排列组合的常用策略(经典)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题 6颗颜色不同的钻石,可穿成几种钻石圈
120
精品文档
七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在
前排,丁在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以
把椅子排成一排. 先在前4个位置排甲乙两 个特殊元素有_A_42__种,再排后4个位置上的
精品文档
四.定序问题倍缩空位插入策略
例4.7人排队,其中甲乙丙3人顺序一定共有多
少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列
问题,可先把这几个元素与其他元素一起
进行排列,然后用总排列数除以这几个元
素之间的全排列数,则共有不同排法种数
是:
A
7 7
(空位A 法33 )设想有7把椅子让除甲乙丙以外
※解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略
精品文档
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数 五位奇数.
解位:置由分于析末法位和和元首素位分有析特法殊是要解求决,排应列该组优合先问安
题最排常,以用免也不是合最要基求本的的元方素法占,了若这以两元个素位分置析为
分步计数原理各步相互依存,每步中的方法 完成事件的一个阶段精品,文档不能完成整个事件.
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还
是分类,或是分步与分类同时进行,确定分多 少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素.
好的6个元素中间包含首尾两个空位共有
种
A
4 6
不同的方法
由分步计数原理,节目的
不同顺序共有A
5 5
A
4 6
种
元素相离问相题可先独把没有独 位置独要求相的元素进 行排队再把不相邻元精素品文插档 入中间和两端
练习题
某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两 个新节目不相邻,那么不同插法的种数 为(30 )
解:围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人A并从 此位置把圆形展成直线其余4人共有_A_44__
种排法即(5-1)!
一般B地,n个不同元素作圆形排 列C ,共有(An-1A)!种B 排C 法D.如E 果A从
n圆个D形不排同列E元共素有中精品取文档 出m个m1 A元nm 素作
种不同的方法.N=m1+m2+ +mn
精品文档
2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m1种不同的方法,做第2步有m2 种不同的方 法,…,做第n步有mn种不同的方法,那么完 成这件事共有:
种不同的方法.N=m1m2 mn
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法 都可以独立地完成这件事。
C5 精品文1 档0
五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有
多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有7种分法. 把第二名实习生分配
到车间也有7种分法,依此类推,由分步计
数原理共有7 6 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上精品的文档 排列数为 mn种
一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列, 要求同某时几对个相元邻素元必素须内排部在进一行起自的排问。题,可以用
甲乙 丙丁
捆为绑一由种法个分不来元步同解素计的决,再数排问与原法题其理.即它可将元得需素共要一有相起A 5邻作5 A 22的排A 22元列=素,4同8合0时并
要注意合并元素内部精也品文必档 须排列.
的四人就坐共有
A
4 7
种方法,其余的三个
位置甲乙丙共有
1
种坐法,则共有
A
4 7
种
方法 思考:可以先精让品文甲档 乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 4*5*6*7 方法 定序问题可以用倍缩法,还可转化为占位插 空模型处理
练习题 10人身高各不相等,排成前后排,每排5人,要 求从左至右身高逐渐增加,共有多少排法?
练习题 1. 某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这 两个节目插入原节目单中,那么不同插法的 种数为( 42 )
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法
( 78 )
精品文档
六.环排问题线排策略 例6. 5人围桌而坐,共有多少种坐法?
A
3 4
=288
精品文档
练习题
1.7种不同的花种在排成一列的花盆里,若两
种葵花不种在中间,也不种在两端的花盆
里,问有多少不同的种法?
AA 2 5 45
1440Байду номын сангаас
精品文档
二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相
邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成
主,先需排先末安位排共特有殊_元C _31_素,再处理其它元素.若以
位置然分后析排为首主位,共需有先_满C _41 _足特殊位置的要求,再
处考理虑最其一后它个排位约其置束它。条位若件置有的共多同有个时_A _约还43 _C束要41 条兼件顾A,其43 往它往条是件C 31
由分步计数原理得C
1 3
C
1 4
精品文档
教学目标
1.进一步理解和应用分步计数原理和分类 计数原理。
2.掌握解决排列组合问题的常用策略;能运 用解题策略解决简单的综合应用题。提高 学生解决问题分析问题的能力
3.学会应用数学思想和方法解决排列组 合问题.
精品文档
复习巩固
1.分类计数原理(加法原理)
完成一件事,有n类办法,在第1类办法中有 m1种不同的方法,在第2类办法中有m2 种不 同的方法,…,在第n类办法中有mn种不同的 方法,那么完成这件事共有:
练习题 某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
精品文档
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
有
A
5 5
种,第二步将4舞蹈插入第一步排