高分子水凝胶综述

合集下载

水凝胶综述

水凝胶综述

水凝胶综述水凝胶是一种能够吸收水分并形成凝胶状态的材料。

它具有优异的物理、化学性质和生物相容性,因此在医疗、生物制造、水处理、环境保护等领域有着广泛的应用。

本文将对水凝胶的种类、制备方法及其应用进行综述。

一、水凝胶种类1.聚丙烯酸钠凝胶:聚丙烯酸钠(sodium polyacrylate,SPA)是一种高分子聚合物,具有吸水性强的特点。

它能够在形成凝胶状态后固定并保持高水分量,具有吸收多达500倍重量的水分能力。

因此,SPA凝胶在卫生巾、纸尿裤等日用品中广泛应用。

2.壳聚糖凝胶:壳聚糖是一种具有天然多糖的生物高分子材料。

它具有天然亲水性、生物可降解性和低毒性等特点。

壳聚糖凝胶在生物制造、医学等领域有着广泛的应用前景,如软骨组织工程中的载体材料、生物医用凝胶等。

3.聚乙烯醇凝胶:聚乙烯醇(PVA)是一种合成聚合物,它具有高度的水溶性和可塑性。

PVA凝胶可以通过交联反应形成,具有优异的力学性质和生物相容性,因此在组织工程、医用敷料等领域有着广泛的应用。

4.明胶凝胶:明胶是一种蛋白胶体物质,由动物皮、骨、软组织等经加热水解、提取等工艺处理而成。

明胶凝胶具有良好的生物相容性、生物降解性和生物吸附性等特点,因此在医学、生物制造等领域有着广泛的应用。

二、水凝胶制备方法1.离子交联法:离子交联法是水凝胶制备的常用方法之一。

具体的制备过程是将水凝胶原料在水溶液中溶解,然后通过加入离子交联剂使其中交联反应发生,形成水凝胶。

三、水凝胶应用1.医疗领域:水凝胶在医疗领域广泛应用,如生物医用凝胶、组织工程载体材料、敷料等。

其中,聚丙烯酸钠凝胶广泛用于生产卫生巾、纸尿裤等日用品。

2.环境保护领域:水凝胶在环境保护领域也有着广泛应用,如污水处理、海藻收集、水土保持等。

其中,壳聚糖凝胶可作为海藻收集材料,聚乙烯醇凝胶可作为土壤水分保持材料。

3.其他领域:水凝胶在其他领域也有着一些应用,如食品工业中的增稠剂、涂料工业中的质感调节剂等。

高强度水凝胶综述

高强度水凝胶综述

高强度水凝胶综述
高强度水凝胶是一种具有较高吸水性和保水性的材料,广泛应用于农业、园林、建筑等领域。

本文将对高强度水凝胶的制备方法、性能表征以及应用进行综述。

制备方法:
高强度水凝胶的制备方法主要有化学交联法、物理交联法和复合交联法三种。

其中,化学交联法是目前最为常用的制备方法,将单体与交联剂在一定条件下进行反应,形成高分子网络结构。

物理交联法则是通过高分子间的物理吸附作用形成网络结构,常见的物理交联剂有温度、pH值和离子等。

复合交联法则是将化学交联法和物理交联
法结合起来,以达到更好的性能。

性能表征:
高强度水凝胶的性能表征主要从吸水性、保水性、渗透性、稳定性、可溶性等方面进行考察。

其中,吸水性和保水性是衡量高强度水凝胶性能的重要指标,吸水性指材料在一定时间内吸收水的重量与材料原始重量的比值,保水性指材料在一定时间内释放水的能力。

应用:
高强度水凝胶广泛应用于农业领域,可以增加土壤水分保持能力、提高作物产量。

在园林绿化中,高强度水凝胶可以减少浇水次数,节省水资源。

在建筑领域,高强度水凝胶可以用于防水材料、减震材料等。

结论:
高强度水凝胶是一种具有广泛应用前景的材料,其制备方法、性能表征和应用领域已经得到逐步深入的研究。

未来,还需要进一步探索其性能优化和环境友好型的发展方向。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

高分子水凝胶

高分子水凝胶

高分子水凝胶凝胶是指溶胀的三维网状结构高分子。

即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。

药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。

水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。

水凝胶中的水有两种存在状态。

靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。

影响水凝胶形成的主要因素有浓度、温度和电解质。

每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。

对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。

电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。

水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。

根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。

不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。

溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。

光固化水凝胶综述

光固化水凝胶综述

光固化水凝胶综述1. 引言光固化水凝胶是一种由光引发剂和交联剂引发聚合形成的水凝胶材料。

由于其具有高透明度、高交联密度和良好的生物相容性等特点,被广泛应用于组织工程、药物递送、生物医学诊断等领域。

本文将综述光固化水凝胶的材料性质与特性、合成方法、性能优化、应用领域、挑战与未来发展等方面。

2. 材料性质与特性光固化水凝胶是一种高分子聚合物材料,由光引发剂和交联剂引发聚合而成。

其材料性质主要包括密度、交联度、弹性模量、溶胀比等。

这些性质决定了水凝胶的结构和性能,如机械强度、柔韧性、吸水性等。

光固化水凝胶还具有良好的生物相容性和细胞粘附性,适用于生物医学应用。

3. 合成方法光固化水凝胶的合成方法主要包括以下步骤:首先,选择适当的高分子聚合物作为基体;其次,添加光引发剂和交联剂以及其他添加剂如填料、染料等;最后,在紫外线的照射下引发聚合反应,形成光固化水凝胶。

根据需要,可以通过调整配方和工艺参数来优化水凝胶的结构和性能。

4. 性能优化为了提高光固化水凝胶的性能,可以采用多种方法对其进行优化。

例如,通过改变高分子聚合物的分子量和分布来调节水凝胶的机械性能;通过添加纳米材料或生物活性物质来改善其生物相容性和药物递送能力;通过引入疏水或亲水基团来调节水凝胶的吸水性和溶胀性能等。

5. 应用领域光固化水凝胶在许多领域都有广泛的应用,如组织工程、药物递送、生物医学诊断等。

在组织工程方面,光固化水凝胶可以作为细胞生长的支架材料,促进组织的再生和修复;在药物递送方面,光固化水凝胶可以作为药物载体,实现药物的控释和靶向递送;在生物医学诊断方面,光固化水凝胶可以作为生物标志物或成像剂的载体,用于疾病的诊断和治疗。

6. 挑战与未来发展尽管光固化水凝胶已经得到了广泛的应用,但仍存在一些挑战和未来发展的方向。

首先,需要进一步研究和开发具有更好生物相容性和机械性能的光固化水凝胶材料;其次,需要探索新的合成方法和加工技术,以实现水凝胶的大规模生产和个性化定制;最后,需要进一步拓展光固化水凝胶在组织工程、药物递送、生物医学诊断等领域的应用范围,为人类的健康事业做出更大的贡献。

水凝胶总结(共3篇)

水凝胶总结(共3篇)

水凝胶总结第1篇摘要本研究的目的是通过体外污染测试,调查在配戴 8小时后,睫毛膏是否会沉积在聚合硅氧烷水凝胶隐形眼镜(CL)上,并比较两种硅氧烷水凝胶对睫毛膏的亲和力。

硅氧烷水凝胶隐形眼镜是 Filcon V 月抛型 OPEN30 和Delefilcon A 日抛型 DAILIES TOTAL1。

所研究的化妆品是一种蓝色睫毛膏。

对新的CL、体外暴露于睫毛膏的 CL 和睫毛膏使用者佩戴 8 小时的 CL(在氯化钠溶液中冲洗CL 后)进行了扫描电子显微镜(SEM)和能量色散 X射线光谱(EDX)分析。

用光学显微镜采集并处理了新睫毛夹和体外处理睫毛夹的图像。

通过对睫毛膏进行电离辐射 X分析,可以确定其元素组成的特征,其中包括铝(Al),铝既不属于泪液成分,也不属于睫毛膏成分,因此是睫毛膏沉积在聚合硅氧烷水凝胶上的标志。

通过 SEM/EDX 在两种材料的所有磨损的 CL上都观察到了含铝的吸附沉积物,这些沉积物对睫毛膏成分有特殊的亲和力,比对泪液成分的亲和力更明显。

通过处理体外测试后光学显微镜拍摄的图像,发现 Delefilcon A 中睫毛膏沉积物的含量是 Filcon V CL 的两倍多。

摘要xxx光谱是一种成熟的样品分子表征技术,对于复杂的化妆品无需进行大量的分析前处理。

为了说明xxx光谱的潜力,本研究调查了xxx光谱与偏最xxx乘回归(PLSR)相结合的定量性能,用于分析掺入水凝胶中的藻酸盐纳米封装胡椒基酯类(ANC-PE)。

共制备和分析了 96 个 ANC-PE 样品,其 PE 浓度范围为 w/w/w。

尽管样品的配方很复杂,但仍能检测到聚乙烯的光谱特征,并利用其对浓度进行量化。

采用留空交叉验证方法,将样品分为训练集(n = 64)和测试集(PLSR模型之前未知的样品,n =32)。

经评估,交叉验证的均方根误差(RMSECV)和预测的均方根误差(RMSEP)分别为(w/w PE)和(w/wPE)。

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述

PVA水凝胶的制备与研究关键词:PVA水凝胶制备研究表征应用摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。

高分子凝胶是基础研究以及技术领域的一种重要材料。

凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。

近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。

水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。

常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。

本课题主要针对于PV A水凝胶。

1 PV A水凝胶的制备PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。

化学交联又分辐射交联和化学试剂交联两大类。

辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。

化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。

物理交联主要是反复冷冻解冻法。

1.1 物理交联法通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。

反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条件下解冻1~3h,即形成物理交联的PV A水凝胶。

将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。

冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述PVA(Polyvinyl alcohol)水凝胶是一种高分子材料,具有良好的生物相容性和生物降解性,因此被广泛应用于医药领域。

本文将对PVA水凝胶的制备方法及其在生物医学研究中的应用进行综述。

首先,PVA水凝胶的制备方法有多种途径。

常见的方法包括化学交联法、物理交联法和生物酶法。

化学交联法通过添加交联剂将PVA分子间的羟基反应形成三维网络结构,增加水凝胶的稳定性和机械强度。

物理交联法通过改变PVA的温度或PH值使其融化或凝胶化,形成具有特定结构和性能的水凝胶。

生物酶法则是利用酶的特异性催化作用将PVA分子间的化学键断裂或形成,从而实现水凝胶的形成。

这些方法的选择取决于所需要的PVA水凝胶的特性和应用场景。

PVA水凝胶在生物医学研究中有着广泛的应用。

首先,PVA水凝胶可用于组织工程领域,用于制备人工组织和器官。

PVA水凝胶具有良好的生物相容性和生物降解性,可以提供支撑和保护细胞的基质环境,促进细胞黏附和增殖,促进组织再生和修复。

其次,PVA水凝胶可以作为药物缓释系统,用于控制药物的释放速率和降低药物的毒副作用。

PVA水凝胶可以容纳各种药物,并通过改变水凝胶的孔隙结构和渗透性,调控药物的释放行为。

另外,PVA水凝胶还可用于细胞培养和输送,并具有较好的可控性和可调性。

PVA水凝胶可以调节其物理和化学性质,以满足不同细胞种类和生长条件对细胞的要求。

虽然PVA水凝胶在生物医学领域的应用潜力巨大,但仍存在一些挑战和问题。

首先,PVA水凝胶的力学性能和稳定性还需要进一步提高,以适应复杂的生物环境。

其次,PVA水凝胶的生物降解性需要合理调控,以保证其在体内的稳定性和有效性。

最后,PVA水凝胶的制备方法还有待进一步改进和优化,以提高制备效率和降低成本。

综上所述,PVA水凝胶是一种具有广泛应用前景的生物医学材料。

通过不同的制备方法,可以得到具有不同性能和结构的PVA水凝胶。

在生物医学研究中,PVA水凝胶可用于组织工程、药物缓释、细胞培养等多个领域。

水凝胶粘合剂综述报告

水凝胶粘合剂综述报告

水凝胶粘合剂综述报告
水凝胶粘合剂是一种可溶于水的胶粘剂,具有良好的粘接性能和环保性能,广泛应用于医疗、化妆品、日化产品等领域。

本文对水凝胶粘合剂的定义、种类、制备方法、应用领域等方面进行综述分析。

水凝胶粘合剂是一种由水和聚合物混合而成的胶水,可以在水的作用下形成胶体状物质,具有较高的粘接强度和耐水性。

常见的水凝胶粘合剂有纳米凝胶、氢化凝胶等。

纳米凝胶是由纳米材料制成的胶粘剂,具有较高的粘接强度和粘接速度,适用于粘结各种类型的材料。

氢化凝胶是由聚合物和水混合而成的胶水,具有良好的可溶性和可粘接性,可用于粘接高分子材料。

水凝胶粘合剂的制备方法主要有溶液法、乳液法、乳胶法等。

溶液法是将聚合物溶解在水中,形成胶体状物质,然后通过水蒸发或加热使胶水凝胶化。

乳液法是将聚合物悬浮在水中,形成乳液状物质,通过调节pH值或加热使乳液变为凝胶。

乳胶
法是将聚合物乳化形成胶体状物质,然后通过添加交联剂使胶体发生交联反应,形成凝胶。

水凝胶粘合剂具有广泛的应用领域。

在医疗领域,水凝胶粘合剂可用于皮肤缝合、组织修复和骨折治疗等,具有良好的生物相容性和可吸附性。

在化妆品领域,水凝胶粘合剂可用于制作面膜、眼膜、生物酵素等产品,具有良好的保湿和护肤效果。

在日化产品领域,水凝胶粘合剂可用于制作洗发水、沐浴露等产品,具有良好的粘接性和稳定性。

综上所述,水凝胶粘合剂是一种可溶于水的胶粘剂,具有良好的粘接性能和环保性能。

通过不同的制备方法可以得到不同类型的水凝胶粘合剂,广泛应用于医疗、化妆品、日化产品等领域。

随着技术的发展,水凝胶粘合剂有望在更多领域得到应用,并具有良好的市场前景。

光响应高分子水凝胶材料

光响应高分子水凝胶材料

感光基团 引人的感光基团种类很多,主要有:光二聚型感光基团 (如肉桂酸醋基)、重氮或叠氮感光基团(如邻偶氮醒磺 酸基)、丙烯酸醋基团以及其他具有特种功能的感光基 团(如具有光色性、光催化性和光导电性基团等)。
பைடு நூலகம்
4.光响应高分子水凝胶的制备
将所合成的丙烯酸酯偶氮苯(AZO-n)、HEMA、PEGDA600 和 MBAA 按一定比例混合(丙烯酸酯偶氮苯:甲基丙 烯酸羟乙酯:PEGDA600:N,N-亚甲基双丙烯酰胺 =0.02~0.1g:0.7g:0.2g:0.1g) ,制备的 5 种丙 烯酸酯偶氮苯含量不同的水凝胶。
将冻干后的水凝胶浸到 50ml 浓度为 2*10-2mol/L 的利巴韦林溶液 中,静置24h,使水凝胶达到最大溶胀,取出水凝胶,用滤纸吸干表 面的溶液,将其放入去离子水中算出每克凝胶所释放的药物量。
(1)含 AZO-6 的水凝胶在光照后的药物释放量略微增 加。偶氮苯基的异构化反应对释放的阻力影响不大。
AZO-6
AZO-8
聚乙二醇二丙烯酸酯(600) 甲基丙烯酸羟乙酯(HEMA)
N,N-亚甲基双丙烯酰胺
聚合物结构特点
(1)聚合物结构复杂交联程度很高 (2)AZO-6和AZO-8 含亲水的羟基和磺酸基 (3)侧脸上含有偶氮基团
在达到溶胀平衡后,再用 320-390nm 的紫外光光照, 我们发现凝胶的溶胀度会 随时间增加而减少。但减 少的不是很明显,大约减 少 5%左右。
(2)在无光照条件下,随着 AZO-8 在水凝胶中组分含 量的增加,而使利巴韦林的释放量减少,说明磺酸根的 增加使药物释放量减少,即磺酸根与药物的氢键作用使 得释放的阻力增加。 在光照的条件下,含 AZO-8 的水凝胶的释放量不 随磺酸基的增加而改变,且明显比无光照时多。 光照使得偶氮苯基团发生异构化反应,改变了基团 的分子构型,顺式偶氮苯的磺酸根被偶氮苯的两个苯环 包围,因为氢键的空间指向性和苯环的空间位阻,使得 磺酸根很难与药物形成氢键结合,从而使得释放的阻力 降低。

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述

PVA水凝胶的制备与研究关键词:PVA水凝胶制备研究表征应用摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。

高分子凝胶是基础研究以及技术领域的一种重要材料。

凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。

近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。

水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。

常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。

本课题主要针对于PV A水凝胶。

1 PV A水凝胶的制备PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。

化学交联又分辐射交联和化学试剂交联两大类。

辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。

化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。

物理交联主要是反复冷冻解冻法。

1.1 物理交联法通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。

反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条件下解冻1~3h,即形成物理交联的PV A水凝胶。

将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。

冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。

高分子水凝胶综述

高分子水凝胶综述

高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。

OOH R O H R OO H R O OH RO OH R O OHR OOH OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

水凝胶研究进展综述

水凝胶研究进展综述

水凝胶研究进展综述
以下是关于水凝胶研究的一些综述性的进展:
水凝胶是一类高度吸水性的材料,其网络结构能够保持大量的水分,并且可以在不失去结构稳定性的情况下释放水分。

这使得水凝胶在许多领域,包括生物医学、药物传递、生物传感、柔性电子学、农业等方面都有着广泛的应用。

以下是一些水凝胶研究领域的进展:
1.合成方法:
•不断有新的合成方法被提出,以实现对水凝胶结构和性质的精确控制。

这包括自组装方法、模板法、交联聚合法等。

2.生物医学应用:
•水凝胶在生物医学领域的应用备受关注。

例如,水凝胶可以用于药物传递、组织工程、创伤敷料、生物传感器等方
面。

其生物相容性和可调节的物理化学性质使得其在医学
领域有着广泛的潜力。

3.柔性电子学:
•水凝胶因其柔软、透明、高吸水性等特性,在柔性电子学领域也得到了广泛关注。

例如,可在水凝胶基底上制备柔
性传感器、可穿戴电子设备等。

4.环境应用:
•在环境保护和农业领域,水凝胶也发挥着作用。

其可以用于水资源的调控、土壤保湿、植物生长的改良等。

5.智能响应性:
•研究者们通过引入响应性物质,使得水凝胶可以对外界刺激(如温度、pH、光照等)做出智能响应。

这为一些可控
释放和刺激响应性的应用提供了新的可能性。

这些领域的研究取得了显著的进展,不断有新的水凝胶材料、结构设计和应用方法涌现。

在不同学科领域的交叉合作下,水凝胶将有望在更多领域发挥其优越性能。

需要注意的是,研究进展可能会随着时间的推移而有所更新,因此建议查阅最新的文献和综述以获取最新信息。

水凝胶在药物递送系统中的应用研究

水凝胶在药物递送系统中的应用研究

水凝胶在药物递送系统中的应用研究水凝胶在药物递送系统中的应用研究摘要:水凝胶是一种高分子聚合物材料,具有良好的生物相容性和可控释药性能。

本文综述了水凝胶在药物递送系统中的应用研究进展。

首先介绍了水凝胶的基本特性,包括化学结构、物理性质、毒性等。

其次,总结了将水凝胶应用于药物递送系统的主要方法和技术,如水凝胶微球、水凝胶纳米粒子、水凝胶薄膜等。

接着,详细讨论了水凝胶在不同药物递送系统中的应用,包括胶束递送系统、纳米颗粒递送系统、胶囊递送系统等。

最后,展望了水凝胶在药物递送系统中的未来发展方向。

通过本文的全面综述,可以更好地了解水凝胶在药物递送系统中的应用及其潜在的临床应用前景。

关键词:水凝胶、药物递送系统、水凝胶微球、水凝胶纳米粒子、水凝胶薄膜、胶束递送系统、纳米颗粒递送系统、胶囊递送系统一、引言药物递送系统是近年来药物研究领域的热点之一。

传统的药物递送方式存在很多问题,如药物的快速代谢和排泄、低生物利用度、不良反应等。

因此,寻找一种高效且安全的药物递送系统具有重要意义。

水凝胶材料由于其独特的化学结构和物理性质,在药物递送系统中得到了广泛的应用。

本文将综述水凝胶在药物递送系统中的应用研究,以期为相关领域的进一步研究提供参考和指导。

二、水凝胶的基本特性水凝胶是一种高分子聚合物材料,具有很好的水溶性和水凝胶性。

其基本特性主要包括以下几个方面。

2.1 化学结构:水凝胶可以是天然的或合成的,其化学结构有多种,如聚合物、蛋白质、多糖等。

不同的化学结构决定了水凝胶的生物相容性和物理性质。

2.2 物理性质:水凝胶的物理性质主要包括形态、吸水性、稳定性等。

水凝胶可以呈现多种形态,如微球、纳米粒子、薄膜等。

水凝胶具有良好的吸水性能,能够吸附溶液中的药物,并通过渗透压控制释放。

水凝胶的稳定性很高,可以在体内长时间稳定地释放药物。

2.3 毒性:水凝胶材料的毒性是衡量其生物安全性的重要指标。

目前大部分水凝胶材料都被证明具有良好的生物相容性和低毒性。

水凝胶驱动 综述

水凝胶驱动 综述

水凝胶驱动综述
水凝胶驱动是一种利用水凝胶变形产生动力的技术。

水凝胶是一种具有高度亲水性的高分子材料,能够在吸收水分后发生膨胀,产生一定的形变。

利用这种特性,水凝胶驱动器可以在不同的环境刺激下实现各种形式的运动,如弯曲、扭曲、旋转等。

水凝胶驱动的原理主要是基于水凝胶的溶胀行为和内部水分的变化。

当水凝胶吸收水分后,由于高分子链的交联作用,水凝胶的体积会发生变化,同时产生一定的弹性能量。

当外部刺激作用于水凝胶时,这些能量会被释放出来,驱动水凝胶产生运动。

水凝胶驱动器的应用非常广泛,可以用于微型机器人、医疗器械、传感器等领域。

例如,可以利用水凝胶驱动器来制造能够进入人体内部的微型机器人,执行药物递送、病情监测等任务;也可以将水凝胶驱动器用于制作软体机器人,以适应不同的环境和工作需求。

总的来说,水凝胶驱动的研究和开发还处于起步阶段,还有很大的发展潜力和前景。

未来的研究和发展应该重点关注以下几个方面:深入探索水凝胶驱动的原理和机制;开发更加智能、高效的水凝胶材料;探索水凝胶驱动在各领域的应用场景和可能性。

同时,随着科技的不断进步,我们有望在未来看到更多由水凝胶驱动技术所带来的创新和变革。

高分子水凝胶简介

高分子水凝胶简介
水凝胶的简介
目录
水凝胶的定义 水凝胶的基本性质 水凝胶的分类 水凝胶的制备 水凝胶的应用 研究前景
定义
水凝胶是一种能够在水中溶胀并保持一定 水分而又不溶于水的具有三维网络结构的 新型功能高分子材料,兼有固体和液体的 性质
水凝胶具有良好的生物相容性 ,自 20世纪 40 年代以来 ,有关水凝胶的合成、理化性质 以及在生物化学、医学等领域中的应用研究 十分活跃
性质
吸水溶胀是水凝胶的一个重要特征。
溶 胀 收
在溶胀过程中 ,一方面水溶剂力图渗入高聚物内使 其体积膨胀,另一方面由于交联聚合物体积膨胀 ,导 致网络分子链向三维空间伸展 ,分子网络受到应力 产生弹性收缩能而使分子网络收缩。


当这两种相反的倾向相互抗衡时 ,达到了溶胀平衡 , 可见凝胶的体积之所以溶胀或收缩是由于凝胶内部 的溶液与其周围的溶液之间存在着渗透压 。 水凝胶的溶胀收缩行为通常用凝胶溶胀前后的质量 百分比表示 ,对于膜的溶胀也常用膜面积的变化表示。
载体的接枝共聚
• 水凝胶的机械强度一般较差 , 为了改善水凝胶的机械强度 , 可以把水凝胶接枝到具有一定强度的载体上。 • 在载体表面产生自由基是最为有效的制备接枝水凝胶的技术 , 单体可以共价地连接到载体上。 • 通常在载体表面产生自由基的方法有电离辐射、紫外线照射、 等离子体激化原子或化学催化游离基等,其中电离辐射技术是 最常采用的产生载体表面自由基的一种技术。
有一些两组分或多组分 的补齿材料含有 HEMA 或其他亲水型聚合物 , 这些材料被放在颚槽或 牙根部的孔内聚合或交 联 ,在大多数情况下 , 这些反应由 UV 引发。
生物分子、细胞的固定化
水凝胶固定化的生物分子和细胞在分析、 医学诊断等方面有着广泛的应用。 生物分 子和细胞可以固定在水凝胶小球的表面或 其内部 ,然后装填柱子 ,这样的柱子可以 用于分离混合物中的特殊生物分子。 生物 传感器是表面固定了生物分子或细胞的电 化学传感器 ,生物分子一般固定在与生物 传感器物理元件相连的水凝胶表面或其内 部。 水凝胶膜是连接生物分子和物理元件 的枢纽 ,因此很重要 。

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述

PVA水凝胶的制备及研究综述PVA(聚乙烯醇)水凝胶是一种具有弹性、可溶于水的高分子材料,具有广泛的应用前景,特别是在生物医学领域。

本文将对PVA水凝胶的制备方法和相关研究进行综述。

PVA水凝胶的制备方法多种多样,主要包括物理交联法、化学交联法和生物交联法。

其中,物理交联法是通过改变PVA溶液中的温度、pH值或添加剂来实现凝胶化。

这种方法简单易行,但凝胶的力学性能较差,不耐水。

化学交联法是通过添加交联剂或引发剂,使PVA分子间发生交联反应,形成三维网络结构。

这种方法可以调节凝胶的交联程度,从而改变其力学性能和水溶性。

生物交联法是利用酶或菌体等生物体内的酶促反应来进行交联,具有良好的生物相容性和可降解性。

PVA水凝胶的研究涵盖了多个方面,其中包括力学性能、形态结构、生物相容性和药物释放等。

力学性能是评价水凝胶质量的重要指标,与交联程度和结构有关。

研究发现,PVA水凝胶的力学性能可以通过调节交联剂浓度、交联时间和交联温度等条件来改善。

形态结构研究表明,PVA水凝胶具有均匀的孔隙结构和互穿网络,有利于负载药物和细胞的扩散和生长。

生物相容性是评价材料在生物体内应用的重要指标,PVA水凝胶具有低毒性和良好的生物相容性,已被广泛用于组织工程和药物传递领域。

药物释放研究表明,PVA水凝胶可以控制药物的释放速率和时间,可用于缓释药物和局部治疗。

除了上述方面的研究,PVA水凝胶还可以与其他材料进行复合,以改善其性能。

例如,将纳米材料引入PVA水凝胶中,可以提高其力学性能和生物相容性。

同时,还可以通过改变PVA水凝胶的交联方式和结构,来实现对凝胶性质的调控。

综上所述,PVA水凝胶是一种具有广泛应用前景的材料,制备方法多样,研究内容涵盖了力学性能、形态结构、生物相容性和药物释放等方面。

未来的研究可以从更多角度探索PVA水凝胶的性能和应用,进一步发展其在生物医学领域的应用潜力。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

一 溶胀性 水凝胶在水中可显著溶胀性。溶胀性是指凝胶 吸收液体后明显增大的现象,这是弹性凝胶的 重要特性,凝胶的溶胀分为两个阶段:第一阶 段是溶剂分子钻入凝胶中与大分子相互作用形 成溶剂化层,此过程很快;第二阶段是液体分 子的继续渗透,这时凝胶体积大大增加。溶胀 性的大小可以溶胀度来衡量,溶胀度为一定温 度下,单位重量或体积的凝胶所能吸收液体的 极限量。
2、膜控型缓释、控释制剂 、膜控型缓释、 微孔膜包衣片: 微孔膜包衣片: 膜控释小片: 膜控释小片: 肠溶膜控释片: 肠溶膜控释片: 膜控释小丸: 膜控释小丸: 3、渗透泵片: 、渗透泵片: 4、植入片: 、植入片:
三、缓释、控释制剂体内、体外评价 缓释、控释制剂体内、 (一)体外释放度试验 1、释放度试验方法 、 5、取样点的设计 、 除肠溶制剂外 (二)体内生物利用度和生物等效性试验 生物利用度: 生物利用度:指剂型中的药物吸收进入人体血液循环的速度和 程度 生物等效性:指一种药物的不同剂型在相同实验条件下, 生物等效性:指一种药物的不同剂型在相同实验条件下,以相 同剂量, 同剂量,其吸收速度与程度没有明显差异 (三)体内外相关性 1、体内-体外相关性的建立 、体内- 体外累积释放率- 体外累积释放率-时间的释放曲线 体内吸收率-时间的吸收曲线 体内吸收率- 2、体内-体外相关检验 、体内-
一、口服定时释药系统 按制备技术不同, 按制备技术不同,可分为 (一)渗透泵定时释药系统 (二)包衣脉冲系统 1、膜包衣技术 、 2、压制包衣技术 、 (三)柱塞型定时释药胶囊 二、口服定位释药系统 胃定位释药系统 口服小肠释药系统 口服结肠定位释药系统
又称靶向给药系统( 又称靶向给药系统(targeting grug system,TDS)指载体 ) 将药物通过局部给药或全身血液循环而选择性的浓集定 位于靶组织、靶器官、 位于靶组织、靶器官、靶细胞或细胞内结构的给药系统 (一)靶向制剂的分类 1、被动靶向制剂 、 2、主动靶向制剂 、 3、物理化学靶向制剂 、 (二)靶向性评价 1、相对摄取率: 、相对摄取率: 2、靶向效率 、靶向效率te 3、峰浓度比 、峰浓度比Ce

高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用

高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用

高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用一、本文概述随着科技的不断进步,柔性可穿戴电子设备已成为当前研究的热点。

这类设备以其独特的柔韧性、可穿戴性和舒适性,为人们的日常生活带来了极大的便利。

然而,其性能的稳定性和持久性仍然是制约其进一步发展的关键因素。

高分子导电水凝胶作为一种新兴的材料,因其良好的导电性、生物相容性和高柔韧性,在柔性可穿戴电子设备中具有广阔的应用前景。

本文旨在探讨高分子导电水凝胶的制备方法,并分析其在柔性可穿戴电子设备中的应用,以期为未来该领域的研究提供参考和借鉴。

文章首先将对高分子导电水凝胶的基本概念和特性进行介绍,阐述其在柔性可穿戴电子设备中的潜在优势。

随后,将详细介绍高分子导电水凝胶的制备方法,包括原材料的选择、反应条件的优化以及后处理工艺的改进等。

在此基础上,文章将重点探讨高分子导电水凝胶在柔性可穿戴电子设备中的应用,如柔性传感器、柔性显示屏和柔性电池等。

还将对高分子导电水凝胶在实际应用中面临的挑战和问题进行深入分析和讨论。

文章将总结高分子导电水凝胶在柔性可穿戴电子设备中的研究现状和发展趋势,展望其未来的应用前景。

通过本文的阐述,旨在推动高分子导电水凝胶在柔性可穿戴电子设备领域的研究和发展,为相关领域的科研人员和企业提供参考和指导。

二、高分子导电水凝胶的制备高分子导电水凝胶的制备主要涉及到聚合物的合成、交联反应以及导电物质的引入等步骤。

选择适合的聚合物前驱体,这些前驱体通常具有良好的水溶性或水溶胀性,如聚丙烯酸(PAA)、聚甲基丙烯酸(PMAA)等。

然后,在适当的条件下进行聚合反应,如自由基聚合、离子聚合等,形成聚合物的三维网络结构。

在聚合过程中,需要引入交联剂以增强水凝胶的机械强度和网络稳定性。

常用的交联剂包括乙二醇二甲基丙烯酸酯(EDMA)、N,N'-亚甲基双丙烯酰胺(MBA)等。

这些交联剂能够与聚合物链发生共价键合,形成稳定的交联网络。

接下来,为了赋予水凝胶导电性,需要将导电物质引入聚合物网络中。

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用

水凝胶在药用高分子材料中的应用水凝胶是一种具有高度吸水性的高分子材料,由于其独特的物理和化学性质,被广泛应用于药物传输、组织工程、生物诊断等领域。

首先,水凝胶在药物传输方面的应用非常广泛。

水凝胶能够吸取许多倍于自身质量的水,形成具有大量水分的凝胶结构,这使其成为一种理想的药物载体。

通过将药物溶解或包裹在水凝胶中,可以延长药物的作用时间,减缓药物的释放速度,并且可以在药物释放时提供保护作用。

通过控制水凝胶的物理和化学性质,可以调节药物在凝胶中的释放速度和方式。

例如,温度敏感的水凝胶可以在局部组织温度上升时迅速释放药物,这种特性在肿瘤治疗中非常有用。

此外,药物可以通过化学交联或物理交联的方式与水凝胶结合,这样可以更稳定地嵌入药物,并提高药物在体内的稳定性和生物利用度。

其次,水凝胶在组织工程领域也具有重要的应用价值。

组织工程是一种利用人工合成材料或细胞培养体外培养构建组织功能的方法。

水凝胶是一种可生物降解的材料,能够提供细胞黏附和生长的支持结构。

同时,水凝胶的高度可形状性和柔韧性,使其能被设计成不同形状和尺寸的骨架,以模仿不同的组织结构。

水凝胶还可以通过控制其化学性质和微观结构,提供细胞间的交流和信号传递。

例如,可以在水凝胶中添加生物活性物质,如细胞因子、生长因子和基质蛋白等,以模拟体内的生物环境,促进细胞生长和分化。

此外,水凝胶具有良好的生物相容性,能够减少异物反应和组织排斥反应,促进组织工程材料与宿主组织的良好衔接。

另外,水凝胶还在生物诊断领域具有重要的应用。

生物诊断是指通过检测生物标志物,对疾病进行早期诊断和跟踪治疗效果的方法。

水凝胶可以作为生物传感器的载体,用于固定和保护生物标志物,并提供灵敏的信号检测。

例如,将特定的抗体或DNA探针固定在水凝胶上,可以实现对特定蛋白质或DNA的高灵敏性检测。

此外,水凝胶还可用于制备具有指示性颜色变化的染料水凝胶,用于快速检测特定因素的存在和浓度。

综上所述,水凝胶在药用高分子材料中的应用广泛且多样,通过调控其物理和化学性质,可以实现药物的控释和组织工程的构建,也可以用于生物诊断等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子水凝胶综述
摘要
在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。

论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。

关键词:高分子水凝胶应用性能制备
产生、定义与比较
高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。

对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)
图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)
同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。

吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。

当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。

也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。

此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。

从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。

在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图
2)。

O
OH R O O H R O
O H R O O
H R
O OH R O OH
R O
OH R O
H
H
图2 凝胶保持水分子示意图
图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。

此外,还能说明一个问题:理论上能够和亲水性基团之间发生水合而吸附在高分子聚合物周围的水分子,其厚度最多不过2~3层,第一层水分子是由亲水性基团与水分子形成的配位键或氢键的水合水,第二层或第三层则是水分子和水合水形成的氢键结合层,作用力随层数的增加而不断减弱。

而凝胶之所以能够吸收更多的水分,原因就在于其交联网格结构。

这样的结构是包裹式的,以立体三维式取代了平面式,而且链上亲水性基团的复杂交错,给容纳水分提供了优良的环境。

属性、制备与性能表征
高分子水凝胶的性质
一、溶胀度
高分子水凝胶的亲水性三维网络结构使其在水存在的条件下,能够很容易地发生吸水膨胀。

不同种类的水凝胶会产生不同程度的膨胀,即使是由同种单体在同样配比的条件下合成的水凝胶,由于环境影响因素和制备方法的差异性,也会产生不同程度膨胀。

学术上,用溶胀度(Swelling Capacity )从量上来描述水凝胶的膨胀程度。

定义上来看,溶胀度为一定温度下单位重量或体积的凝胶所能吸收的液体的最大量。

溶胀度有两种表示公式:
211m m m Q m -= 和 00
V V Q V -= 其中,m Q 为质量溶胀度,Q 为体积溶胀度,1m 、2m 分别为干凝胶(吸水膨胀前)和最大吸水溶胀凝胶(充分吸水膨胀后)的质量,kg ;0V 、V 分别为干溶胶和最大吸水溶胀凝胶的体积,dm 3。

由于水凝胶的高吸水能力,溶胀度往往成为探究水凝胶的首要属性。

二、含水率
溶胀度是用于衡量水凝胶的最大膨胀能力,而在一般情况下,水凝胶能够吸收一些环境中的水分,即成为非干性水凝胶。

当需要将水凝胶用于下一步实验操作之前,我们往往需要了解水凝胶中的一些杂质成分的含量,而含水率就可用来衡量水凝胶中水分的多少。

此外,水凝胶在吸水量达到其最大量之前,我们往往还会比较水凝胶在不同膨胀程度下,其吸水量与时间的关系,这也要用到测定含水率的方法。

水凝胶的含水率定义为:
h g c h
W W w W -= 其中,c w 为水凝胶含水率,h W 和g W 分别为水凝胶的重量和干凝胶的重量,kg 。

三、溶胀-收缩行为(凝胶状态方程)
吸水溶胀是水凝胶的一个重要特征,在溶胀过程中,一方面水溶剂力图渗
入高聚物内使其体积膨胀,另一方面由于交联聚合物体积膨胀,导致网络分子链向三维空间伸展,分子网络受到应力产生弹性收缩能而使分子网络收缩。

当这两种相反的倾向相互抗衡时,达到了溶胀平衡,可见凝胶的体积之所以溶胀或收缩是由于凝胶内部的溶液与其周围的溶液之间存在着渗透压π。

根据Flory 凝胶溶胀理论,渗透压π定义为:
()()21/300001ln 12v gel sol RT x RT RT N N V πΦ⎡⎤ΦΦ⎡⎤⎛⎫=--Φ+Φ+-Φ-+-⎢⎥ ⎪⎢⎥ΦΦ⎝⎭⎣⎦⎢⎥⎣⎦
其中,0V 是溶剂的摩尔体积;R 和T 分别是气体常数和热力学温度;x 是Flory 相互作用常数;0Φ、Φ分别是溶胀前及溶胀平衡时凝胶中的高分子体积分数;gel N 、sol N 分别是凝胶和溶液中离子的总浓度;v 是干凝胶中有效高分子链密度。

上式成为水凝胶的状态方程,它表达了T π-Φ-的关系。

可见,水凝胶的溶胀特征与溶质、溶剂的性质、温度、压力及凝胶的交联度有关,渗透压由大分子链-水相互作用、大分子网络的橡胶弹性及聚合物水凝胶内、外离子浓度差构成[3]。

四、力学属性
当在一个材料上施加一个外力作用,形变产生的大小依赖于材料的尺寸。

在一个同等大小的外力拉伸之下,一个短而粗的棒子将会比一个长而细的棒子伸展得更少。

这种尺寸的影响可以通过引进应变(而不是形变)和应力(而不是施加的外力)来加以消除。

一个所给材料不管其尺寸大小如何,只要施加一定的应力(σ),就会总是产生相同的应变(ε)。

应力和应变定义为:在简单的张力下
0/F A σ=
0/L L ε=∆
其中L ∆为长度的改变大小,0L 为起始(未形变前)的长度,F 为所施加的外力大小,0A 是起始横断面积[2]。

水凝胶力学性能的研究可以对照橡胶的粘弹性理论。

通过研究水凝胶的动态力学试验结果,可以从其应力-应变曲线上获得我们想要得知的材料力学属性,如抗拉强度、断裂伸长率等。

为什么要重点强调出水凝胶的力学属性呢?笔者认为有以下两点原因:第一,力学属性是所有材料于应用前必须要了解的通用属性,对于水凝胶,更是如
此。

由于通常“柔软”的外在性质,大大限制了其在一些力学情况下的应用。

一些水凝胶在吸水的过程中甚至会发生破裂;第二,一些功能化水凝胶被用于人体组织材料的开发,这就对其器官组织的支撑能力和适应性提出了更严格的要求。

五、透光率
一些水凝胶材料被应用于角膜接触镜的研究(下面会有具体的介绍)。

在这种情况下,对于水凝胶的透明度的衡量尤其重要,这里引用透光率属性。

因人工角膜接触镜的厚度一般为0.5mm 左右,所以根据水凝胶膜的实际厚度d 校正为0.5mm 厚的水凝胶的透光率a T 所用公式为:
()0.5100100a T T d
-=- 其中T 为实际测量到的透光率[4]。

六、结晶度
水凝胶结晶度直接关联着其各类其他属性,尤其是与力学属性和透明性息息相关。

结晶度c X 的计算公式为:
c H X H Θ
∆=∆ 其中,H Θ∆、H ∆分别为理论上水凝胶完全结晶的吸热焓和实际结晶熔融峰的吸热焓[4]。

需要指出的是,这里完全结晶的水凝胶必须为纯的高分子水凝胶(单一单体合成),如PV A 水凝胶。

对于通过几种单体交联合成的高分子水凝胶,我们很难在结晶度的研讨方面去加以定量。

高分子水凝胶的制备
一、分类
水凝胶常用的分类方法有三种:1)根据水凝胶对外界环境刺激的响应情况,可分为传统水凝胶(对外界环境刺激没有反应或者反应相当小)和环境敏感性水凝胶两大类,其中环境敏感性水凝胶又可依据外界刺激的性质不同而分类,这其中包括pH 敏感性水凝胶、温度敏感性水凝胶、电场敏感性水凝胶和光敏感性水凝胶四个主要大类。

2)根据水凝胶网络键合方式,可分为物理凝胶和化学凝胶以及包含物理化学共同作用力的凝胶,其中对于高分子凝胶而言,前两者各自单。

相关文档
最新文档