核医学成像原理及设备

合集下载

磁共振成像基础知识

磁共振成像基础知识

IR序列M的变化过程
IR序列特点
IR序列具有强T1对比特性; • 可设定TI,饱和特定组织产生具有特征
性对 比图像(STIR、FLAIR); • 短 TI 对比常用于新生儿脑部成像; • 采集时间长,层面相对较少。
STIR序列(Short TI Inversion Recovery)
在IR恢复过程中,组织的MZ都要过0点,但时间不 同。利用这一特点,对某一组织进行抑制。
超导型
优点:1.场强高(0.5-3.0T) ;2.磁场稳 定均匀;3.成像速度快,图象质量好。
缺点:1.造价高;2.需要补充液氦和 液氮;日常维护费用高。
梯度线圈
梯度线圈性能的提高 磁共振成像速度加 快
梯度线圈性能指标 梯度场强 20mT/m 切换率 50mT/m.s
脉冲线圈
作用:激发人体产 生共振;采集MR信 号
质子密度加权像
长TR、短TE——质子密度加权像,图像特点:
组织的 H 越大,信号就越强; H 越小,信号 就越弱。
脑白质:65 % 脑灰质:75 % CSF: 97 %
常规SE序列的特点
最基本、最常用的脉冲序列。 得到标准T1 WI 、 T2 WI图像。 T1 WI观察解剖好。 T2 WI有利于观察病变,对出血较敏感。 伪影相对少(但由于成像时间长,病人易
180- 90-{180-Echo}n
180°脉冲反转脉冲结束后,无MXY的存在,MZ开 始恢复,等MZ过了0点后,在时刻 t=TI (Time of In version反转时间),再施加一个 90°脉冲(此后的脉 冲方式同SE),再施加180°脉冲,就可以得到回波信 号。IR序列的TR一般为1800~2500ms,而TI=400~60 0ms。

核医学成像原理及设备

核医学成像原理及设备

放射性同位素的制备与选择
制备方法
放射性同位素可以通过核 反应、核裂变、核转变等 方式进行制备。
同位素选择
选择适当的同位素能够更 好地满足成像的需求,如 选择半衰期适中的同位素。
放射性同位素应用
放射性同位素广泛应用于 癌症诊断、心血管疾病评 估等核医学成像领域。
接收器的设计与选择
接收器是核医学成像中获取射线信息的关键组件,其设计和选择直接影响成 像的质量和准确性。
继续改进成像设备和放 射性同位素的安全性和 剂量控制,降低患者和 医护人员的辐射风险。
3 多模态成像
结合不同的成像技术, 如核医学成像和磁共振 成像,实现更全面和准 确的诊断结果。
核医学成像原理及设备
核医学成像是一种利用放射性同位素技术进行人体内部器官功能和病理状态 诊断的显像方法。
核医学成像相关概念
核医学成像通过测量放射性同位素的发射和吸收来获得对生物体内部结构和 功能的信息。
原子核放射性衰变
核医学成像靠探测和记录放射性同位素衰变产生的射线,通过分析射线的特 性来获得图像信息。
成像设备的工作原理
1
数据采集
成像设备通过接收器采集射线信息,并将其转化为数字信号。
2
图像重建
利用计算机算法对采集的射线信息进行处理和重建,生成最终的成像结果。
3
图像显示
将重建后的图像显示在监视器上,供医生进行诊断和分析。
核医于脑部功能评估、脑血流灌 注显像等领域。
心脏成像
核医学成像可以用于评估心脏功能、心肌灌注 以及诊断心脏疾病等。
骨骼成像
核医学成像可以帮助检测骨骼疾病、骨转移等。
甲状腺成像
核医学成像可以用于甲状腺结节检查和功能评 估等。

核医学仪器实验报告

核医学仪器实验报告

一、实验名称核医学仪器原理与应用实验二、实验日期2023年11月10日三、实验目的1. 了解核医学仪器的基本原理和结构。

2. 掌握核医学仪器的主要应用领域。

3. 学习核医学仪器在临床诊断和治疗中的作用。

4. 培养实验操作技能和数据处理能力。

四、实验原理核医学仪器利用放射性同位素发出的射线(如γ射线、β射线等)对人体进行成像或测量,从而实现对疾病的诊断和治疗。

本实验主要涉及以下原理:1. 闪烁探测原理:利用闪烁晶体将γ射线转换为可见光,再由光电倍增管转换为电信号,最终进行计数和成像。

2. 计数器原理:通过测量放射性同位素发出的射线数量,计算放射性活度。

3. 核医学成像原理:利用γ相机或SPECT等设备,对放射性同位素在体内的分布进行成像。

五、主要仪器与试剂1. 仪器:核医学仪器、闪烁晶体、光电倍增管、计数器、γ相机、SPECT等。

2. 试剂:放射性同位素、闪烁液、NaI(Tl)晶体等。

六、实验步骤1. 准备阶段:- 熟悉实验原理和仪器操作方法。

- 检查仪器设备是否正常。

2. 实验操作:- 将放射性同位素溶液注入闪烁晶体中,观察闪烁现象。

- 将闪烁晶体与光电倍增管连接,进行计数实验,测量放射性活度。

- 利用γ相机或SPECT进行成像实验,观察放射性同位素在体内的分布。

3. 数据处理:- 记录实验数据,包括放射性活度、计数率等。

- 对实验数据进行统计分析,计算相关参数。

4. 实验报告撰写:- 总结实验结果,分析实验现象。

- 讨论实验过程中遇到的问题及解决方法。

- 提出实验改进建议。

七、实验结果1. 观察到闪烁晶体在放射性同位素的作用下产生闪烁现象。

2. 通过计数实验,测得放射性活度为X mCi。

3. 利用γ相机或SPECT进行成像实验,观察到放射性同位素在体内的分布情况。

八、讨论1. 本实验验证了核医学仪器的基本原理,证明了闪烁探测和计数器的有效性。

2. 实验过程中,观察到放射性同位素在体内的分布情况,为进一步的临床诊断和治疗提供了依据。

核医学成像课件

核医学成像课件

核磁共振成像(MRI)
总结词
一种无辐射的成像技术
详细描述
利用磁场和射频脉冲使人体内的氢原子发生共振,从而产生信号并形成图像,主要用于脑部、关节和软组织疾病 的诊断。
X射线计算机断层成像(CT)
总结词
一种结构成像技术
详细描述
通过X射线扫描人体并利用计算机重建断层图像,能够清晰显示人体内部结构,广泛应用于肿瘤、骨 折和肺部疾病的诊断。
成本高
核医学成像技术通常需要昂贵 的设备和专业的技术人员,导
致其成本相对较高。
时间延迟
由于放射性物质的半衰期较长 ,核医学成像可能需要等待一
段时间才能获取图像。
空间分辨率有限
相对于其他医学成像技术,如 MRI和CT,核医学成像的空间
分辨率可能较低。
05 核医学成像的未来发展
技术创新与进步
新型探测器技术
核医学成像的分类
单光子发射计算机断层成像(SPECT)
利用单光子发射的射线进行成像,常用于心血管和脑部显像。
正电子发射断层成像(PET)
利用正电子发射的射线进行成像,具有高灵敏度和特异性的优点,常用于肿瘤、神经系统 和心血管疾病的诊断。
核磁共振成像(MRI)
利用磁场和射频脉冲对组织进行检测,能够提供高分辨率和高对比度的图像,常用于脑部 、关节和肌肉等软组织的显像。
核医学成像技术利用放射性核素发出的射线与人体组织相互 作用,产生信号并被显像仪器接收,经过处理后形成图像。
核医学成像的原理
01
放射性核素发出的射线与人体组 织中的原子相互作用,产生散射 和吸收,这些相互作用导致能量 损失和方向改变。
02
显像仪器通过测量这些散射和吸 收的射线,并利用计算机技术重 建图像,显示出人体内部结构和 功能。

临床医学核医学成像医学影像技术

临床医学核医学成像医学影像技术

临床医学核医学成像医学影像技术xx年xx月xx日CATALOGUE 目录•临床医学核医学成像技术总览•核医学成像技术基础•临床核医学成像技术细分领域•核医学成像技术在临床实践中的案例分析•展望未来:核医学成像技术的临床应用前景与挑战01临床医学核医学成像技术总览核医学成像技术是一种利用核素示踪技术和现代医学影像设备,对机体组织结构和功能进行显像的技术。

核医学成像技术定义具有灵敏度高、特异性好、可进行功能显像等优势,为临床医学诊断提供了重要手段。

核医学成像技术特点核医学成像技术的定义与特点1核医学成像技术在临床医学中的应用23利用核医学成像技术检测肿瘤标志物、肿瘤细胞代谢等,有助于早期发现肿瘤并判断其恶性程度。

肿瘤诊断通过核医学成像技术评估心脏功能、检测冠心病、心肌梗死等疾病,具有较高的诊断价值。

心血管疾病如骨龄测定、甲状腺疾病、肾功能评估等,为临床医生提供可靠的诊断依据。

其他领域发展趋势随着科技的不断进步,核医学成像技术将朝着更高效、更安全、更便捷的方向发展。

挑战核医学成像技术仍面临一些挑战,如设备成本高、操作复杂、对工作人员要求高等。

此外,放射性污染和辐射防护问题也需要得到更好的关注和处理。

核医学成像技术的发展趋势与挑战02核医学成像技术基础同位素衰变同位素发射出粒子和射线,这些粒子和射线被探测器捕获并形成图像。

核磁共振利用强磁场和射频脉冲使原子核自旋能级跃迁,检测产生的信号并形成图像。

核医学成像的基本原理通过探测放射性同位素发出的γ射线,形成平面图像。

γ相机利用γ相机进行三维成像,可观察放射性示踪剂在体内的分布情况。

SPECT利用正电子发射示踪剂,通过探测器进行三维成像,可观察生物分子代谢和功能情况。

PET 核医学成像的常用设备与仪器核医学成像的常用示踪剂与药物18F-FDG葡萄糖类似物,用于PET成像,观察肿瘤、神经系统病变等。

11C-choline用于观察前列腺癌、肺癌等恶性肿瘤的病变情况。

核医学成像的基本过程

核医学成像的基本过程

核医学成像的基本过程
核医学成像是一种利用放射性同位素进行医学影像学分析的技术。

它可以用于诊断和治疗一些疾病,如肿瘤、心脏病、骨质疏松等。

其基本过程如下:
放射性同位素注射:首先,将一种放射性同位素注入患者的体内。

这种同位素通常是一种放射性标记的生物分子,如葡萄糖或荷尔蒙。

同位素分布:注射后,放射性同位素会在患者体内分布到不同的组织和器官中。

不同的同位素有不同的生物分布规律,可以选择不同的同位素来研究不同的器官或疾病。

放射性检测器探测:为了检测放射性同位素的分布,需要使用放射性检测器将它们发出的放射性信号捕获下来。

常用的放射性检测器有γ相机和PET扫描仪。

影像重建:通过对放射性同位素分布的数据进行计算和处理,可以重建出图像。

这些图像可以显示出不同组织和器官中放射性同位素的分布情况。

影像分析:最后,医生或放射科技师将图像进行分析,以了解患者的病情和治疗效果。

需要注意的是,核医学成像是一种放射性技术,可能会对患者造成一定的辐射剂量。

因此,在使用核医学成像技术时,需要进行合理的剂量控制和安全措施,确保患者和医护人员的安全。

核医学显像技术原理

核医学显像技术原理

单光子发射计算机断层成像
<SPECT>
SPECT与γ相机的比较: 目前医院中用的最多SPECT称为旋转γ相机型的 ECT,这种SPECT是γ相机探头加上旋转机构和图 像重建软件,它包含了γ相机的功能,增加了断层 图像获取和图像重建功能.
放射性核素显像
向患者体内引入特定示 踪剂〔或显像剂
核医学显像设备
核医学显象技术原理
主要内容 一、基本原理 二、基本条件 三、显像剂<放射性药物>选择性聚 集的机理 四、各种放射性测量仪器简介
一.基本原理
脏器和组织显像的基本原理是放射性核素的示踪作用:
不同的显像剂<放射性药物在体内有其特殊的分布和代谢 规律,能够选择性聚集在特定脏器、组织或病变部位,使其 与邻近组织之间的放射性分布形成一定程度浓度差,而显 像剂中的放射性核素可发射出具有一定穿透力的γ射线,利 用放射性测量仪器〔γ相机、SPECT、PET 、SPECT/CT、 PET/CT等可在体外被探测、记录到这种放射性浓度差,从 而在体外显示出脏器、组织或病变部位的形态、位置、 大小以及脏器功能变化.
谢谢观赏
知识回顾 Knowledge Review
二、基本条件
• 放射性浓度差要达到一定程度.
• 核医学显像装置能检测到放射性浓度差,并 以一定方式显示成像.
• 正常与异常组织间对放射性核素的摄取差 异是核显像的诊断基础.
三、显像剂<放射性药物>选择性聚集的机理
1.细胞选择性摄取 2.特异性结合 3.化学吸附作用 4.微血管栓塞 5.通道、灌注和生物分布
物质.
铊 201Tl+ 99mTc标记的异腈类化合物
〔3代谢产物和异物 某些器官的某些细胞具有选择性摄取代谢 产物和异物的功能,使代谢产物、异物从体 内清除.

SPEC,PET,CT,MR成像原理及其特点比较

SPEC,PET,CT,MR成像原理及其特点比较

SPECT 、PET 、CT 、MR 四类医学影像设备的成像原理简介一、单光子发射断层扫描(简称SPECT )SPECT 是利用放射性同位素作为示踪剂,将这种示踪剂注入人体内,使该示踪剂浓聚在被测脏器上,从而使该脏器成为γ射线源,在体外用绕人体旋转的探测器记录脏器组织中放射性的分布,放射性的分布,探测器旋转一个角度可得到一组数据,探测器旋转一个角度可得到一组数据,探测器旋转一个角度可得到一组数据,旋转一周可得到若干组数据,旋转一周可得到若干组数据,旋转一周可得到若干组数据,根据这根据这些数据可以建立一系列断层平面图像。

计算机则以横截面的方式重建成像。

些数据可以建立一系列断层平面图像。

计算机则以横截面的方式重建成像。

二、正电子发射断层扫描(Positron Emision Tomograph 简称PET ):该技术是利用回旋加速器加速带电粒子轰击靶核,通过核反应产生带正电子的放射性核素,并合成显像剂,素,并合成显像剂,引入体内定位于靶器官,引入体内定位于靶器官,引入体内定位于靶器官,它们在衰变过程中发射带正电荷的电子,它们在衰变过程中发射带正电荷的电子,它们在衰变过程中发射带正电荷的电子,这种这种正电子在组织中运行很短距离后,正电子在组织中运行很短距离后,即与周围物质中的电子相互作用,即与周围物质中的电子相互作用,即与周围物质中的电子相互作用,发生湮没辐射,发生湮没辐射,发射出方向相反,能量相等的两光子。

PET 成像是采用一系列成对的互成180排列后接符合线路的探头,在体外探测示踪剂所产生之湮没辐射的光子,在体外探测示踪剂所产生之湮没辐射的光子,采集的信息通过计算机处理,采集的信息通过计算机处理,采集的信息通过计算机处理,显示出靶显示出靶器官的断层图象并给出定量生理参数。

器官的断层图象并给出定量生理参数。

三、X 线计算机断层扫描(Computed Tomography 简称(CT) :它是用X 射线照射人体,由于人体内不同的组织或器官拥有不同的密度与厚度,故其对X 射线产生不同程度的衰减作用,从而形成不同组织或器官的灰阶影像对比分布图,进而以病灶的相对位置、形状和大小等改变来判断病情。

核医学成像设备分类、特点及核医学成像过程简介

核医学成像设备分类、特点及核医学成像过程简介

核医学成像设备分类、特点及核医学成像过程简介核医学成像设备是指探测并显示放射性核素药物(俗称同位素药物) 体内分布图像的设备。

核医学成像是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。

核医学成像检查ECT与CT、MRI等相比,能够更早地发现和诊断某些疾病。

核医学成像属于功能性的显像,即放射性核素显像。

一、核医学成像设备分类及特点核医学成像设备(一)、相机1、相机组成:(1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。

(2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。

(3)、显示装置:示波器、照相机等。

(4)、相机附加设备。

2、特点:(1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究;(2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查;(3)、由于显像迅速,便于多体位、多部位观察;(4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。

核医学成像设备(二)、单光子体层成像设备(SPECT)1、成像原理:利用照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的光子并计数,然后利用X-CT中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。

目前SPECT核医学成像设备的能量测量范围为50~600keV,空间分辨率6~11mm。

2、与X-CT的区别:(1)、图像粗造,空间分辨率低。

(2)、属发射型体层摄影;核医学成像设备(三)、正电子发射体层成像设备(PET)1、使用发射正电子的放射性核数,如:等都是人体组织的基本元素,易于标记各种生命。

8. 核医学成像设备

8. 核医学成像设备
核医学成像内容:
利用γ射线作为探测手段,通过脏器内外或脏器内 的正常与病变组织之间的放射性浓度差别揭示人体 的代谢和功能信息。
1. 先让人体接受某种放射性药物,这些药物聚集在人 体某个脏器中或参与体内某种代谢过程。
2. 对脏器组织中的放射性核素的浓度分布和代谢进行 成像。
4
2019/11/18
飞利浦TruFlight: 实现卓越PET成像的解决方案 新型探测器晶体-硅酸镥晶体技术(LSO)
36 8.5 双模式分子影像技术和设备
8.5.1 SPECT/CT设备 8.5.2 PET/CT设备 8.4.3 PET/MRI设备
2019/11/18
8.5.1 SPECT/CT设备
37
7 8.1.2 分类及应用特点 核医学成像设备的分类 γ照相机亦称闪烁照相机,是对体内脏器中的放射性核素分 布进行一次成像,并可进行动态观察的核医学仪器。 发射型计算机断层(emission computed tomography, ECT) 是在体外从不同角度来采集体内某脏器放射性分布的二维 影像,而后经计算机数据处理重建,并显示出三维图像。 可以分为SPECT和PET PET是目前成像最为精确的核医学设备。
1. γ相机(闪烁照相机)
γ照相机是记录和显示被拍照的物体中γ射线活度分布的一次成像照像系统。
2. SPECT γ照相机+探头旋转装置。
高性能、大视野、多功能的γ照相机和支架旋转装置、图像重建软件等组 成,可进行多角度、多方位的采集数据。每采集一幅图像后,探头旋转 一个角度继续采集下一幅图像,采集总角度为360度或180度。
2019/11/18
8.3.1 基本结构与工作原理
SPECT
γ照相机型,高性能、大视野、多功能的γ照相机和支架旋转装置、图像重 建软件等组成,可进行多角度、多方位的采集数据,实现体层显像。

医学成像(影像)技术类型及其原理

医学成像(影像)技术类型及其原理

医学成像(影像)技术类型及其原理
随着科技的进步,医学成像技术有了长足的发展。

医学成像是指医学影像数据的形成过程,也指形成医学成像(现代医学成像)的技术或装置。

医学成像技术是借助于某种能量与生物体的相互作用,提取生物体内组织或器官的形态、结构以及某些生理功能的信息,为生物组织研究和临床诊断提供影像信息的一门科学。

一、医学成像(影像)设备的共同特征
能量发射源、效应组织、探测器、处理器、显示器
二、医学成像(影像)技术的类型
(1) X 射线影像(2)核磁共振成像(3)核素显像(核医学成像技术) (4)超声成像(5) 阻抗成像(6) 热、微波成像(7) 光学成像
前四种用途最广泛,容易推广普及,称为四大医学成像技术。

不同类型的医学影像具有优势互补作用
三、各种医学成像(影像)原理
1 、X 线成像原理
1895 年伦琴发现了X 射线(X-ray),这是19 世纪医学诊断学上最伟大的发现。

X-ray 透视和摄影技术作为最早的医学影像技术,直到今天还是使用最普遍且
有相当大的临床诊断价值的一种医学诊断方法。

X 线成像系统检测的信号是穿透组织后的X 线强度,反映人体不同组织对X 线吸收系数的差别,即组织厚
度及密度的差异;图像所显示的是组织、器官和病变部位的形状。

2、磁共振成像原理
磁共振(MRI)成像系统检测的信号是生物组织中的原子核所发出的磁共振信号。

原子核在外加磁场的作用下接受特定射频脉冲时会发生共振现象,MRI 系。

(完整word版)医学实习报告——核磁共振成像仪的原理和应用

(完整word版)医学实习报告——核磁共振成像仪的原理和应用

医学实习报告——核磁共振成像仪的原理和应用班级:生物医学0902姓名:xx日期:2010年1月6日核磁共振成像仪的原理和应用摘要核磁共振(MRI)又叫核磁共振成像技术。

核磁共振成像仪就是因这项技术而产生的仪器。

它是继CT后医学影像学的又一重大进步。

自80年代应用以来,它以极快的速度得到发展.核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测.为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI).关键词核磁共振、扫描、成像、计算机正文:前言1930年代,物理学家伊西多•拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。

1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。

人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强。

进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能.后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。

20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C谱的应用也日益增多。

仪器结构MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。

核医学成像设备

核医学成像设备

SPECT的基本本成像原理
正电子发射型计算机断层显像(Positron Emission Computed Tomography),是核医学领域比较先进的临床检查影像技术。
PET是目前惟一可在活体上显示生物分子代谢、受体及神经介质活动的新型影像技术,现已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。 (1)灵敏度高。 (2)特异性高。 (3)全身显像。 (4)安全性好。
设备的历史和分类
由准直器、闪烁晶体、光电倍增管、前置放大器、定位电路、显示记录装置、机械支架和床组成。
病人体内发出的γ射线
准直器
Na(T1)晶体
光电倍增管
γ射线
闪烁荧光
光电流
前置放大
定位电路
图像处理电路
显示器
照相机
其中将准直器、闪烁晶体、光电倍增管、前置放大器和电子矩阵电路等固定在一个支架上 ,组成探测器(探头)
光电倍增管
光电倍增管由光阴极、倍增极和阳极组成,这些电极被封装在真空的玻璃管中。
01
闪烁光子作用在光阴极上时 由于光电效应可产生出电子
02
电子倍增是通过一系列 倍增极所构成的倍增系统完成
03
从阳极上得到的电子流与 入射到光电倍增管光阴极 上的闪烁光强度成正比
04
单光子发射计算机断层成像术(Single-Photon Emission Computed Tomography,SPECT)
核医学成像的基本部件
准直器
准直器常用钨铅合金制作,包含圆形、方形或者六角形的小孔,覆盖在整个NaI晶体表面。
准直器可以分为低能(小于150KeV)、中能(150-300KeV)和高能(300-600KeV)三种,低能准直器孔径最小,空间分辨率最高;中能次之;高能最差

核医学显像的基本原理

核医学显像的基本原理

核医学显像的基本原理
核医学显像技术是一种应用核技术来检测、表征和诊断有关人体内器官或疾病的非侵
入性技术。

它使用放射性标记物和探测器来诊断疾病,是一种比X射线等传统的检查方法
更加精细的技术。

核医学显像的基本原理是:把含有放射性同位素的物质(放射性物质)
注入到体内,探测器将放射性物质发出的放射性信息放大为动态三维图像,以更精细地了
解内脏结构和疾病特征。

其基本原理是:核技术的显像技术通常包括定位和动态双相成像技术,它们均试图通
过观察放射性物质源的放射性信号来推断特定区域的解剖结构。

通常用放射性同位素,如
二氧化碳- 14、氟- 18、磷- 32等代替传统的X射线进行检查,这些放射性物质在体内活动或斜切通道进行注射,使得每块部位细胞内都有该放射性物质,探测器通过放大其信号
将其放大为动态三维图像,以便更精确地了解内脏结构和疾病特征。

此外,核医学显像技术还允许细胞活性和组织活性的检测,用于诊断早期恶变或肿瘤,及分析疾病的临床进展,以便对病症上的干预更精准、更有效地进行治疗。

核技术具有某
些独特的优势,比如被检测的放射物质可以被精确控制,产生更准确的结果,并给病人们
带来更好的病情跟踪,具有更好的预防护理能力,这些都为核医学显像带来了很大的潜在
价值。

所以,核医学显像的基本原理是通过放射物质的放射性信号的放大来了解内脏结构和
疾病特征,它提供了一种比传统检查方法更精确、灵敏、准确的技术,以便更好地分析准
确诊断病症。

核医学成像的基本原理

核医学成像的基本原理

核医学成像的基本原理核医学成像主要是利用放射性核素。

啥是放射性核素呢?简单来说,就是那些原子核不太稳定的原子啦。

它们就像一个个小调皮鬼,总是不安分,会不断地放出射线。

这些射线呀,就成了我们核医学成像的关键因素。

当我们把含有放射性核素的药物引入到人体里,这就像是派出了一群小小的侦察兵。

这些侦察兵可聪明啦,它们会跑到身体的不同地方。

比如说,有的放射性核素药物特别喜欢跑到甲状腺那里去,有的呢则会跑到骨头里面。

这是为啥呢?因为身体里不同的器官和组织呀,就像一个个有着独特喜好的小房子,对这些放射性核素药物有着不同的吸引力。

然后呢,这些放射性核素在身体里不断地放出射线。

这时候呀,我们就有专门的探测器来捕捉这些射线啦。

探测器就像是一个个超级灵敏的小耳朵,能听到射线发出的“悄悄话”。

当射线碰到探测器的时候,探测器就能把这个信号记录下来。

这些探测器记录下来的信号可不是乱七八糟的哦。

它们会被转化成数字信息,然后通过计算机这个超级大脑来处理。

计算机就像一个超级魔法师的助手,把这些零散的数字信息整理成一幅幅清晰的图像。

你看,通过这样的方式,我们就能得到身体内部的图像啦。

比如说,要是甲状腺有啥毛病,那些跑到甲状腺里的放射性核素放出的射线就会有不一样的表现。

在图像上,我们就能看到甲状腺是大了还是小了,有没有长什么奇怪的东西。

而且呀,核医学成像还有一个很厉害的地方。

它不仅仅能告诉我们器官的形态,还能告诉我们器官的功能呢。

这就比普通的成像方式厉害多啦。

普通的成像可能就只能看到这个器官长啥样,但是核医学成像能知道这个器官工作得好不好。

就像我们看一个工厂,不仅能看到厂房的样子,还能知道里面的机器是不是在正常运转呢。

核医学成像在很多疾病的诊断中都起着超级重要的作用。

比如说在肿瘤的诊断方面,它可以早早地发现那些隐藏在身体里的小肿瘤。

这就像是在敌人还很弱小的时候就发现它们,然后我们就能早早地想办法对付它们啦。

不过呢,宝子们也不用担心放射性核素会对身体有啥大危害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

γ照相机
γ照相机可对人体内脏器中的放射性核素分 布进行一次成像,同时可动态观察、显示、 记录放射性药物在人体脏器内的代谢情况。 所以γ照相机不仅具有人体脏器的形态显像 功能,而且具有功能显像功能,同时又具 有动态显像功能。
γ照相机成像原理
γ照相机原理:
γ光子
准 直 器 荧光 闪烁晶体 光电倍增管
核医学成像
放射性同位素成像
放射性药物
正常组织 与 病变之间
用以评估具体 器官基本功能, 这项技术被称 做动态平面闪 烁成像法
的浓度差别为基础的 脏器或病变显像方法
放射性药物的空间分布是时间的函数 放射性同位素的使用要有一个重要的时间维
取值范围在毫秒到分钟
通过这种测量
根据所用的放射性核素的不同,放射性衰变会产生α、β、γ和X 射线 α、和β粒子非常小 不能从体中射出形成图像
SPECT
SPECT指的是单光子发射型计算机断层显 像仪。
根据探测器的运动方式可以分为扫描 机型(多探头型)和γ照相机型。
多探头型目前很少,γ照相机型应用较多 γ照相机型SPECT它实际上就是一个探头可以围绕 病人某一脏器进行360°旋转的γ相机,在旋转时 每隔一定角度(3°或6°)采集一帧图片,然后 经电子计算机自动处理,将图像叠加,并重建为 该脏器的横断面、冠状面、矢状面或任何需要的 不同方位的断层,切面图像,重建方法主要是滤 波反投影法。 γ照相机型SPECT同时也具有一般γ相机的功能, 可以进行脏器的平面和动态(功能)显像。 目前已经有三探头的旋转γ照相机型,显像速度快, 质量也好。
基本原理
光阴极在光子作用下发射电子,这些电子被外电 场(或磁场)加速,聚焦于第一次极。这些冲击次极 的电子能使次极释放更多的电子,它们再被聚焦 在第二次极。这样,一般经十次以上倍增,放大倍 数可达到几百上千倍。最后,在高电位的阳极收集 到放大了的光电流。
光电倍增管阵列
准直器
由铅(钨)材料做成,使非规定范围和非 规定方向的γ射线不得进入闪烁晶体,所以 有定位采集的作用。 主要性能参数有孔数、孔径、孔长及间壁 厚度,决定空间分辨力、灵敏度、适用能 量范围等。如何决定? 如果给定某种核素和其γ射线的能量,则分 辨力和灵敏度是一对矛盾。
P E T / C T的问世, 为肿瘤诊断、 良恶性病 变的鉴别诊断提供了极重要的信息, P E T / C T已成肿瘤诊断和鉴别诊断不可缺少的方 法, 经多年应用, 已为肿瘤学家、 放疗学家 和内外科各类专家共识。 P E T / C T的机型主要为 G E 、 S i e m e n s和 P h i l i p s公 司 的 D I S C O V E R Y 、 B I O G R A P H Y和G E ME N I , 分 别占 5 9 %、 3 2 %和 9%
补充:生产正电子药物的加速器
拥有加速器的 P E T / C T单位,并能就 地生产除 1 8 F以外的其他正电子药物, 如 1 1 C 、 1 3 N甚至 1 5 O等, 则能 进一步开展 1 1 C等显像, 对肿瘤的鉴 别诊断更有帮助 。
1.检查前的准备:大多数的核医学检查不需要特殊 的准备。 2.注射显像剂:注射之前医生会让您口服一种胶囊, 这是为了保护正常的器官,注射之后根据不同的检查, 病人等候的时间也不相同,有的只需数分钟;有的要 2-3小时;有的要1-2天后,让注射的显像剂能充分到 达所需检查的部位。 3.检查摄片:在拍片前医生医生的要求采取一定的姿势,探测器会尽量 靠近病人的身体,拍摄一张或多张照片,这时仅仅拍 照而已,并不增加额外的放射性。 4.分析结果:核医学科的医生会综合分析病人的病 情,所拍摄的照片以及其他各种检查结果:生化、血 液、超声、CT等,对临床诊断和治疗提供可靠准确 的分析结果。
PET的优点
不需要准直器 检测灵敏度高 本底小,分辨力好 易于吸收校正 可正确定量
全身三维定位(肺癌转移) wholeboay Triangulation
肺癌治疗后评价 肺腺鳞癌术后2年,放疗及化疗 后,出现喝水后呛咳等症状 1、为胸部CT无异常病灶出现, 2、为同期PET见纵隔处高浓集 病灶 3、为三月后CT发现病灶
是脏器内外或脏器与病变之间放射性浓度差别为基础的 脏器或病变显像法 1、具有能够选择性聚集在或流径特定脏器或病变的 放射性核素或其标记化合物,使该脏器或病变与邻近 组织之间放射性浓度差别达到一定程度. 放射性核素或标记化合物称显像剂 2、利用核医学成像仪器(γ照相机、SPECT、PET)探 测到这种浓渡差,并根据需要按一定方式将它们显示 成像,即显示脏器或病变组织的影像。
光电倍增管
光电倍增管是一种真空器件。 它由光电发射阴极(光阴极)和聚焦电极、 电子倍增极及电子收集极(阳极)等组成。 它利用二次电子发射使逸出的光电子倍增, 获得远高于光电管的灵敏度,能测量微弱 的光信号。
光电倍增管的剖面结构图
光电倍增管的电流来源于光子碰撞光阴 极产生的光电子发射,并经倍增后在阳 极形成电脉冲输出。
活化分析
辐射防护
放射性核素显像
器官功能测定
核衰变及放射性简介
放射性:
原子核自发地放射各种射线的现 象称为放射性
放射性 现象是 由原子 核的变 化引起 的
与核外电子状态的改变关系很小,外 界的温度、压力、电磁场都不能抑制 或显著改变射线的发射
核医学成像原理
核医学成像是一种以正常组织与病变之间 的放射性药物的浓度差别为基础的脏器或 病变的显像方法。是核医学的主要内容。 其基本条件:
X、 γ射线在穿过身体的各种组织的时候并不会遇到很多困难
一般来说,核医学成像系统只检测能量大干50kev的光子 (γ射线)。
这种信息之所以重要是因为它无法由其他的成像技术提供
用放 射性 同位 素成 像
获得一些和相关病理变化的前兆
有关的生理和生化信息
可了解其生物学功能或者确定某些疾病所在位置
有效的放射性化学药物拥有的特性大致上分为三种: 药物屑性、物理属性和化学属性
作为一种无创伤检查手段,PET可以从体外 对人体内的代谢物或药物的变化进行定量、 动态检测,成为诊断和指导治疗各类肿瘤疾 病、冠心病和脑部疾病的最佳方法。PET 的发展及其成功的临床应用是当代高科技 医疗诊断技术的主要标志之一。PET在临 床医学的应用主要集中于神经系统、心血 管系统、肿瘤三大领域。但PET价格昂贵, 需配置小型医用回旋加速器,日常管理费 用高,难以普遍推广。
总结
3、准直器
起定位采集
限制非规定方向和非规定能量 范围的射线进入探测器
空间定位、限制探测器视野、提高分辨率
闪烁晶体
是一种可以把射线转变为可见光的物质, 以常用的NaI为例,其过程是:射入的γ射 线在NaI晶体内部与晶体发生光电效应和 康普顿散射,γ射线失去能量,晶体发出 近紫色的闪烁光。 对于NaI晶体其特点是:对γ射线吸收效率 高、可以做成各种形状和大小、热稳定性 不好。
PET-CT融合设备
将PET与螺旋CT整合成一台设备,实现独 立扫描并重建,最后进行图像融合。
P E T / C T为 P E T和 C T仪器及其图像融为一 体的最先进设备, 其开创了分子影像和解剖图像 两者融合的先河, 可为临床提供更多信息。 C T在 P E T / C T的作用有: ①图像的衰减校正, 校正后的图像可真实反映脏 器的放射性分布,用 X线进行衰减校正,较以往的 固体源有扫描速度明显提高、 患者流通量明显 增加的优点; ②功能性分子影像与 C T的解剖影像相融合,使病 灶在脏器内的部位得以精确定位; ③P E T和 C T两者相互补充提高诊断的准确性。
SPECT的构成
SPECT的构成:探头、机架、床、控制台、 计算机和外围设备。
SPECT的性能特点
能量探测范围:50~600keV 体层图像 衰减伪影小 空间分辨率好 灵敏度较高 价格
正电子发射型计算机体层设备(PET)
是目前国际上最尖端的医学影像诊断设备,也 是目前在分子水平上进行人体功能显像的最先 进的医学影像技术。PET的基本原理是利用加 速器生产的超短半衰期同位素,如18F、13N、 150、11C等作为示踪剂注入人体,参与体内的 生理生化代谢过程。 构成:扫描机架、操作控制台、检查床、计算 机和外围设备。 按探测器在机架上的排列和运动方式可以分为: 固定型、旋转型、旋转-平移型、摆动-旋转型。
显像剂
探测
放射性浓度差别
Γ照相机、SPECT、PET是探测放射性核素或标记 化合物在脏器、组织的摄取、分布、代谢等特点达 到成像的目的 与其他影像主要区别 功能显像 组织 密度
成像取决于脏器、组织的血流、细胞 功能、细胞数量、代谢活性和排泄引 不是 流情况等因素
CT、MRI、超声是解剖形态学,无需显像剂.
光纤
光电流 后处理
前置放大器、定位电路、 图像处理电路、控制电路等
电源
显示器等
γ照相机结构
γ照相机主要由闪烁探头、探头支架、病床和 操作控制台组成。
闪烁探头
1、闪烁晶体
将入射的γ射线转换成光电子即闪烁萤光体 Nal(TL)晶体 放射性核素 TL(铊)和Tc(锝)均发射低能γ射线
大视野通用γ照相机最多的是采用厚度6.3mm的Nal(TL)晶体 2、光电倍增管 电子倍增,将入射γ光子在光阴极转换成光电子,经n个打拿极,使 成2的n次方倍增长,阳极形成脉冲。 3、定位电路 将每个光电倍增输出经加/减电路求信号和得信号位置输出
复习
放射治疗设备分类(两种分类标准) 立体定向放射治疗设备(结构、原理、 治疗过程)
主要内容
核医学分类 核医学成像原理及设备(结构、原理、临 床应用)
核医学分类
临 床 核 医 学 核 医 学 基 础 核 医 学 诊断 核医学 治疗 核医学 体内诊断 核医学 体外诊断 核医学 放射免疫分析
相关文档
最新文档