四线制ZPW-2000站内及闭环电码化应用分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章基本原理概述
1.1 站内电码化的概念
列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。当列车通过车站时,机车信号将无法正常工作。为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。
站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。
站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。
1.2 站内电码化的分类
目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。
所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。
当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。
机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。
为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。
1.3 站内电码化的范围及技术要求
1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。
1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。
1.3.3 在最不利条件下,出口电流不损坏电码化轨道电路设备。
1.3.4 已发码的区段,当区段空闲后,轨道电路应能自动恢复到调整状态。
1.3.5 列车冒进信号时,其占用的所有咽喉区段不应发码。
1.3.6 与电码化轨道电路相邻的非电码化区段,应采取绝缘破损防护措施,当绝缘破损时不导向危险侧。
1.3.7 电码化应采取机车信号邻线干扰防护措施。
1.3.8 机车信号机显示除按《铁路技术管理规程》执行外,还应满足TB/T3060《机车信号信息定义及分配》的规定。
1.4 切换式站内电码化电路的特点
轨道电路的送、受电端的电缆都引到车站机械室,发码传输继电器全部设在机械室里,便于维修。一般小站继电集中轨道电路送电端电缆都使用共用干线电缆,当采用送电端发码时传输继电器放在室外采取就地控制。
电路中没有使用第一离去和第二离去表示继电器的条件。因为电路中的离去条件,是用离去区段的轨道继电器XLQGJ的接点,通过电缆控制车站机械室中一个反复示继电器XLQGCJ,再由XLQGCJ控制译码器,这样就将
通常设在进站继电器箱的译码器搬到了车站机械室,由离去区段送来的电码信号,经译码器译制出信号显示后,使黄灯继电器UJ和绿灯继电器LJ 动作,由UJ和LJ的动作直接反映出列车所处的离去区段,因而无须再设一离去二离去的表示继电器。
1.5 切换式站内电码化电路的动作原理
以下行方向为例,如图一所示,有的是送电端发码,有的受电端发码,什么时候用送电端发码,什么时候用受电端发码,这要看送、受电端在一个轨道电路上所处的位置,因为发码的原则必须迎着列车运行方向发码,因此每一条轨道电路的发码位置,必须设在列车的出口端,如果列车的出口端是受电端,那么它就是受电端发码,否则就是送电端发码。
平时无列车运行时,从进站信号机X内方开始直至出站信号机XⅠ外方XFWJ,所有的轨道电路区段传输继电器均失磁落下,因此轨道继电器都处于稳定吸起状态。
由进站信号机X向预告信号机XY的发码信号,主要取决于进站信号机X的显示。因此向预告信号机发码的传输继电器XJYCJ的电路中接有XⅠLXJF,XZXJ,XLXJF,XDJ等接点。显然当进站信号机关闭时,XJYCJ通过XLXJF的落下接点,接至电动发码器HU电码电路:
JZ
127—HU
1
—XLXJF↓—XDJ↑—XJYCJ↑↓—JF
220
图一切换式站内电码化电路
如果进站信号机的红灯灯丝断丝,灯丝继电器XDJ失磁落下,切断XJYCJ的发码电路。XJYCJ失磁落下,向预告信号机XY发送的HU电码中断,使预告信号机显示红灯,相当于进站信号机的红色灯光转移到预告信号机XY上去。
当向正线Ⅰ道接车,进站信号机开放一个黄灯时,这时下行进站列车信号复示继电器XLXJF是励磁吸起的,而正线出站信号机XⅠ是关闭的,X Ⅰ列车信号复示信号机XⅠLXJF是失磁落下的。因此这时XJYCJ是复示电动发码器U电码接点的动作。向预告信号机发送U电码,它的电路如下:
JZ
127—U1—X
Ⅰ
LXJF↓—XZXJ↑—XLXJF↑—XDJ↑—XJYCJ↓↑—JF
220
如果正线发车信号XⅠ开放,列车从本站通过,那么XJYCJ是复示电动发码器L的电码,向预告信号机XY发送L电码,其电路是:
JZ
127—L1—X
Ⅰ
LXJF↑—XZXJ↑—XLXJF↑—XDJ↑—XJYCJ↑↓—JF
220
当列车进入进站信号机内方XLXJF失磁落下切断XJYCJ的供电电路XJYCJ失磁落下停止向预告信号机的发码。
由出站信号机至进站信号机,各轨道电路区段的发码信号,取决于出站信号机XⅠ的显示,因此各轨道区段的传输继电器的电路中,都串有出站信号机的显示条件,由于调车时不需要发码,所以在接车或发车发码继电器电路中,接有D1XJ或D1ZJ的接点条件。
如果向正线接车,出站信号机XⅠ没有开放。当列车头部进入进站信号机内方无岔区段XJWG时,XJWGJ失磁落下接通接车发码继电器XJMJ和无岔区段传输继电器XJWGCJ,由于出站信号机没有开放,向无岔区段发送HU 电码,其动作程序是:
列车进入XJWG→XJWGJ↓→XJMJ↑→XJWGCJ↑↓ XJWG
↓
HU