挖掘方法,数据挖掘的方法有很多,主要包括下面3大类:统计分析或数据分析,知识发现,基于预测模型的挖掘方法等。
3.1 统计分析
统计分析主要用于检查数据中的规律,然后利用统计模型和数学模型来解释这些规律。通常使用的方法有线性分析和非线性分析、连续回归分析和回归分析、单变量和多变量分析,以及时间序列分析等。统计分析方法有助于查找大量数据间的关系,例如,识别时间序列数据中的模式、异常数据等,帮助选择适用于数据的恰当的统计模型,包括多维表、剖分、排序,同时应生成恰当的图表提供给分析人员,统计功能是通过相应的统计工具来完成回归分析、多变量分析等,数据用于查找详细数据,浏览子集,删除冗余等。