非对称型FP干涉仪的光谱特性

非对称型FP干涉仪的光谱特性
非对称型FP干涉仪的光谱特性

透射率的推导:

透射光强公式为

)(t I =

)

(2

22

2

sin 4)1(i I

δ

ρρτ+-=

)(2

22

2

sin 4)1()1(i I δ

ρρρ+--=

)(2

2

sin 11i I F δ

+

干涉仪两板的内表面镀金属膜时,光在它表面反射的情况是比较复杂的。但是,只要两个膜

层是相同的,透射光强公式依然成立,不过,这时R 应该理解为在金属膜内表面的反射率,而相继两光束的相位差φθλ

δ2cos π

4+=

h

式中φ是在金属膜内表面反射时的位相变化。另外,光通过金属膜时将会发生强烈的吸收,

使得整个干涉图样的强度降低。设金属膜

的吸收率为A (吸收光强度与入射光强度之比),应有R+T+A=1因此,由透射光强公式可得

到透射率公式为2

sin 11112

2

)()(δ

F R A I I i t +???

?

??--=

非对称型F-P 干涉仪的光谱特性

取t=2x10-6 f=5 14.3=φi=0.08 d=1x10-3 A=0.05

φλ

λδ?+???=

2)cos(14

.34)(t d

I(λ)=

)

2

)

(sin(

)2

)

(sin(

)21(4])21(1[)

21()11(2

12

21λδλδ???+?--?-R R R R R R

由此得到I,R ,λ的关系

取定并改变R1 R2的值可用matlab 软件模拟出I (λ)与λ的关系曲线结果如下

“图图图”

由模拟结果可知R1, R2值一定时透射光强随波长增大呈周期变化有极大值与极小值,周期约为1.5x10

10

-,且透射光强极大值随R1-R2增大而减小,透射光强极小值随R1-R2增大

而增大。当波长增大时,透射光强变化程度缓慢,与理论相符合。 2

同理可得到对称型F-P 干涉仪的光谱特性 t=2x10

4

- f=5 14.3=φi=0.08 d=1x10-3 A=0.05

φλ

λδ?+???=

2)cos(14

.34)(t d

2

)

1(4)(R R

F -?=

λ I(λ)=

)

2

)

(sin()2)(sin()(11

λδλδλ??+F

同上可得I 与λ关系曲线结果如下

“图图图”

由图知同一波长时,R 减小,I 增大,反射光强减小。R 一定时,随着波长增大,透射光强呈周期变化,极大值为1,极小值随R 减小增大,不同波长透射率的变化范围也随R 减小而减小。当波长增大时,透射光强变化程度缓慢,与理论相符合。

综上对比对称型和非对称型F-P 干涉仪,反射率一定时,透射光强都随波长呈周期变化且周期相同,对称型F-P 干涉仪的透射光强极大值固定为1而非对称型F-P 干涉仪的透射光强极大值和两楔形板镜面的反射率有关,其差值越大极大值越小且总小于1,非对称型

F-P

干涉仪比对称型F-P 干涉仪透射光强要小。

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

HORIBAFL-3000FM4荧光光谱仪操作说明解读

设备名称荧光光谱仪 设备型号HORIBA FL-3000/FM4-3000 设备操作规范: 一、开机前准备: 1、实验室温度应保持在15℃~30℃之间,空气湿度应低于75%。 2、确认样品室内无样品后,关上样品室盖。 二、开机 3、打开设备电源开关(氙灯自动点亮,预热20min; 4、打开计算机,双击桌面上的荧光光谱软件,进入工作站,等待光谱仪自检。 三、装样: 5、将样品处理为粉末状,装入样品槽,为防止样品脱落,可加盖载玻片;将样品槽装入样品室,盖好样品室盖子。 四、测试发射光谱: 6、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 7、设置单色器(M:设置激发光波长(如460nm、发射波长扫描范围(如470nm-700nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 8、设置检测器(Detector:Formulars选择公式S1。 9、点击右下角“RUN”开始测量; 五、测试激发光谱:

10、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Excitation”。 11、设置单色器(M:设置监测波长(如625nm、发射波长扫描范围(如380nm-500nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 12、设置检测器(Detector:Formulars选择公式S1/R1。 13、点击右下角“RUN”开始测量。 六、测试量子产率: 14、线缆连接积分球:将积分球有指示箭头的一端连接激发口,另一端连接发射。 15、装样:将样品处理为粉末状,装入标准白板样品槽,并加盖石英片;将样品槽装入积分球样品台,先推上层样品台,卡好后,推入下层样品台。 16、点击软件菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 17、设置单色器(M:设置激发光波长(如460nm、扫描范围(如380nm-700nm和狭缝宽度(一般设置1nm。 18、设置检测器(Detector:选中暗电流选项和Correction S1选项,Formulars选择公式S1c,积分时间设置为1s(时间设置越大,扫描越慢。 19、点击右下角“RUN”开始扫描。 20、测试空白样品。测试方法如16-19,样品台内放置标准白板。 21、计算量子产率:点击“QY”按钮,在出现的对话框中设置如下参数:○1找校正谱(在D盘下“校正谱图”,选择固体校正谱;○2导入将要计算的样品谱图;○3导入空白样品谱图;○4输入需计算的激发与发射光谱起始与终止波长。 22、点击确定开始计算。

光谱仪原理

光谱仪原理 光谱仪是将复杂的光分解成光谱线的科学仪器,一般主要由棱镜或衍射光栅等构成。光谱仪可以检测物体表面所反射的光,通过光谱仪对光信息的抓取、以照相底片显影,或通过电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光谱仪不仅可以测量可见光,还可以检测肉眼不可见的光谱,比如利用光谱仪将阳光分解,并按波长排列,可以看到可见光只占了光谱的很小的一个范围,其余都是肉眼不可见的光谱,如红外线、微波、紫外线、X射线等等。 总体来说,光谱仪是利用光学原理,对物质的组成成分和结构进行检测,分析和处理的科学设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,其广泛应用于冶金、地质、石油化工、医药卫生、环境保护等部门,也是军事侦察、宇宙探索、资源和水文勘测所必不可少的仪器。 根据现代光谱仪的工作原理,可以将光谱仪分为两大类,即经典光谱仪和新型光谱仪。经典光谱仪是依据空间色散原理来工作,而新型光谱仪则是依据调制原理,因此经典光谱仪都是狭缝光谱仪器,而调制光谱仪则由圆孔进光,它是非空间分光的。下面简单介绍一下经典光谱仪的原理。 由于光谱仪要测量所研究光(即所研究物质的反射、吸收、散射或受激发的荧光等)的光谱特性,如波长、强度等,所以,光谱仪应具有以下功能:一、分光:按一定波长或波数把被研究光在一定空间内分开;二、感光:按照光信号强度,将其转化成相应的电信号,从而测量出各个波长的光的强度,以及光强度随着波长变化的规律;三、绘谱线图:记录保存分开的光波及其强度按波长或波数的发布规律或显示出对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。下面是经典光谱仪的一张结构示意图: 一、光源和照明系统。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光谱仪研究对象就是光源;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)照射在研究物质上,光谱仪测量研究物质所反射的光,因此为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统。 二、分光系统。分光系统是任何光谱仪的核心部分,一般由准直系统、色散

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

空间遥感短波红外成像光谱仪的光学系统设计

第31卷第12期2009年12月 红外技术 InfraredTechnology Vbl.31NO.12 Dec.2009空间遥感短波红外成像光谱仪的光学系统设计 王欣,杨波,丁学专,刘银年,王建宇 (中国科学院上海技术物理研究所,上海200083) 摘要:设计了一种短波红外成像光谱仪的光学系统。它采用离轴透镜来校正大视场像差,避免了采用大12径同心透镜,降低了大12径透镜获取难度和加工要求,同时校正了狭缝弯曲和畸变;采用两个离轴非球面反射镜作为准直和会聚光学元件,补偿了与波长相关的狭缝弯曲,并减小了残余像差;采用一个色散棱镜来修正非线性色散,满足了光谱分辨率要求,在棱镜背面镀反射膜,简化了结构,减轻了重量。最后给出了各个通道的光谱非线性和光谱弯曲结果。 关键词:短波红外成像光谱仪;离轴校正透镜;色散棱镜;光谱非线性;光谱弯曲 中图分类号:TN216文献标识码:A文章编号:1001—8891(2009)12-0687—04 TheOpticalDesignofShortwaveInfraredImagingSpectrometerinSpaceWANGXin,YANGBo,DINGXue—zhuan,LIUYin—nian,WANGJian—yu (ShanghaiInstituteofTechnical&Physics,theChineseAcademyofSciences,Shanghai200083,China)Abstract:Thispapergivesabriefintroductionabouttheopticalstructureoftheshortwaveinfraredimagingspectrometerusedinspace.Thissystemadoptsanoff-axisleninordertoadjustlargefield aberration.Thissystemavoidslargediameterconcenterlensandtheproductiondifficultyisdecreased.Twooff-axisasphericmirrorswhichcompensatespectralcurveareusedtocollimateandfocusbeam.Oneprismcorrectsnonlineardispersionandmeetstherequestofspectralresolution.Reflectioncoatingismadeintherearsurface.ThesystemissimplifiedandhasalightWeight.Finallytheresultofspectralnonlinearandcurvedataisshowed.Keywords:shortwaveinfraredimagingspectrometer;off-axiscorrectionlen;dispersionprism;spectralnonlinear;spectralcurve 引言1短波红外成像光谱仪的光学结构设计 成像光谱仪能够同时获取观测目标的空间几何信息和光谱信息,具有独特的信息获取和特征识别能力。它作为一种重要的对地观测手段,在国民经济、科学研究诸多领域有着广泛的应用前景,另外还具备战略战术侦察能力…。 在设计整个成像光谱仪中,光学系统设计决定仪器的最后性能12l。短波红外光谱仪的光学系统由准直光学系统、色散元件、成像光学系统三个部分组成。相对OASISTM和其它棱镜分光结构【4J,色散元件选择采用一个棱镜分光,满足了光谱非线性的要求,在棱镜背面镀反射膜,取消了利特罗反射镜;离轴校正透镜的采用,调节了光谱仪的畸变,避免了OASIS采用大口径透镜同时穿插在准直光束和色散光束中15J,减小了大口径透镜的制造难度。 短波红外光潜仪的光学系统与离轴三反望远镜相结合,可以完成在1.40视场下,对l~2.5¨m(即短波红外波段)色散后的64个波段分谱段成像。系统的主要指标如下: 光谱范闹:1~2.5Um; 物方数值孔径:0.2; 色散范围:1.92InlTl; 平均光谱分辨率:23.4am; 光谱弯曲:<1个像元(像元尺寸为30um); 变焦比:0.8; 入射狭缝尺寸:19×0.038mm; 畸变:小于5%o; 光学效率:>0.45。 1.1色散元件的选择 收稿日期:2009-09—151修订日期:2009—11-24. 作者简介:王欣(1977一)。女,陕西杨凌人,博上研究q三,上要从事航天遥感红外成像光学系统方面的研究工作。 基金项目:国家863项目 687万方数据

荧光光谱仪操作规范

XXX有限公司 荧光光谱仪操作规范文件编号 :WI-ZL-389 版本/版次: A/2 页次:1/1 1.目的 为保证使用者正确的操作,以达成仪器之正确使用维护。提高仪器的使用寿命,特制定此规范。 参考资料:《Ux220 WorkStation V6.0使用说明书》 2.使用环境: 温度:15℃-25℃ 湿度:30-80%RH 3.仪器说明: 荧光光谱仪由测试仪主机,电脑及测试软件,测试结果输出的打印机组成。 4. 荧光光谱仪的操作方法: 4.1打开仪器电源:测试主机电源、电脑电源; 4.2开启操作程序Ux220 v6.4; 4.3开机预热:打开“设置X光管”窗口,勾选“打开高压电源”及“慢速升管压管流”,确定即可; 4.4用银校正片进行校正,校正不成功重新校正; 4.5输入样品信息、选择合适基材; 4.6将样品放入样品室,确认样品信息、测量次数无误后点击开始测量; 4.7测量完成输出报告并把报告存档。 5.注意事项: 5.1本仪器只允许经过专业培训并有上岗证的人员操作。 5.2本仪器只能检测均匀且颜色单一的物质,如导线,必须把铜丝与绝缘外皮分别进行检测;必须确保样 品厚度在2-3mm以上,若厚度不足可堆叠数个样品至适当厚度;若粒状样品其粒径大于5mm可直接进行测量,若粒径小于5mm则将样品放置样品杯中,尽量不要留下空隙且样品厚度要有2-3mm。 5.3银片校正时银片金属面朝下。 5.4关机时先降管流管压,再关程序,最后关电源; 5.5“Running”指示灯亮时,禁止打开仪器样品室的盖,以免X射线辐射对人体造成危害。 5.6测试大件样品样品室盖无法关闭时,仪器附件人员必须远离仪器三米以外,待延时灯闪烁10秒后 仪器开始测试,待延时灯(也叫做测量指示灯)熄灭后,人员方可靠近。

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

布鲁克XRF荧光光谱仪说明书 11-SampleDef-样品定义

SAMPLEDEF 目录 1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 1.1.2 使用几个DEF文件 1.1.3 在SPECTRA plus数据里样品定义表的互动1.2 启动SAMPLEDEF 2 使用SAMPLEDEF 2.1 列的管理 2.1.1 创建新列 2.1.2 在列表里工作 2.1.3 设置列的选项 2.2 定义列的类型 2.3 选择数据类型 2.3.1 指定列内容的数据类型 2.3.2 设置为数字数据类型的选项 2.3.3 设置为字符数据类型的选项 2.3.4 设置为组合数据类型的选项 2.3.5 设置为字符串数据类型的选项 3 教材:使用SAMPLEDEF 设置标准样品定义表步骤一启动SAMPLEDEF 步骤二创建位置列 步骤三创建样品列 步骤四创建方法列 步骤五创建SSD-文件列 步骤六创建样品颜色 步骤七创建样品尺寸列 步骤八创建Sample-ID-样品编号列 步骤九创建制样方法列 步骤十创建类型列 步骤十一保存和测试样品定义表 步骤十二从LOADER运行样品定义表 索引

1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 我们可以通过LOADER程序把样品交付到测量程序。为此,需建立样品与进样器位置、测量程序、样品编号之间的联系,以便日后查询数据。还可以增加其他参数(如样品的稀释比、流水号等等)。在SPECTRA plus,这些样品信息都在SampledDef里定义。 输入界面,即:样品定义表里的各个列,是在扩展名为DEF的文件里定义的。这些DEF文件可以在SAMPLEDEF创建。 1.1.2 使用几个DEF文件 如何建立样品与仪器的联系有很多不同的方法,最简便的方法是接近实验室的实际工作,下面举例说明: 1 样品从不同的工厂送来,并且需要区别,测量方法可以在已建立的方法里选,等等; 2 不同班次的工人用相同的分析方法测量同样的样品,只需要让仪器知道需要测量的样品 在进样器的位置。 当然,很多实验室需要进行上述两样的工作,甚至更多。这就是为什么实验室需要多个样品定义表。 特定的样品定义表(DEF 文件)可以保存选项,从而避免输入错误。如:样品类型强制规定为液体,就可以避免在真空光路测量液体样品。 标准的样品定义表是随SPECTRA plus交付的,(Routine.def 在\Libraries\MeasMethods\)。这个表是通用的表,可以在SAMPLEDEF里进行个性化设定。

光谱仪的分类

光谱仪的种类很多,分类方法也很多,根据光谱仪所采用的分解光谱的原理,可以将其分成两大类:经典光谱仪和新型光谱仪。经典光谱仪是建立在空间色散(分光)原理上的仪器;新型光谱仪是建立在调制原理上的仪器,故又称为调制光谱仪。 经典光谱仪依据其色散原理可将仪器分为: 棱镜光谱仪 衍射光栅光谱仪干涉光谱仪 根据接收和记录光谱的方法不同,光谱仪可分为: 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的经典光谱仪;另一类是基于调制原理分光的新型光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、高利通拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。 看谱仪摄谱仪 光电直读光谱仪光电光谱仪光电单色仪分光光度计根据光谱仪器所能正常工作的光谱范围,光谱仪可分为: 真空紫外(远紫外)光谱仪(6200)紫外光谱仪(185400)可见光光谱仪(380780)近红外光谱仪(780μ)红外光谱仪(2.550μ)远红外光谱仪(50μ1) 根据仪器的功能及结构特点,光谱仪可分为下列类型: 1、单色仪 平面光栅单色仪 凹面光栅单色仪 棱镜单色仪双单色仪 2、发射光谱仪 火焰光度计看谱仪摄谱仪光电光谱仪谱线测量光谱仪 3、吸收光谱仪 真空紫外分光光度计可见分光光度计紫外可见分光光度计 双波长分光光度计红外分光光度计原子吸收分光光度计 4、荧光光谱仪 原子荧光光度计荧光光度计 荧光分光光度计荧光检测计 5、调制光谱仪

布鲁克XRF荧光光谱仪说明书 3-Getting Started-总体介绍

目录 1 安装SPECTRA plus 2 使用 SPECTRA plus第一步2.1 连接 2.2 无标样测量 2.2.1 预装的测量方法 2.2.2 特殊测量方法 2.2.3 分析结果的重新评估 2.3 绘制校准曲线 2.4 特殊应用 3 登录 3.1 登录的目的 3.2 操作人员管理 3.3 登录和退出 3.4 在不同的Windows 用户中登录

1 安装SPECTRA plus 安装必须在管理员界面里进行。 安装程序需以管理员权限进入,以安装某些动态资料库(DLL 文件),特别是这关系到数据库的管理,和某些注册钥匙,如在.DEFAULT 文件夹。 如果没有进入管理员界面,请询问网络管理员取得此资格。 安装时,请参考”Installation notes”(它是与SPECTRA plus分开的另一文件),和安装光盘里的READMEFIRST.TXT 文件、INSTALLATION.PDF 文件。 安装术语 ? Recalibration data diskette 重校正数据软盘: 是随光谱仪一起交付的软盘,包括与用户光谱仪相对应的特定文件:硬件配置文件和谱线库。在首次安装时必须安装,但不要用于升级:因为在使用了一段时间后,谱线库里会加进用户自己定义的谱线,硬件配置文件也可能进行了修改,如果重新安装时再使用重校正数据软盘里的数据,仪器就回到了出厂时的状态,用户加进去的内容会被删除,。 ? Master diskette 母盘: 是随初始SPECTRA plus软件包一起交付的软盘,内有信用证。在第一次安装时信用证被转移到硬盘。如果您想卸载软件,如,将软件安装至另一台电脑或其他目录,不要忘了把信用证转移回母盘,然后再转安装至其他地方。如果只是软件升级,没有改变目录,建议把信用证留在硬盘以避免误操作。 信用证的管理,见L_WIZARD程序。 快捷键图标程序手册?章 无L_WIZARD.EXE 11 只是在安装或卸载SPECTRA plus软件时才需要转移信用证,在通常情况下不要安装或卸载SPECTRA plus软件,也就不要用L_WIZARD去转移信用证。

光谱仪基础知识

第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。 定义单位 α - (alpha) 入射角度 β - (beta) 衍射角度 k - 衍射阶数整数

定义单位 n - 刻线密度刻线数每毫米 D V - 分离角度 μ - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ 0 = λ/μ 1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

布鲁克XRF荧光光谱仪说明书 2-应用SPECTRA plus作你的第一条回归曲线

应用SPECTRA plus作你的第一条校准曲线目录 应用SPECTRA plus作你的第一条校准曲线 简介 建立校准曲线 了解校准曲线工具箱 开始作校准曲线 Si KA1 HS-Min的校准曲线 如何检查计算的浓度是否被接受 P KA1-HS-Min 的校准曲线 S KA1 HR-Min的校准曲线 V KA1-HS-Min的校准曲线 Cr KA1-HS-Min的校准曲线 Mn KA1-HR-Min的校准曲线 V KA1 HS-Min的校准曲线 Ni KA1-HS-Min的校准曲线 Cu-KA1-HS-Min的校准曲线 漂移校正/重校正 低合金未知样品的测量 使用Results Monitor功能 监视分析结果 查询结果 转移结果 再评估测量数据 结论

简介 本教学课程包括下列内容,以便使你熟悉制作校准曲线的过程: l建立校准曲线 l组织材料 l输入标准浓度到数据库 l定义测量方法 l了解校准曲线工具 l校准已测量的低合金样品 l用低合金曲线测量未知样品 l使用结果管理器 按照这一部分的介绍,你可以一步一步地制作你的第一条校准曲线。使用一套BCS低合金标样,SPECTRA plus谱线库中预定义的谱线及扫描测量模式,你的任务是绘制低合金样品的校准曲线。由于所有的样品已经在德国Bruker AXS 公司测量过,不需要在你的仪器上进行实际的测量。为了得到所显示的相同结果,必须仔细地按照所有步骤进行。

建立校准曲线 从SPECTRA plus程序或桌面打开Quantification Editor (FQuant) 程序。 图 1 桌面上的Spectra Plus程序文件夹

移动式X射线荧光光谱仪使用说明

移动式X射线荧光光谱仪使用说明 型号规格:EPX-50 生产厂家:美国Innov-X System公司 购置日期:2010年3月 性能指标:本仪器为低能量色散X射线荧光光谱仪,由X光源(X射线光管,Ta(W)阳极,50KV,10W能量)、滤光片(5个滤光片,3光束连续自动测试)、检测器(电制冷的高分辨率Si-Pin检测器,在5.95KeV Mn Kα<190 eV FWHM, 温度范围:-10℃至50℃)组成。适合大规模样品的筛查分析、现场应急污染初步检测和实验室固体样品的定性半定量分析(含量大于0.01%的重元素可以进行定量分析)。 应用范围:可一次分析土壤、沉积物、矿物、淤泥、固体废弃物等固体粉末及金属、合金样品中15P-92U的25个元素,具体为Cr, Pb, As, Hg, Se, Ag, Cd, Ba,Tl, Cu, Zn, Ni, Sb,V, Mn, Fe, Co, Sn, Rb, Zr, Sr, Mo,P, S, Cl, K, Ca。(Na,Mg,Al,Si等轻元素不能检测)。分析速度快,30~120秒内即可完成样品中以上元素的测试。 -1 操作方法: 1、将仪器自带的变压器一端接到220V 电源上,一端接到仪器上,将220伏电 压转换为18伏后打开仪器。 2、输入用户名称和密码进入操作界面。 3、用仪器自带的316合金将仪器标准化,使仪器处于最佳工作状态。 4、样品测试:将固体粉末样品装入不含氯的透明塑料袋内,打开盖子并将样品 袋轻轻放在测试窗上面,关闭样品仓盖,点击Mode选择测量模式(Soil 3 Beam,Mining,Analytical,Soil),点击start 开始测量。多个样品依次进行测试,数据自动按照标准样式保存,结果显示在电脑屏幕上。 5、数据导出:用格式化的U 盘将测量数据导出,结果还可以报告形式打印出来。

光谱仪工作原理+图

海洋光纤光谱特有的信息 1.光谱仪的工作原理 CCD探测器型的海洋光学光谱仪的工作原理如动画展示。光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。 光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。同时,光能被累积,通过A/D转换数据被读出移位寄存器。数字化的数据最后显示在计算机上。 2.光学分辨率

单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素: 1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。 2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。 如何估算光学分辨率(nm,FWHM) 2. 1. 确定光栅光谱范围,找到光栅的光谱范围通过: 选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。(有想详细了解的,烦请光纤专家予以解释) 2. 2. 光栅光谱范围除以探测器像元数,结果为Dispersion。Dispersion (nm/pixel) = 光谱范围/像元数 探测器像元素见图2

3.像素分辨率 下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。尽管狭缝入射宽度不同,但高度一致(1000um)。有想深入了解的版友直接向专家提问。 4.计算光学分辨率(nm) Dispersion (Step 2) x Pixel Resolution (Step 3) 举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM) 5.海洋光纤光谱仪的系统灵敏度 海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。他们提供一种更有用的方法:NIST-traceable 辐射标准(LS-1-CAL),它可以用能量项来标准化光谱数据。在他们的SpectraSuite操作软件中,可以使用“I”模式下相对能量分布(0到1)或绝对值(以 W/cm2/nm或流明或勒克斯/单位面积为单位)来标准化光谱数据。对透射或反射实验,可以使一个物理标准来标准化(归一化)数据如利用空气中的传播或漫射白板来确定。 6.海洋光纤光谱解决影响光谱幅度值的因素

EI操作手册稳态瞬态荧光光谱仪(FLS 920)操作说明书

Edinburgh Instrument FLS920 User Manual

目录 一、开机步骤 (2) 二、实验操作 (4) 1、实验前准备 (4) 2、稳态实验 (6) A、发射光谱实验 (6) B、激发光谱实验 (9) C、同步谱 (10) D、Map (11) E、偏振光谱 (12) 3、低温实验 (17) A、液氮冷却系统(Oxford) (17) B、ARS冷却系统 (19) 4、样品衰减操作 (22) A、纳秒、皮秒级衰减 (22) 纳秒灯为光源 (22) 激光器为光源 (27) B、微妙、毫秒级衰减 (29) 三、数据处理 (32) 1、数据一般处理 (32) 2、稳态光谱 (33) 3、瞬态光谱 (33) 四、附录 (36) 1、氢灯清洗方法 (36)

一、开机步骤 1、打开总电源(开之前保证所有仪器开关关闭) 2、开启PH1 3、开启PMT制冷电源CO1 4、开启光谱仪控制电源CD920(控制盒)或样品室下方的控制板电源 此为控制盒 此为控制板 5、根据需要的光源开启氙灯或是其它灯源电源 此为氙灯电源 此为氢灯电源

6、开启电脑,同时将谱仪样品室上方盖子移开。待进入操作系统后进入F900软件。

二、实验操作 1、实验前准备 在做实验前有几点需要注意: A 、 对于红敏PMT (R928),其制冷必须达到一定温度,一般为室温-40℃左右。待C O 1 显示在-17℃左右的时候,在软件的S i g n a l R a t e 窗口里观察E m 1的C P S 读数显示。 若其读数维持在50C P S 以下,则表明读数正常,P M T 制冷达到工作状态,可以用该探测器进行实验。 Fig.2.1 B 、 对于近红PMT (5509),其必须准备以液氮杜瓦罐(约15升左右),将制冷部件的 管子插入罐中,开启制冷电源 Fig.2.2 制冷电源 杜瓦罐 通气管道

荧光分光光度计的简单使用说明

荧光分光光度计 Fluorescence Spectrometer 国别厂家:日本岛津公司 仪器型号:RF-5301PC 基本原理: 主要技术指标: 灯源:150 W Xe灯 单色器:闪耀式全息光栅,F2.5刻线1300条/mm 波长范围:220 900 nm. 波长精度:±1.5 nm, 分辨率:1.0 nm 狭缝宽:1.5, 3, 5, 10, 15, 20 nm 灵敏度: S/N比150以上(带宽5 nm、水拉曼峰时) 测定方式:荧光光谱测定、定量测定、时间过程测定 软件功能:10通道显示,数据RSC转换, 谱图自动找峰,不同谱图加减乘除, 谱图倒数、导数、常用对数转换等。 主要功能: 固体和液体的激发光谱、发射光谱和同步荧光光谱;荧光物质的定量分析。

使用方法: 1.将荧光光度计的右侧Xe灯开关置于“ON”的位置, 再打开电源开关和电脑电源。 2.双击电脑上的RF-5301PC图标, 静等仪器自检完成,出现喀嚓声后, 显示RF-5301P窗 口。 3.预热:开机预热20分钟后才能进行测定工作。 4.新建文件夹:在Data文件夹里新建本次所做实验的子文件夹 5.启动RF-5301PC后在Acquire Mode中选择欲分析的项目。 6.设定参数:根据测量方式在Configure的Parameter里设定合适的参数。 7.置入样品:将已经装入样品的四面擦净后的石英荧光比色皿放入样品室内试样槽后, 将 盖子盖好。 8.扫描:参数设定完毕后, 点击窗口右下角的“Start”图标,开始扫描, 扫图结束后输入文 件名将文件储存。 9.保存:在“File”中的“Save Channel”对曲线进行保存。 10.转换文件:在“File”的“Data Translation”里单击要转换的“ASCⅡ”格式或者“DIF” 格式。 11.关机:测试完毕后,关闭电脑。之后要先关闭氙灯(Xe灯开关置于“Off”位置), 散热 20分钟后, 再关闭电源开关。 注意事项: 1.开机时,请确保先开氙灯电源,再开主机电源。每次开机后请先确认一下排热风扇工 作正常,以确保仪器正常工作,发现风扇有故障,应停机检查。 2.使用石英样品池时,应手持其棱角处,不能接触光面,用毕后,将其清洗干净。 3.当操作者错误操作或其它干扰引起微机错误时,可重新启动计算机,但无须关断氙灯电 源。 4.光学器件和仪器运行环境需保护清洁。切勿将比色皿放在仪器上。清洁仪器外表时,请 勿使用乙醇乙醚等有机溶剂,请勿在工作中清洁,不使用时请加防尘罩。 5.为延长氙灯的使用寿命, 实验完毕后要先关闭Xe灯, 不关电源主机电源(光度计的右 侧),等其散热完毕后再关闭电源。

光谱仪

光谱仪 光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA(OpticalMulti-channelAnalyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测量准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,

特别适应于对微弱信号,瞬变信号的检测. 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分: 1.入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。 2.准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。 3.色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。 4.聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。 5.探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。 光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。

X射线荧光光谱仪操作步骤

1.开机顺序 1.1 打开空压机电源,检查二次压力为5.0bar。 1.2 打开水冷机电源,并调节水流压力至4 bar(4公斤)。 1.3 打开P10气体钢瓶主阀,设定二次压力为0.7-0.8bar。 1.4 如果配置了冲氦系统,打开He气钢瓶,设定二次压力为0.8bar。 1.5 打开主电源开关(配电柜空气开关),使主机处于待机状态。 1.6 按下“POWER ON”开关,使主机处于“开机” 状态。 1.7 开计算机,运行分析软件,用户名及密码为“SUPERQ”。 1.8 打开光谱仪状态图,检查仪器真空度(小于100Pa?),P10气体流量(1L/Min左右)。 1.9 转动HT钥匙,打开高压,仪器自动设定高压为20kv/10mA,同时启动循环水。 A检查水流量,内循环水(3-5L/Min),外水(1-4L/Min)。 B等待仪器内部温度稳定(30度)后可正常分析。 2. 停机 2.1 逐步降低高压到20kv/10mA(或运行Sleep程序) 。 2.2 等待3分钟后,转动钥匙关闭HT高压。 2.3 关闭SuperQ,使分析软件与主机脱机。 2.4 按下“Standby”开关,仪器处于待机状态。 2.5 如晚上及周末不使用仪器,建议设定高压为20kv/10mA低功率状态, 不要关机。 3. X-Ray Tube 老化 如主机停机超过24小时,需对X-Ray Tube 进行老化处理。

3.1 手动老化 开机后运行TCM2403按以下顺序进行: 20kv/10mA→30kv/10mA→40kv/10mA→40kv/20mA→50kv/30mA→60kv/40mA→60kv/50mA 如停机时间大于24小时小于100小时,每步停留时间为1分钟。如仃机时间大于 100 小时,每步停留时间为5分钟。 3.2 自动老化(Breeding) A.开机后运行TCM2403,如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 B.启动XRF system setup,运行System菜单下的Tube breeding, 如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 C.在光谱仪状态图,以手动方式进行老化。 4. P10气体瓶更换 为了防止气瓶内的杂质进入分析仪, 建议在瓶压为10个气压时即更换新气。4.1 逐步把高压降至20kv/10mA,等待3分钟后,关闭高压。 4.2 设定分光室介质为空气状态。 4.3 关闭钢瓶主阀门,取下减压阀。 4.4 更换新的P10气体瓶。 4.5 快速打开气瓶主阀并迅速关闭以冲洗接口。 4.6 安装减压阀,打开主阀门,检查二次压力为0.7-0.8bar。(通常为0.75bar) 4.7打开主机电源 4.8在谱仪状态图中点Start Detector Gas按钮启动P10气,

相关文档
最新文档