高中数学思维方法论文:高中数学思维方法浅谈
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学思维方法论文:高中数学思维方法浅谈
重视讲授基础知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛。因此,数学思想、方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。这也是数学思维方法教学的基本原则。
一、函数与方程的思维方法
函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画。因此,函数思想的实质是提取问题的数学特征,用联系的、变化的观点提出数学对象,抽象其数学特征,建立函数关系。很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程,实现函数与方程的互相转化接轨,达到解决问题的目的。函数知识涉及的知识点多、面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维。
二、数形结合的思维方法
数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性、形象性,使问题化难为易,化抽象为具体。
三、分类讨论的思维方法
分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。原因有两种:其一,具有明显的逻辑性特点;其二,能训练人的思维的条理性和概括性。
如“参数问题”对中学生来说并不十分陌生,它实际上是对具体的、个别的问题的概括。从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数、曲线方程等等,无不包含着参数讨论的思想。但在含参数问题中,常常会碰到两种情形:在一种情形下,参数变化并未引起所研究的问题发生质变。例如在离心率中,参数的变化并未改变曲线系是抛物线系的性质;而在另一种情况下,参数的变化使问题发生了质变。例如曲线系中,随着值的变化,该曲线可能是椭圆、双曲线、圆、二平行直线等,因此需根据离心率的不同范围分类讨论。这种分类讨论有时并不难,但问题主要在于有没有讨论的意识。在更多的情况下“想不到要分类”比“不知如何分类”的错误更为普遍。这就是所谓“素质”的问题。良好的数学素养,需长期的磨炼才能形成。
四、等价转化的思想
等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的数学思维方法,转化包括等价转化和非等价转化,等价转化要求转化过程中前因后果应是充分必要的,这样的转化能保证转化后的结果仍为原问题所需要的结果;而非等价转化其过程是充分或必要的,这样的转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分。
转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。
五、用数学思维方法指导解题练习
1.注意分析探求解题思路时数学思维方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题干间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思维方法分析解决问题的过程。
2.注意数学思维方法在解决典型问题中的运用。例如选择题中的求解不等式,虽然可以通过代数方法求解,但若用数形结合,转化为半圆与直线的位置关系,问题将变得非常简单。
3.用数学思想指导知识、方法的灵活运用,进行一题多
解的练习,培养思维的发散性、灵活性、敏捷性;对习题灵活变通,引申推广,培养思维的深刻性、抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性、批判性。对同一数学问题多角度地审视而引发的不同联想,是一题多解的思维本源。