在动手操作实践中感悟数学的转化思想

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在动手操作实践中感悟数学的转化思想

竹岐中心小学陈如国

【内容摘要】数学中转化思想是数学思想的核心,在教学中,要始终紧扣“转化”这根弦,通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、简单的问题,选择恰当的方法进行转化,把隐含在知识中的转化思想加以揭示和渗透,让学生感悟转化思想的作用,体会运用转化思想的乐趣,提高学生分析问题和解决问题的能力。

【关键词】实践感悟转化思想

数学的转化思想是学生认识事物、学习数学的基本依据,是学生数学素养的核心,是处理数学问题的指导思想和基本策略,是数学学习的灵魂。数学转化思想的感悟是在学生数学实践活动中积累的,在教学中渗透数学转化思想可以使学生自觉地将数学知识转化为数学能力,最终通过自身的学习转化为创造能力。

一、在动手操作实践中,感悟教材中所蕴涵的转化思想

在实际教学中,教师要挖掘教材中所蕴涵的转化思想,可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,拓展学生的解题思路与策略,提高学生分析问题和解决问题的能力。

例如,新编人教版六年级数学下册《圆柱与圆锥》这一单元在学习完圆柱的体积计算之后,教材新编了一道“问题解决”的例题即例7:“一个内直径是8cm 的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?”,教材设计的意图是:通过这一例题的教学,使学生真正经历发现问题、提出问题、分析问题、解决问题的完整过程,同时进一步发展问题解决的策略,体会并感悟其中蕴含的数学转化的思想。这样的问题不是学生常见的常规问题,看似无处招手,在这里,学生要解决的是一个非常规问题,很有挑战性,并非简单地套用公式就可以解决,需要通过自主探究和教师的有效指导,共同找到“把瓶子倒置”这一解决问题的关键。而我们的目标也不仅是解决这一具体的问题,更重要的是在这一过程中提高学生的探究欲望,在探究的过程中理解和掌握转化的思想,体会转化的实质是“变中有不变”的道理。

我在教学中以动手操作实践为学习方法,感悟数学的转化思想。课前我要求每个学生自带一瓶矿泉水,上课时我让学生拧开矿泉水的瓶盖先喝两口水,然后

拧紧瓶盖把矿泉水瓶倒置,学生自主探究、观察有什么发现?学生通过观察发现矿泉水瓶倒置前后,水的体积不变,无水部分(即空气)的体积也不变。而瓶子的容积就是水的体积与空气的体积之和。倒置前水的形状是一个圆柱,而倒置后,空气的形状是一个圆柱,这两个圆柱的体积就是瓶子的容积。通过把不规则形状的体积转化成规则形状,把未知知识转化为已学知识,发现转化过程中的“变”与“不变”,提高学生分析问题和解决问题的能力。然后学生学习探究例7时,就会感到轻车熟路、得心应手,能用转化的方法使问题迎刃而解,很快列出算式:瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18=1256(cm3)=1256(ML)。学生能用所学的方法解决课本中的“做一做”试题,拓展学生的解题思路与策略。丰富了现实情境为学生提供转化思想在数学学习中的广泛应用。

二、在动手操作实践中,感悟灵活应用数学的转化思想

运用转化思想,既可以实现一般向特殊转化,使需求解的具有一般性的问题转化为特殊形式来解决;也可以运用特殊向一般的转化,通过解决一般性问题而使得特殊问题得到解决。教学实践经验证明,要在教学中灵活运用转化思想,融会贯通、举一反三,其关键在于教师在平时的教学中应根据教学内容和学生的认知特点,探求相应的途径和方法,科学地归纳整理,不断加以完善。例如,在“图形与几何”中的平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,再引导学生比较后得出将要学习图形的面积计算方法,感悟灵活应用数学的转化思想。

例如,圆柱体的体积推导,当教师通过创设情境使学生产生迫切要求出圆柱体的体积的需要时,可以将“怎样计算圆柱体的体积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的圆柱体的体积计算转化成已经学过的长方体的体积的时候,要让学生明确两个方面:一是在转化的过程中,把圆柱体的体积进行切割等分剪一剪、拼一拼,最后得到的圆柱体的体积和长方体的体积是相等的(即等积变形的转化)。在这个前提之下,圆柱的底面积就等于长

方体的底面积,圆柱的高就等于长方体的高,所以圆柱的体积等于底面积乘高。二是在转化完成之后,应提醒学生反思“为什么要转化成长方体的”。因为长方体的体积先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。

三、在动手操作实践中,感悟转化思想在实际问题中的应用

在解决实际问题的过程中,运用转化思想可以使学生更容易理解题意,更快的找到解决问题的方法。例如,小东和爸爸去公园游玩,买票时爸爸付了10元,找回1.6元。已知学生票价按成人票价打五折,算一算,成人票和学生票各多少元?在这个题目中,“学生票价按成人票价打五折”就是成人票价的50%,也就是成人票价的一半,这是一条非常重要的信息,可学生却不容易理解。因此我引导学生是否能将这句话换一种说法,转变成大家容易理解的呢?于是有学生想到:成人票价是学生的两倍,这个学生说完后,大部分学生纷纷表示赞同,这样就好理解了。

在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。

例如,在学生掌握长方体、正方体的体积计算公式后,出示一个不规则的铁块,让学生求出它的体积。学生们顿时议论纷纷,认为不能用长方体、正方体的体积计算公式直接计算。但不久就有学生提出,可以利用转化思想来计算出它的体积。通过小组讨论后,学生们的答案可谓精彩纷呈。有的小组汇报:用一块橡皮泥,根据铁块的形状,捏成一个和它体积一样的模型,然后把橡皮泥捏成长方体或正方体,橡皮泥的体积就是铁块的体积。有的小组汇报:把这个铁块放到一个装有水的长方体的水槽内,浸没在水中,看看水面上升了多少,拿水槽内底面的长、宽与水面上升的高度相乘得到铁块的体积。有的小组汇报:把铁块放到一个装满水的量杯内,使之淹没,然后拿出来,看看水少了多少毫升,这个铁块的体积就是多少立方厘米。学生在转化思想的影响下,感悟到将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。

相关文档
最新文档