天津大学无机化学课件第五章原子结构与元素周期性

合集下载

无机化学---第五章 原子结构与元素周期律

无机化学---第五章   原子结构与元素周期律




s 轨道 球形

p 轨道

哑铃形
(3) 磁量子数m ( magnetic quantum number) ◆ 与角动量的取向有关,取向是量子 化的
◆ m可取 0,±1, ±2……±l
◆ 值决定了ψ角度函数的空间取向
◆ m 值相同的轨道互为等价轨道
The allowed values for magnetic quantum number, m
(1)氢原子中电子所处的轨道不是任意的,而是若干符合量 子化条件的、具有特定能量的轨道,这种轨道叫做“定态轨 道”。当电子在定态轨道上运动时,不放出能量也不吸收能 量。
所谓量子化条件就是指电子沿圆形轨道绕核运动的角动 量,必须是某一特定值(h/2π )的整数倍:
p = mvr = n h
2
该关系式叫做玻尔的量子化规则。式中m为电子的质量, v电子的运动速度,r是定态轨道半径,mvr是电子绕核运动 的角动量,n是正整数。
电子衍射
1927, 美国 C. Davisson and L. Germar “几率波”
[例]: 子弹,m = 2.5 × 10-2 Kg, v = 300 ms-1; 电子,me = 9.1×10-31 Kg, v = 5.9×10-5 ms-1;
波长: 子弹 = h / (mv) = 6.6×10-34 / (2.5 × 10-2 300)
L
m
number of orbital
0(s)
0
1
1(p)
+1 0 -1
3
2(d)
+2 +1 0 -1 -2
5
3(f)
+3 +2 +1 0 -1 -2 -3

天津大学无机化学原子结构与元素周期性全省公开课一等奖全国示范课微课金奖PPT课件

天津大学无机化学原子结构与元素周期性全省公开课一等奖全国示范课微课金奖PPT课件
可以观察到不连续的四条谱线
Hδ Hγ βH
aa
αH 为带状光谱
nm 410.2 434.1 486.1
2024/2/18
无机化学
656.3
波尔氢原子模型
氢原子中的电子在原子核周围有确定半径 和能n越量小的,圆离形核轨越道近中, 轨运道动能。量电越子低在,这些轨 道上运动不吸势收能能值量越或负放出能量
无机化学多媒体电子教案
第五章 原子结构和元素周期性
第一节原子与元素
第一节 原子与元素
2024/2/18
无机化学
5-1-3 原子轨道能级 氢原子光谱
日光通过棱镜分光,可得到红、橙、黄、 绿、青、蓝、紫连续变化的谱带
5-1-3 原子轨道能为连级续光aa谱
装有低压高纯H2(g)的放电管所发出的光, 通过棱镜分光后,在可见光区波长范围内,
2024/2/18
无机化学
电子云角度分布图与原子轨道角 度分布图相似,但有两点不同: (1)原子轨道分布图有正、负之分,而 电子云角度分布图均为正值; (2)电子云角度分布图比原子轨道角度 分布图瘦些,这是因为Y值小于1,所 以|Y|2更小。
2024/2/18
无机化学
2024/2/18
3d z2
主量子数(n) 1
2
3
4
5
电子层:第一层 第二层 第三层 第四层 第五层
电子层符号: K L
MN
O
n值越小,该电子层离核越近,其能级越低。 n值越大,该电子层离核越远,其能级越高。
2024/2/18
无机化学
2. 副量子数(l)
n值确定后,副量子数(l)可为零到(n-1) 的正整数。其中每一个l值代表一个电子亚层, 也代表原子轨道的一种形状。

天津大学无机化学课件0绪论52页PPT文档

天津大学无机化学课件0绪论52页PPT文档

(介观)
宏观
由宏观到微观,定性到定量,稳定态到亚稳定态,经验上升到理 论并用理论指导实践,进而开创新的研究。
哪些是关键性的问题呢?
化学反应的性能,化学催化,生命过程中的化学问题等。总之,
化学已成为中心科学,与21世纪科学)都有关。
8
1、化学研究的对象
原子 atom
5
1 化学的研究对象 绪论 2 化学的主要分支
3 怎样学习化学
6
什么是化学?它研究的对象是什么?如何才能学好化 学?这是开始学化学首先要解决的问题。下面就从回答这些 问题来开始我们的化学学习。
一.化学研 究的物质
物质是不依赖于人们的感觉而存在并且可以 被人们的感觉所认识的客观实在。简而言之,物 质是客观存在的东西。
化学研究的物质 一般是指实物
具体地 说物质 包括实 物和场
具有静止质量、体积、占有空间的
实物 物体。如书桌、铁、木材、水、空
气等。
场 没有静止质量、体积、不占有空间。
如电场、磁场、光、声音。
7
物质结构层次:
质子
夸克
原子核
中子 电子
原子 (离子)
纳米 材料
宇宙
(宇观)
分子
单质 化合物
星体
微观 当今化学发展的趋势大致是:
2)化学物质(chemical substance) 不包括物质的另 一基本形态---场。化学研究的是以间断形式存在的物质形 态,而场是以连续形式存在的物质形态,属物理学的研究 范畴。
3)组成(form)包括定性组成和定量组成。弄清物 质的定性组成应确证它含有哪些元素,物质的定量组成包 括各元素的质量百分比、原子个数比、化学式及分子式。
1学时 3学时

大学无机化学课件完整版

大学无机化学课件完整版

研究无机物的合成方法、 制备工艺以及新材料的探 索与开发。
研究无机物的定性分析、 定量分析以及仪器分析方 法与技术。
02 原子结构与元素 周期律
原子结构模型
构模型,认 为原子是一个带正电的球体 ,电子像西瓜籽一样镶嵌其 中。但该模型无法解释α粒子
散射实验。
提出原子核式结构模型,认 为原子由带正电的原子核和 带负电的电子构成,电子围 绕原子核运动。但该模型无 法解释原子的稳定性和电子
盐类的热稳定性
分析盐类在高温下的分解反应及其产 物,探讨热稳定性的影响因素。
盐类的化学反应
介绍盐类与酸、碱、金属等物质的反 应及其规律。
配合物及其性质
配合物的基本概念
阐述配合物、配体、中心离子等基本概念; 介绍配合物的命名原则。
配合物的结构
分析配合物的空间构型和化学键性质,如配 位键的形成和性质。
键更稳定。
金属键及金属晶体
金属键的形成
金属原子间通过自由电子的相互作用形成的化学键称为金属键。
金属晶体的结构
金属晶体中金属原子通过金属键连接,形成紧密堆积的结构,具有 良好的导电、导热和延展性。
金属键的强度
金属键的强度与金属原子的电负性、原子半径及价电子数有关,电 负性越小、原子半径越大、价电子数越多,金属键越强。
近代无机化学
自17世纪中叶开始,随着实验方法和分析技术的发展,无机化学逐渐从炼金术中分离出 来成为一门独立的学科。拉瓦锡、道尔顿等科学家为近代无机化学的奠基人。
现代无机化学
20世纪以来,随着量子力学、结构化学等学科的发展,无机化学在理论和应用方面都取 得了巨大的进展。如晶体结构测定、化学键理论、配位化学等领域的研究为现代无机化学 的发展奠定了基础。

(完整版)无机化学(天津大学版)

(完整版)无机化学(天津大学版)

(完整版)⽆机化学(天津⼤学版)第⼀章化学反应中的质量关系和能量关系[学习指导]1.“物质的量”(n)⽤于计量指定的微观基本单元或其特定组合的物理量,其单位名称为摩[尔],单位符号为mol。

2.摩尔质量(M) M = m/n3.摩尔体积(V m)V m = V/n4.物质的量浓度(c B)c B = n B/V5.理想⽓体状态⽅程pV = nRT6.理想⽓体分压定律p= Σp B ;p B = (n B/n)p7.化学计量式和化学计量数O = ΣνB B ;νBB8.反应进度(ξ)表⽰化学反应进⾏程度的物理量,符号为ξ,单位为mol。

随着反应的进⾏,任⼀化学反应各反应物及产物的改变量:Δn B = νBξ9.状态函数状态函数的改变量只与体系的始、终态有关,⽽与状态变化的途径⽆关。

10.热和功体系和环境之间因温差⽽传递的热量称为热。

除热以外,其它各种形式被传递的能量称为功。

11.热⼒学能(U)体系内部所含的总能量。

12.能量守恒定律孤⽴体系中能量是不会⾃⽣⾃灭的,它可以变换形式,但总值不变。

13.热⼒学第⼀定律封闭体系热⼒学能的变化:ΔU = Q + WQ > 0, W > 0, ΔU > 0;Q < 0, W< 0, ΔU < 0。

14.恒压反应热(Q p)和反应焓变(Δr H m)H(焓) ≡ U + pV, Q p= Δr H m15.赫斯定律Q p= ∑Q B, Δr H m= ∑Δr H m(B)B B16.标准状况:p = 101.325kPa, T = 273.15 K标准(状)态:pθ= 100kPa下⽓体:纯⽓体物质液体、固体:最稳定的纯液体、纯固体物质。

溶液中的溶质:摩尔浓度为1mol·L-1标准态下17.标准摩尔⽣成焓()最稳定的单质─────—→单位物质的量的某物质=18.标准摩尔反应焓变()⼀般反应cC + dD = yY + zZ=[y(Y) + z(Z)] - [c(C)+ d(D)]=Σνi(⽣成物) + Σνi(反应物)第⼆章化学反应的⽅向、速率和限度[学习指导]1.反应速率:单位体积内反应进⾏程度随时间的变化率,即:2.活化分⼦:具有等于或超过E c能量(分⼦发⽣有效碰撞所必须具备的最低能量)的分⼦。

无机化学原子结构与元素周期表PPT课件

无机化学原子结构与元素周期表PPT课件
• (3)原子轨道为的空间图象,角度分布的空间图象
作为原子轨道角度分布的近似描述。
• (4)以||2的空间图象——电子云来表示核外空间电
子出 现的概率密度。 • (5)以四个量子数来确定核外任意电子的运动状态。
第22页/共51页
5.2.1 多电子原子轨道能 级
轨道:其电子运动状态 (轨道)可描述为 1s, 2s, 2px, 2py, 2pz, 3s…
子。
• (2)、能量最低原理
• 多电子原子处于基态时,核外电子的分布在不违反泡 利原理前提下,总是尽先分布在能量较低的轨道,以使 原子处于能量最低状态。
• (3)、洪特(Hund)规则

原子在同一亚层的等价轨道上分布电子时,尽可能
单独分布不同的轨道,而且自旋方向相同。
第27页/共51页
如N原子1s22s22p3的轨道表示式
量最低——基态;原子获得能量后,电子被 激发到高能量轨道上,原子处于激发态;
③从激发态回到基态释放光能,光的频率 取决于轨道间的能量差。
h E2 E1 E2 E1
h
E:轨道能量 h:Planck常数
第4页/共51页
Balmer线系
v
3.289
1015
(
1 22
1 n2
)s1
n = 3 红(Hα) n = 4 青(Hβ ) n = 5 蓝紫 ( Hγ ) n = 6 紫(Hδ )
Ψ =f(x.y.z),将直角坐标变为球坐标Ψ(r.θ.φ)然后利用
数学中的变量分离法,将
Ψ=f(r.θ.φ) =R(r)·Y(θ.φ)。
波函数就分成了径向分布部分R(r)和角度分布部分
Y(θ.φ) 。
用角度部分Y(θ.φ)作的图称为原子轨道的角度分布图。

《无机化学》课件——第5章 原子结构和元素周期律

《无机化学》课件——第5章 原子结构和元素周期律

玻尔的原子结构理论 原子的组成
X A 原
Z子
原子核 质子Z个 中子(A-Z)个
核外电子Z个
原子序数=核内质子数=核电核数=核外电子数 原子的质量数(A)=质子数(Z)+中子数(N)
自 然 界 连 续 光 谱
实 验 室 连 续 光 谱
电磁波连续光谱
氢原子光谱(原子发射光谱)
真空管中含少量H2(g),高压放电, 发出紫外光和可见光 → 三棱镜 → 不连续的线状光谱
1.能用四个量子数描述原子中电子的运动状态; 2.能熟练写出1~36号元素的核外电子排布式; 3.能正确分析原子的电子层结构与元素周期表、元素性质之 间的关系。
第一节 原子核外电子的运动状态 第二节 原子核外电子的排布 第三节 元素周期律
第一节 原子核外电子的运动状态
一、核外电子的波粒二象性 二、波函数和原子轨道 三、核外电子的运动状态
l = 1 )在空间有三种不同的取向。
每一种 m 的取值,对应一种空间取向。
y
z
x
m 的不同取值,或者说原子轨道的不同空间取向, 一般不影响能量。3 种不同取向的 2 p 轨道能量相同。
通常把n、l、m都确定的电子运动状态称原子轨道,因 此s亚层只有一个原子轨道,p亚层有3个原子轨道,d亚层 有5个原子轨道,f亚层有7个原子轨道。磁量子数不影响原 子轨道的能量,n、l都相同的几个原子轨道能量是相同的, 这样的轨道称等价轨道或简并轨道。例如l相同的3个p轨道、 5个d轨道、7个f轨道都是简并轨道。n,l和m的关系见表 1-4。
1913年丹麦青年物理学家玻尔(N.Bohhr)提出了原子模型 的假设,被称为玻尔理论。玻尔理论要点如下:
(1)原子中的电子在确定的轨道上运动,这些轨道的能量不随时 间而改变,称为稳定轨道(或定态轨道)。电子既不吸收能量,也不 发射能量。

天津大学无机化学ppt课件下载

天津大学无机化学ppt课件下载
无机化学
Inorganic Chemistry
绪论 1学时 第一章 化学反应中 的质量关系和能量 关系(3学时)
目 录
第二章 化学反应的 方向、速率和限度 (8学时)
第三章 酸碱反应和 沉淀反应(7学时)
§1 化学中的计量 §2 化学反应中的质量关系 §3 化学反应中的能量关系
1学时 1学时 1学时
光 学 纤 维 胃 镜
用光导纤维 做手术,不 用开刀
20/51
F-117是一种单座战斗轰炸机。设计目的是凭隐身性能,突破敌 火力网,压制敌方防空系统,摧毁严密防守的指挥所、战略要地 、重要工业目标,还可执行侦察任务,具有一定空战能力。21/51
近年发现和发明的新物质层出不穷,如球碳、管碳、俄 罗斯套娃、团簇化合物、笼合物等。
§1 镧系元素和锕系元素该素 §2 稀土元素
6/51
1 化学的研究对象 绪论 2 化学的主要分支
3பைடு நூலகம்怎样学习化学
7/51
什么是化学?它研究的对象是什么?如何才能学好化 学?这是开始学化学首先要解决的问题。下面就从回答这些 问题来开始我们的化学学习。
一.化学研 究的物质
物质是不依赖于人们的感觉而存在并且可以 被人们的感觉所认识的客观实在。简而言之,物 质是客观存在的东西。
36/51
(2)炼金术、炼丹时期(公元前后—公元 1500年)
➢ 中国炼丹术的产生有两个原因:一是五行说(五 行无常胜),此为理论基础;二是封建主的贪得 无厌,梦想长生。战国末期有了炼丹术,汉代有 较大发展,唐代达到高潮。当时所谓的丹主要是 三仙丹HgO,丹砂HgS,铅丹Pb3O4等。这些丹 实际上都是剧毒的,许多皇帝因服丹而亡。
1学时 3学时 4学时

大学无机化学经典课件:原子结构

大学无机化学经典课件:原子结构

L
M
N
O
P…
35
2. 角量子数(l): 确定电子运动空间
形状的量子数 l 的取值 :0,1 ,2,3,…,n-1
n
l
1
2
3
4

n
0,
0, 1,
0, 1,
0
电子亚 层符号
0, 1
1, 2
2, 3
2,…,n-1
s
s, p
s, p,d
s, p,d, f
36
l =0, s 亚层, 球形
l =1, p 亚层, 亚铃型
粒子具有波粒二象性的假设。并预言了高速运动的电子的
物质波的波长
= h / P = h / mv
1927年,Davissson和Germer应用Ni晶体进行电子衍 射实验,证实电子具有波动性。
二、 波函数与原子轨道
1.
海森堡的测不准关系 :
测不准原理说明了微观粒子运动有其特殊的
规律,不能用经典力学处理微观粒子的运动,而 这种特殊的规律是由微粒自身的本质所决定的。
率成正比
11
E = h
式中 E 为光子的能量, 为光子的频率,h 为 Planck
常数,其值为 6.62610-34 Js。物质以光的形式吸收或放
出的能量只能是光量子能量的整数倍。 电量的最小单位是一个电子的电量。 电量是量子化的。量子化是微观领域的重要特征,后面我
我们将以上的说法概括为一句话,在微观领域中能量、
为自然数,且 n – 1 l
由解得的 R ( r )、 ( ) 和 ( ) 即可求得波函数
( r,, ) = R ( r ) ( ) ( )
34

无机化学 原子结构与元素周期系 基态原子电子排布 元素性质周期性

无机化学 原子结构与元素周期系 基态原子电子排布 元素性质周期性

3.939 × 10-18 J 8.716 × 10-18 J
Z* = Z - σ
l相同、n不同的轨道中, n值越大,电子出现概率 18 2 2 . 179 10 ( Z ) 最大的区域离核越远,所 E J 2 n 受屏蔽越强,能量越高。
2019/2/15 4
屏蔽参数σ 的大小可由 Slater 规则决定: 将原子中的电子分成如下几组: (1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)… ◆ 位于被屏蔽电子右边的各组, = 0
2、同一电子层的不同亚层( n相同 l 不同)
ns< np< nd<nf
3、能级交错
例: 4s< 3d
3
屏蔽效应和钻穿效应
(1) 屏蔽效应(Shielding effect)
屏蔽效应:由核外 电子云抵消一些核 电荷的作用。
有效核电荷Z*与屏蔽常数σ
ee+2
He
e+2
2-σ e-
He+
假想 He
He 移走一个 e 需 He+移走一个 e 需
2s 电子云径向分布曲线除
主峰外 , 还有一个距核更近的 小峰. 这暗示, 部分电子云钻 至离核更近的空间, 从而部分 回避了其他电子的屏蔽.
(2)钻穿效应 指外部电子进入原子内部空间,受到核的较强的吸引 作用。
◆ 轨道的钻穿能力通常有如下顺序: n s > n p > n d
> n f,导致能级按 E(ns) < E(np) < E(nd)< E(nf ) 顺序分裂。
— —— —— —— —— —
2 p p p x 2 y 2 z
↓ ↑↓ ↑ ↑↑↑

无机化学第5章

无机化学第5章
概率 = | |2 V 即波函数| |2 代表在核外空间某处找到电子的概率
电子云图是概率密度| |2 的形象化说明。黑点密集的
地方, | |2 的值大,概率密度大;反之概率密度小。
32
电子云的角度分布
z z z x y
s y
px y y
dxz z
y
_
x
33
||2代表电子的概率密度。
每一个波函数代表一个原子轨道。
原子轨道——原子中一个电子的可能的空间运动状态。
注意:此处提到的原子轨道与 Bohr 原子模型所指的原
子轨道截然不同。 见书P127。
27
2. 波函数的径向部分和角度部分
将直角坐标三变量 x,y,z 变换成球坐标三变量 r,, 。 OP 的长度 (0—) OP 与 z 轴的夹角 ( 0 — ) OP 在 xoy 平面内的投影 OP′ 与 x 轴的夹角 ( 0 — 2 ) r P 根据 r,, 的定义,有 x = r sin cos y = r sin sin z = r cos r2 = x2 + y2 + z2
概率 = 体积×概率密度
23
二、 电子云
电子云——即电子在核外空间出现概率密度 分布的形象化描述。
y x
a
y
x
y x
b b 电子云的统计概念(二维投影) a) 单张照片;b) 二张照片 c)大量照片
24
三、 Schodinger波动方程
1926 年,奥地利物理学家 Schodinger 提 出一个描述核外电子等微观粒子运动状态 的方程,被命名为Schodinger方程。他奠 定了波动力学的基础,因而与P.A.M.狄拉 克共获1933 年诺贝尔物理学奖

天津大学无机化学教研室《无机化学》(第4版)(上册)-课后习题-第5~8章【圣才出品】

天津大学无机化学教研室《无机化学》(第4版)(上册)-课后习题-第5~8章【圣才出品】

第5章原子结构与元素周期性(一)思考题1.量子力学的轨道概念与波尔原子模型的轨道有什么区别和联系?答:(1)量子力学的轨道与波尔原子模型的轨道的联系:二者均是用于描述电子、种子、质子等微观粒子的运动。

(2)量子力学的轨道与波尔原子模型的轨道的区别:波尔原子模型的轨道概念是1913年由N.Bohr提出,该模型是建立在牛顿的经典力学理论基础上的,认为微观粒子遵循经典力学的运动规律,电子在原子核外某个确定的原形轨道,但实际上粒子微小、运动速度又极快且在极小的原子体积内运动,根本不遵循经典力学的运动规律。

所以它只能解释单电子原子(离子)光谱的一般现象,不能解释多电子原子光谱,具有一定的局限性;量子力学的轨道概念是1923年薛定谔提出,该模型是建立在波粒二象性的基础上,认为微观粒子不仅具有粒子性,也具有波动性,电子在原子核外某个空间范围内运动,原子中个别电子运动的轨迹是无法确定,没有确定的轨道。

但是电子的运动呈现一定的规律性,可用量子力学理论的电子云进行描述。

2.量子力学原子模型是如何描述核外电子运动状态的?答:用四个量子数描述核外电子运动状态,它们分别是:主量子数-描述原子轨道的能级;副量子数-描述原子轨道的形状;磁量子数-描述原子轨道的伸展方向;自旋量子数-描述电子的自旋方向。

3.下列各组量子数哪些是不合理的?为什么?表5-1答:(2)、(3)不合理。

当n=2时,l只能是0.1,而(2)中的l=2;当l=0时,m只能是0,而(3)中的m却为+1。

4.为什么任何原子的最外层最多只能有8个电子,次外层最多只能有18个电子?答:由于有能级交错的现象,使得轨道的能级次序发生变化,当电子层数(n)较大时,电子填充到轨道的次序为:可见,最外层为nsnp轨道,最多只能填充8个电子;而次外层最多只能填充轨道,即最多有18个电子。

5.为什么周期表中各周期的元素数目并不一定等于原子中相应电子层的电子最大容量数()?答:由于能级交错的原因。

无机化学天津大学05-4原子性质的周期性课件

无机化学天津大学05-4原子性质的周期性课件

110
第二周期
第三周期
第四周期
第五周期
第六周期
60
ⅠAⅡAⅢBⅣBⅤBⅥBⅦB Ⅷ Ⅷ Ⅷ ⅠBⅡBⅢAⅣAⅤAⅥAⅦA 0
族号
第52章60原子结构与元素周期性 第5章 原子结构与元素周期性
同一主族元素,自上往下,原子半 径逐渐增大
210
原子半径/pm
160
110
第二周期
第三周期
第四周期
第五周期
第六周期
O-(g) + e- → O2-(g) EA2=+780 kJ·mol-1 其余依次类推......
第5.54章.3原电子负结构性与元素周期性 第5章 原子结构与元素周期性
分子中元素原子吸引电子的能力 以最活泼非金属元素原子χp(F)=4.0为基 础,计算其它元素原子的电负性值
电负性越大, 元素原子吸引电子能力越强, 即 元素原子越易得到电子,越难失去电子 电负性越小, 元素原子吸引电子能力越弱, 即 元素原子越难得到电子,越易失去电子
价电子数 3
45
67
最高氧化数 +3 +4 +5 +6 +7
Ⅷ族、ⅠB族:氧化数变化不规律
ⅡB族:最高氧化数=价电子数=族数=+2
第5.54章.5原元子素结构的与金元属素周性期和性 非第金5章属原性子结构与元素周期性
金属性——在化学反应中失去电子,变为低 正氧化数阳离子的特性
判非断金属性——在化学反应中得到电子,变 金属元性素:的电电负负性为性、阴越电离小离子或能的电特离性能越小
3.5
同一副族,从上到下,3.0 NhomakorabeaCl
ⅢB~ⅤB电负性逐渐减小, ⅥB~ⅡBBr电负性逐渐增大

2024版大学无机化学完整版ppt课件

2024版大学无机化学完整版ppt课件

离子键。
离子晶体的结构
02
离子晶体中正负离子交替排列,形成空间点阵结构,具有高的
熔点和沸点。
离子键的强度
03
离子键的强度与离子的电荷、半径及电子构型有关,电荷越高、
半径越小,离子键越强。
12
共价键与分子结构
2024/1/29
共价键的形成
原子间通过共用电子对形成共价键,共价键具有方向性和饱和性。
分子的极性与偶极矩
大学无机化学完整版ppt课件
2024/1/29
1
目录
2024/1/29
• 无机化学概述 • 原子结构与元素周期律 • 化学键与分子结构 • 化学反应基本原理 • 酸碱反应与沉淀溶解平衡 • 氧化还原反应与电化学基础 • 配位化合物与超分子化学简介
2
01
无机化学概述
Chapter
2024/1/29
反应机理
基元反应和复杂反应、反应机理的推导和表示 方法
反应速率理论
碰撞理论、过渡态理论和微观可逆性原理
2024/1/29
影响反应速率的因素
浓度、温度、催化剂和光照等外部条件对反应速率的影响
18
05
酸碱反应与沉淀溶解平衡
Chapter
2024/1/29
19
酸碱反应概述
酸碱定义及性质
介绍酸碱的基本概念、性质和分类,包括阿累尼乌斯 酸碱理论、布朗斯台德酸碱理论等。
配位化合物的组成 中心原子或离子、配体、配位数、配位键等。
配位化合物的分类
3
根据中心原子或离子的性质可分为金属配位化合 物和非金属配位化合物;根据配体的性质可分为 单齿配体和多齿配体等。
2024/1/29
28

无机化学ppt课件

无机化学ppt课件
命名方法
配位化合物的命名遵循一定的规则,包括确定中 心原子和配体的名称、标明氧化态和配位数等。
金属有机化合物类型、合成方法和应用前景
01
类型
金属有机化合物包括金属烷基化合物、金属芳基化合物、金属羰基化合
物等,它们在结构和性质上具有多样性。
02
合成方法
金属有机化合物的合成方法包括金属与有机物的直接反应、金属卤化物
离子键和共价键的强度
决定物质的化学性质,如稳定性、反 应活性等。离子键较强,共价键有强 弱之分。
氢键
一种特殊的分子间作用力,存在于含 有氢原子的分子之间,对物质的熔沸 点、溶解度等性质有显著影响。
04
晶体结构与性质
晶体类型及结构特点
01
02
03
04
离子晶体
由正负离子通过离子键结合而 成,具有高熔点、高硬度等特
原子结构模型及发展历程
道尔顿实心球模型
认为原子是坚硬的、不可再分的 实心球体。
汤姆生枣糕模型
发现电子,提出原子像枣糕一样, 电子像枣子一样镶嵌在原子中。
卢瑟福核式结构模型
通过α粒子散射实验,提出原子 的中心有一个带正电的原子核, 电子绕核旋转。
波尔分层模型
引入量子化概念,解释氢原子光 谱,提出电子在特定轨道上运动。
沉淀溶解平衡原理及应用
沉淀溶解平衡定义
在一定条件下,难溶电解质在溶液中的离子浓度达到平衡状态。
沉淀溶解平衡应用
通过控制溶液中的离子浓度,可实现难溶电解质的分离、提纯和制 备。
溶度积常数(Ksp)
表达难溶电解质在溶液中离子浓度平衡关系的常数,可用于判断沉 淀的生成和溶解条件。
难溶电解质溶解度和溶度积常数计算
化学键类型及形成条件

无机化学:第五章 原子结构和元素周期律

无机化学:第五章 原子结构和元素周期律

无机化学:第五章原子结构和元素周期律无机化学:第五章原子结构和元素周期律第五章原子结构和元素周期律一、核外电子运动的特殊性1、微观粒子的性质德布罗意关系-P?H波粒二象性是微粒运动的第一个显著特征。

电子衍射实验证实了电子运动的起伏。

不确定原理――?x??p≥h?不确定原理是微观粒子运动的第二个显著特点。

式中h为普朗克常量,其值为6.626×10―34js。

对微粒运动特殊性的研究表明,具有波粒二象性的微粒运动遵循不确定性原理,这是牛顿力学无法研究的,而应研究微粒运动的统计规律,其中波动性是微粒性质的统计结果。

二、核外电子运动状态的描述1、薛定谔方程222? 2.8.M公式:?E五、x2?y2?Z2h2这是一个二阶偏微分方程。

哪里是粒子空间坐标的函数,称为波函数;E是总能量;v是势能;m是微观粒子的质量;h是普朗克常数;x、y、z是空间坐标。

通过求解薛定谔方程可以得到波函数吗?相应的能量E,每个?表示原子核外电子的运动状态。

求解薛定谔方程时,应先进行坐标变换,将直角坐标系中的X、y、Z变换为R,?,和在球面坐标系中?,即x?rsin?cos?y?rsin?sin?ZRCO?Rx2?y2?Z2然后分离变量,并将R,?,?,哪个包含三个变量?将偏微分方程转化为三个只有一个变量的常微分方程,然后分别求解得到r?R那是??RRR令y??,,得??r,?,r?r?y??,??地点:R?R叫做波函数的径向部分,y??,??叫做波函数的角部分。

用薛定谔方程求解的描述电子运动状态的波函数在量子力学中称为原子轨道。

与经典的轨道意义不同,它是一个轨道函数,有时被称为轨道函数。

2.表示波函数的四个量子数在解薛定谔方程时,为了使结果有意义,即保证解的合理性,常需要引入三个量子数n,l、此时,薛定谔方程被改写为?n、 l,m?R瑞恩,我?Ryl,m??,??1)主量子数na、取值:n=1,2,3,4…?(n为正整数)光谱符号:k,l,m,n……b、意思是:① n代表原子轨道的大小,以及原子核外电子与原子核的距离(或电子所在的电子层数),也就是n离原子核越远?能量越高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编辑课件
7
原子结构的近代概念
电子的波粒二象性 概率和概率密度 原子轨道 电子云 量子数
18.12.2020
编辑课件
8
5.2.1 电子的波粒二象性
20世纪初人们已经发现,光不仅有微粒的性质,而且 有波动的性质,即具有波粒二象性。
1924年,Louis de Broglie(德布罗意)认为:质量为m, 运动速度为υ的粒子,相应的波长为:
如氢原子的1s轨道的波函数为: Ψ1s = (1 /πa03)1/2 e-r/a0
其中径向部分为:R10(r) = 2(1/a0)3/2*e-r/a0 角度部分为: Y00 = (1/4π)1/2
18.12.2020
编辑课件
15
对于2p轨道
以 2pz为(m 例 0)
2pz
1 4
1 (r)e-r/2a0coqs
121.6nm 120.6nm 97.25nm 94.98nm 93.78nm 93.14nm
λ3→2= cν(光3→速2 )= 4.35710180m14·ss--11= 656.5nm
18.12.2020
编辑课件
5
波尔氢原子模型
成功地解释了氢原子和类氢原子(如He+、
Li2+)的光谱现象, 推动了原子结构的发展
2πa03 a0
其R 中 (r)1(1)3/2(r)e-r/2a0 26a0 a0
Y(q) 3 coqs

18.12.2020
编辑课件
16
Y(q,) 43coqsAcoqs
q 0 o 30 o
cosq 1 0.866
60 o 90 o 120 o 180 o
0.5 0 -0.5 -1
Y 2p z A 0.866A 0.5A 0 -0.5A -A
2 -5.4510-19
3 -2.4210-19
n
4 -1.3610-19
5 -8.7210-20
6 -6.0510-20
18.12.2020
编辑课件
3
波尔氢原子模型 正常状态下,原子中的电子尽可能在离核 最近、能量最低的轨道上运动(基态)
基态
吸收能量(跃迁) 放出能量
激发态(电子处于能
量较高的状态)
严重的局限性。只能解释单电子原子(或
离子)光谱的一般现象,不能解释多电子 原子光谱
波尔理论的缺陷,促使人们去研究和建
立能描述原子内电子运动规律的量子力
学原子模型
18.12.2020
编辑课件
6
无机化学多媒体电子教案
第五章 原子结构和元素周期性
第二节原子结构的近代概念
第二节
原子结构的近代概念
18.12.2020
原子中电子的波函数ψ既然是描述电子云
运动状态的数学表达式,而且又是空间坐标的
函数,其空间图象可以形象地理解为电子运动
的空间范围,俗称”原子轨道”.为了避免与经
典力学中的玻尔轨道相混淆,又称为原子轨函
(原子轨道函数之意),亦即波函数的空间图象就
是原子轨道,原子轨道的数学表达式就是波函
数. 18.12.2020
编辑课件
11
直角坐标( x,y,z)与球坐标(r,θ,φ)的转换
x r sinq cos y r sinq sin z r cosq
r x2 y2 z2
Ψ x, y , z Ψ r ,q , R r Y q ,
18.12.2020
编辑课件
12
在量子力学中是用波函数和与其对应的 能量来描述微观粒子的 Nhomakorabea动状态的.
概率密度:电子在原子核外空间某处单位体积
内出现的概率。
18.12.2020
编辑课件
10
5.2.3 原子轨道
1. 波函数
SchrÖdinger方程
2Ψ2Ψ2Ψ8π2mEVΨ
x2 y2 z2
h2
Ψ :波函数
E:能量
V:势能
m:质量
h:Planc常k 数 x, y, z:空间直角坐标
18.12.2020
无机化学多媒体电子教案
第五章 原子结构和元素周期性
第一节原子与元素
第一节 原子与元素
18.12.2020
编辑课件
1
5-1-3 原子轨道能级 氢原子光谱
日光通过棱镜分光,可得到红、橙、黄、 绿、青、蓝、紫连续变化的谱带
5-1-3 原子轨道能为连级续光aa谱
装有低压高纯H2(g)的放电管所发出的光, 通过棱镜分光后,在可见光区波长范围内, 可以观察到不连续的四条谱线
Hδ Hγ βH
aa
αH 为带状光谱
nm 410.2 434.1 486.1
18.12.2020
编辑课件
656.3
2
波尔氢原子模型
氢原子中的电子在原子核周围有确定半径 和能n越量小的,圆离形核轨越道近中, 轨运道动能。量电越子低在,这些轨 道上运动不吸势收能能值量越或负放出能量
n
En/J
1 -2.17910-18
编辑课件
13
波函数的物理意义
Ψ2 :原子核外出现电子的概率密度。
电子云是电子 出现概率密度的 形象化描述。
18.12.2020
(a ) 1s 的 2 r
图及电子云
(b) 1s 电子云的
编辑课件
界面图 14
2. 原子轨道角度分布图
将波函数的角度分布部分(Y)作图,所 得的图象就称为原子轨道的角度分布图。
∞ 7 6 5 4
656.5nm 486.1nm 434.1nm 410.2nm 397.2nm
n
E/10-19J
-2.42
3
-5.45
2
-21.79
1 Hα Hβ γHδ Hε H
ν=
En3-En2 h
=
-2.4210-19J- (-5.4510-19J) 6.62610-34J·s
= 4.571014s-1
处于激发态的电子不稳定,要跳回到能量
较低的轨道, 以光的形式放出能量(即光谱
谱线对应的能量) En(2)-En(1)=hν
h — Planck常数 ν — 光的频率
18.12.2020
编辑课件
4
0 -0.445

氢原子光谱中的Hα线
-0.605
-0-1.8.3762En2-En1= hν
h —Planck常数 ν —光的频率
λ=h/mυ=h/p,
h=6.626×10-34J·s,Plank常量。
1927年,Davissson和 Germer应用Ni晶体进行电 子衍射实验,证实电子具有
波动性。
18.12.2020
编辑课件
9
5.2.2 概率和概率密度
概率:电子在原子核外空间某处出现的机率。
量子力学认为,原子中个别电子运动的轨 迹是无法确定的,亦即没有确定的轨道,这一 点是与经典力学有原则的差别。但是原子中电 子在原子核外的分布还是有规律的:核外空间 某些区域电子出现的概率较大,而另一些区域 电子出现的概率较小。
相关文档
最新文档