人教版高中数学必修4全册ppt课件

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

人教版高中数学必修4-3.1《二倍角的正弦、余弦、正切公式》参考课件

人教版高中数学必修4-3.1《二倍角的正弦、余弦、正切公式》参考课件

结论
(1) 2
2
(2) 4 2 2
例6 化简:
(1) sin400 (tan 100 3) (2)
解: (1) 原式

sin400
(
sin100 cos 100
例4
sin2 sin2
1 cos 2 1 cos 2

(
)
A tan B cot C sin
1 2sin2
D sin2
解:
原式
s in 2 s in 2
1 (1 2sin2 ) 1 (2cos 2 1)

s in 2 s in 2
(sin5 cos5)2 | sin5 cos5 | (sin5 cos5)
sin2 2sin cos
cos 2 cos2 sin2
2cos 2 1 1 2sin2
tan
2

1
2 tan tan2
例5 用二倍角公式化简: (0 )
13
13
A 第一象限角
B 第二象限角
C 第三象限角
D 第四象限角

:
sin

12 13
, cos


5 13
,
sin2 2sin cos 2 12 ( 5 ) 120 0
13 13 169
cos 2 cos2 sin2 ( 5 )2 (12)2
(1 sin2 ) sin2 1 sin2 sin2 1 2sin2 cos 2 1 2sin2
sin2 2sin cos cos 2 cos2 sin2 2cos2 1

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

2020_2021年新教材高中数学11.1空间几何体11.1.5旋转体ppt课件新人教B版必修第四册

2020_2021年新教材高中数学11.1空间几何体11.1.5旋转体ppt课件新人教B版必修第四册

知识点二 球
[填一填] (1)球面可以看成___一__个__半__圆_____绕着它的直径所在的直线 旋转一周所形成的曲面;球面围成的几何体,称为 ____球__.________ (2)形成球面的半圆的圆心称为球的_____球__心_______,连接 球面上一点和球心的线段称为球的____半__径________,连接球面上 两点且通过球心的线段称为球的_____直__径__._____ (3)由球面的形成过程可看出,球面可以看成空间中到一个 定点的距离等于定长的点的集合.
[解析] 根据球的定义可知 A 正确.由圆锥的定义知 B 正 确.只有当平面与圆锥的底面平行时底面与截面之间的部分为圆 台,故 C 错误.由圆柱的定义知 D 正确.
1.判断简单旋转体结构特征的方法 1明确由哪个平面图形旋转而成. 2明确旋转轴是哪条直线. 2.简单旋转体的轴截面及其应用 1简单旋转体的轴截面中有底面半径、母线、高等体现简单 旋转体结构特征的关键量. 2在轴截面中解决简单旋转体问题体现了化空间图形为平面 图形的转化思想.
(6)若球的半径为 R,则球的表面积为 S=___4_π_R_2________.
[答一答] 2.在平面几何中,你学习了直线与圆的位置关系,那么平 面与球的位置关系如何?
提示:类比平面上直线与圆的位置关系,平面与球有以下 几种位置关系:相离、相切、相交,其中相离是平面与球无公 共点,相切是平面与球有且只有一个公共点,相交则是平面与 球有无数多个公共点.
[变式训练 1] 判断下列各命题是否正确. (1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆 柱的母线; (2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成 的几何体是圆台; (3)圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形; (4)到定点的距离等于定长的点的集合是球.

1.1 任意角和弧度制 课件(34张PPT) 高中数学必修4(人教版A版)

1.1  任意角和弧度制  课件(34张PPT) 高中数学必修4(人教版A版)

圆心角为30°时
圆心角为60° 时
结论:圆心角不变则比值不变
比值的大小只与角度大小有关, 我们可以利用这个比值来度量 角,这就是度量角的另外一种 单位制——弧度制。
弧度制的定义
定义:长度等于半径 长的圆弧所对的圆心 角叫做弧度的角,用 符号1 rad表示,读 作1弧度。这种以弧 度为单位来度量角的 制度叫做弧度制。
3、终边相同的角
一般地,所有与角α 终边相同的角,连同角 α 在内,可构成一个集合
S { | k 360 , k Z}
0
即任一与角α终边相同的角,都可以表示成角α与 整数个周角的和. 注意:1 、α是任意的角(可以是正的,可以 是负的,也可以是0o) 2、k取整数
例l、在0°~360°范围内,找出与下列各角终 边相同的角,并判定它们是第几象限角: ①480° ② -150° ③ 665° ④-950° 解:① 480°=120°+1×360° 与120°的角终边相同,是第二象限角 ② -150°=210°+(-1)×360° 与210°的角终边相同,是第三象限角 ③ 665°=305°+360° 与305°的角终边相同,是第四象限角 ④ -950° =130°+(-3)×360° 与130°的角终边相同,是第二象限角
B' R B O A r L A'
l
即时问答:下列四个图中的圆心角的弧度数 分别是多少?
问题:
(1)若弧是一个半圆,圆心角所对的 弧度数是多少?若是一个圆呢?
(2)正角的弧度数是什么数?负角呢? 零角呢?角的正负由什么决定?
角度制与弧度制不同之处
1.定义方式不同:弧度制是以“弧度”为单 位的度量角的单位制,角度制是以“度”为 单位来度量角的单位制;1°≠1 弧度; 2. 进位制不同:弧度制是十进制,而角度 制是六十进制.

人教A版高中数学必修4PPT课件:2.平面向量的实际背景及基本概念

人教A版高中数学必修4PPT课件:2.平面向量的实际背景及基本概念

人教A版高中数学必修4PPT课件:2.平 面向量 的实际 背景及 基本概 念
向量的几何表示:用有向线段表示。
B
a
A
符号表示为:AB或者a
人教A版高中数学必修4PPT课件:2.平 面向量 的实际 背景及 基本概 念
问题分析 问题1: 下列不是向量的是( )
① 质量; ② 速度; ③位移; ④温度; ⑤加速度; ⑥路程 ⑦ 密度;⑧功
人教A版高中数学必修4PPT课件:2.平 面向量 的实际 背景及 基本概 念
人教A版高中数学必修4PPT课件:2.平 面向量 的实际 背景及 基本概 念
二 .向量的表示:
链接:物理中,矢量的表示法
人教A版高中数学必修4PPT课件:2.平 面向量 的实际 背景及 基本概 念
用有向线 段表示力
什么是有向线段?
把所有单位向量的起点平移到同一起点P,向 量的终点的集合是什么图形?
是以P点为圆心,以1个单 位长为半径的圆。
四、向量间的关系
1.相等向量:长度相等且方向相同的向量
叫做相等向量。
向量 a与 相b等,记作: a b
•向量不能比较大小,但可以说相等不相等
•向量可以自由平移即(向量可以平移)
四、向量间的关系
2,平行向量:方向相同或相反的非零向量叫做平行向量。
如: a
平行向量又叫做共线向量
b
c
记作 a ∥b ∥c
. 规定:0与任一向量平行。
C
o
A
向量的平行与直线 的平行一样吗?
l B
OA = a OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的 一点O ,这时它们是不是平行向量?

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

课件正切函数的图像和性质河南省新乡市-中学_人教版高中数学必修四PPT课件_优秀版

课件正切函数的图像和性质河南省新乡市-中学_人教版高中数学必修四PPT课件_优秀版

]
减函数
奇函数
2
对称轴: x
2
k
,
k
Z
对称中心: (k , 0) k Z
y=cosx
y
1
0
2
3 2 5 x
2
2
-1
xR
y [1,1]
x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
x[2k , 2k ] 减函数
偶函数
2
对称轴: x k , k Z 对称中心:(2 k , 0) k Z
正切函数
的性质:
取 x∈ (-π/2,π/2) ,先画函数y=tanx 在
函数 图像 定义域 值域 最值
单调性 奇偶性
周期 对称性
y=sinx
y
1
2
0
2
-1
3 2 5 x
2
2
xR
y [1,1]
x
2
2k 时, ymax
1
x
2
2k 时,ymin
1
x[-
2
2k
,
2
2k
]
增函数
x[2
2k ,
3
2
2k
向右平移,每次平移π个单位长度就得到y=tanx
1、根据正切函数的定义域和周期, 向右平移,每次平移π个单位长度就得到y=tanx
1
你能否得出一般性的结论? 取 x∈ (-π/2,π/2) ,先画函数y=tanx 在
x
取 x∈ (-π/2,π/2) ,先画函数3y=tanx 在 2
2
O
2
3 2
向右平移,每次平移π个单位长度就得到y=tanx

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)
互相垂直
填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?

最新高中数学人教A必修4课件:2.3.2 平面向量的正交分解及坐标表示

最新高中数学人教A必修4课件:2.3.2 平面向量的正交分解及坐标表示

-6-
2.3.2 平面向量的 正交分解及坐标表示
1 2 3
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
3.向量与坐标的关系 设 ������������ = ������i+yj,则向量 ������������的坐标 ������, ������ 就是终点������的坐标 ; 反过来 , 终点������的坐标 ������, ������ 就是向量 ������������的坐标 . 因此 , 在平面直角 坐标系内 , 每一个平面向量都可以用一有序实数对唯一表示, 即以 原点为起点的向量与实数对是一一对应的.
-3-
2.3.2 平面向量的 正交分解及坐标表示
1 2 3
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.平面向量的正交分解 把一个平面向量分解为两个互相垂直的向量 ,叫做平面向量的正 交分解.
【做一做 1】 如图,在矩形 ABCD 中 ,AC 与 BD 交于点 O,下列 是正交分解的是( ) A. ������������ = ������������ − ������������B. ������������ = ������������ − ������������ C. ������������ = ������������ + ������������ D. ������������ = ������������ + ������������ 解析 :由于������������ ⊥ ������������ , 则 ������������ = ������������ − ������������ 是正交分解. 答案 :B

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

高中人教版数学必修4课件:1.3公式五和公式六

高中人教版数学必修4课件:1.3公式五和公式六

=sin sin
θ+cos θ-cos
θ=左边, θ
所以原等式成立.
(2)左边=cocsoθssπ2i+n-θsθintaπ2n+-θθ =co-s sθisninθcθotasnθθ=-tan θ=右边, 所以原等式成立.
三角恒等式的证明策略 1遵循的原则:在证明时一般从左边到右边,或从右边到左边, 或左右归一,总之,应遵循化繁为简的原则. 2常用的方法:定义法,化弦法,拆项拆角法,公式变形法, “1”的代换法.
[解] 原式
=sinc-osα2π+-2πα··-cossinπ2+π2-αα·co·tsa2nπ2-2πα- α
=cos sin
αα··--scionsαα··ctoasn22αα=tsainn22αα=co1s2α.
D.cosπ2+θ
C [sin(π+θ)=-sin θ;sinπ2-θ=cos θ;
cosπ2-θ=sin θ;cosπ2+θ=-sin θ.]
2.sin 95°+cos 175°的值为( )
A.sin 5°
B.cos 5°
C.0
D.2sin 5°
C [sin 95°=cos 5°,cos 175°=-cos 5°, 故 sin 95°+cos 175°=0.]
2.若 α∈π,32π,则 1-sin232π-α=(
)
A.sin α
B.-sin α
C.cos α
D.-cos α
B [∵sin32π-α=-cos α,
又∵α∈π,32π,∴ 1-sin232π-α= 1-cos2α=|sin α|=-sin
α.]
3.计算:sin211°+sin279°=
.
[解]

高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4

高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4
1 (4,2),所以 2
=(2,1).
(2)设点A(x,y),则x= | OA | cos 60=4 3cos 60=2 3,
y= OA sin 60=4 3sin 60=6, 即 A 2 3,6 , 所以


OA= 2 3,6 .


【方法技巧】平面向量坐标运算的技巧 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进 行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的 坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
(x1+x2,y1+y2); ①a+b= _______________ (x1-x2,y1-y2) ; ②a-b= _____________ (λx1,λy1) ③λa= ____________.
(2)重要结论:已知向量 y2),则 的起点A(x1,y1),终点B(x2,
(x2-x1,y2-y1) = _____________.
=(x-5,2-y+2)=(4,6),解得x=9,
2.已知四边形ABCD为平行四边形,O为对角线AC,BD的交点, =(3,7), =(-2,1).求 的坐标.
【解析】因为 DB AB -AD =(-2,1)-(3,7)=(-5,-6),
1 5 所以 OB DB (- ,-3). 2 2
(2)定义坐标:对于平面内的一个向量a,由平面向量基本定理 (x_______ ,y) xi+yj 则有序数对 知,有且只有一对实数x,y,使得a=_____. 叫做向量a的坐标. (3)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
3.平面向量的坐标运算

高中数学必修4弧度制_ PPT 课件

高中数学必修4弧度制_ PPT 课件
(1)用角度表示
与终边相同的角可以表示为: k3 6 , k0 Z
它们构成一个集合:
S =| = k 3 ,k 6 Z 0
(2)用弧度表示
与终边相同的角可以表示为: 2k, k Z
它们构成一个集合:
S = |= 2 k ,k Z
180 把弧度换成角度
1ra=d18 05.73 0=5 71'8
正角 零角 负角
任意角的集合
正实数
0
负实数 实数集R
注意几点:
1.今后在具体运算时,“弧度”二字和 单位符号“rad”可以省略 如:3表示 3rad , sin表示rad角的正弦
2.一些特殊角的度数与弧度数的对应值应 该记住(见课本P8表)
—弧度制,它是如何定义呢?
弧度制 :
定义: 我们把长度等于半径长的弧所对的 圆心角叫做1弧度的角,即用弧度制度量时, 这样的圆心角等于1rad。
单位符号 :rad
B
l =r
1rad
Oo r
A
读作弧度
C
l = 2r
2rad
A
r
Oo
AOB=1rad
AOC=2rad
(1)正角的弧度数是正数,负角的弧度数是负数, 零角的弧度数是0
角度制与弧度制的比较
①弧度制是以“弧度”为单位度量角的制度,角度制 是以“度”为单位度量角的制度;
②1弧度是等于半径长的圆弧所对的圆心角(或该弧)
的大小,而 1
是圆的
1 360
所对的圆心角(或该弧)
的大小;
③不论是以“弧度”还是以“度”为单位的角的大小都是 一 个与半径大小无关的定值.
终边相同的角

2019人教版高中数学必修四课件:1.4.3 正切函数的性质与图象 探究导学课型

2019人教版高中数学必修四课件:1.4.3 正切函数的性质与图象 探究导学课型

2.函数y=
1 的定义域为 tan x
(
)
A.{x|x≠0}
B.{x|x≠kπ,k∈Z}
C.{x|x k ,, k Z} 2 k D.{x|x , k Z} 2
x k, k 【解析】选D.由 得x≠ 2 x k , 2
,k∈Z.
1.4.3
正切函数的性质与图象
【自主预习】 1.正切函数y=tanx的定义域是什么?
提示:正切函数y=tanx的定义域为 x x k ,k Z . 2
2.诱导公式tan(π+x)=tanx,说明了正切函数的什么性质? 提示:周期性.
3.诱导公式tan(-x)=-tanx说明了正切函数的什么性质? 提示:奇偶性.
【互动探究】 1.如图正切函数的图象,根据图象回答下面问题
(1)直线y=a与图象的两交点A1,A2之间的距离是多少? 提示:由图象结合正切函数的周期性可知,两交点之间 的距离为π.
(2)正切曲线与直线x= +kπ(k∈Z)存在怎样的关系? 2 提示:由正切函数的定义域为 {x|x k , k Z}, 所以正 2 切曲线与直线x= +kπ(k∈Z)无限接近但不会相交,即 2 正切曲线是由相互平行的直线x= +kπ(k∈Z)隔开的 2
6 2 6 3 2 6 2
因此函数的周期为 . 2 由 k 2x k, k Z 得 2 6 2 k k x ,k Z 6 2 2 3 因此函数的增区间是 ( k , k ), k Z. 6 2 2 3
无穷多支曲线组成的.
(3)怎样作y=tanx在x∈ [ , ] 上的草图? 提示:①描出三点 ( , 1), 0,0 ,( ,1)

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx

高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx

1-cos α 2,
1+cos α 2,
(S )
2
(C )
2
1-cos 1+cos
αα=1+sincoαs
1-cos
= α
sin α
α
.
(T )
2
8
题型探究
9
类型一 应用半角公式求值
例1
若π2<α<π,且 cos α=-35,则 sin 2α=
25 5
.
解析 因为 cos α=1-2sin2α2,
答案
αα
α
tan2α= sin cos
2α=
sin2·2cos α
2 cos2·2cos
2α=1+sincoαs 2
, α
α
αα
tan
2α= sin
2α= sin
2·2sin α
2α=1-sincoαs
α .
cos 2 cos 2·2sin 2
7 答案
梳理 正弦、余弦、正切的半角公式
sin α2= ± cos α2=± tan α2=±
sin α、cos α 都可以表示成 tan 2α=t 的“有理式”,将其代入式子中,
从而可以对式子求值.
11
跟踪训练 1
若 tan θ2+ 1 θ=m,则 sin θ=
2 m
.
tan 2
解析 因为 tanθ2+ 1 θ=m, tan2
即tanta2θ2n+θ2 1=m,所以tanta2θ2n+θ2 1=m1 ,
所以 2sin2α2=1-c2os α=45,
又因为π4<2α<π2,所以
sinα2=2
5
5 .
解析 10 答案
容易推出下列式子:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
混用角度制和弧度制
180 180 1 rad
1
rad

180

57.30

1 rad
180
(4)弧长公式和扇形面积公式.
lr
S r2 1 r2 1l r
2
2
2
l

n 360
2
r
n
180
r
S

n 360

r2

n
360
r2
2、角度与弧度的互化
2 360
1弧度 (180) 57.30 5718,
180

1
180
特殊角的角度数与弧度数的对应表
度 0 30 45 60 90120 135 150 180270360
2
一、角的基本概念
1.几类特殊角的表示方法
(1)与 角终边相同的角的集合: { | =2k+, k∈Z}.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+

2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-

2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+

2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
=k360º-90º(2k-2 )(kZ);
x 轴: =k180º(k)(kZ);
y
轴:
=k180º+90º(k+

2
)(kZ);
坐标轴:
=k90º(
k
2
)(kZ).
例2、(1)、终边落在x轴上的角度集合:
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、任意角的三角函数
1、角的概念的推广
的终边
y 的终边
正角
o
x 零角
负角
高中数学必修四课件全册 (人教A版)
2019年10月8日
《全册课件》
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
弧长公式与 扇形面积公式
正弦型函数的图象
y Asin x
同角公式
任意角的 三角函数
诱导公式
两角和与差的 三角函数
三角函数的 图形和性质
二倍角的 三角函数
三角函数式的恒等变形 (化简、求值、证明)
(,)
一、在直角坐标系内讨论角,角的顶点与 原点重合,角的始边 与 x轴的非负半轴重合。逆时针旋转为正,顺时针旋转为负。
二、象限角:角的终边(除端点外)在第几象限,我们就说这 个角是第几象限角。
注:如果角的终边在坐标轴上,则该角不是象限角。
三、所有与角 终边相同的角,连同角 在内,构成集合:
终边相同的角不一定相等,相等的角终边一定相同。
2、象限角、象间角与区间角的区别 y
2k ,2k k Z
O
x
3、角的终边落在“射线上”、“直线上”及“互相
垂直的两条直线上”的一般表示式
y
y
y

O
x

O
x

O
x
2k k Z k k Z
k k Z
S { | k 360 , k Z} (角度制)
{ | 2k , k Z} (弧度制)
例1、求在 0 到 360( 0到2)范围内,与下列各角终边相同的角
(1)、 950 12
(2)、139
129 48
1
3
三、终边相同的角
1、终边相同的角与相等角的区别
{ | k , k Z}
(2)、终边落在y轴上的角度集合:
{ | k , k Z}
2
(3)、终边落在象限平分线上的角度集合:
{ | k , k Z}
42
典型例题
例1.若α是第三象限的角,问α/2是哪个象限的 角?2α是哪个象限的角?
各个象限的半角范围可以用下图记 忆,图中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第 一、二、三、四象限角的半角范围;
60
例2 已知a是第二象限角,判断下列各角是第几象限角
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
弧度 0
2 3 5
6 4 3 2346
3 2
2
例3.已知角和满足
求角–的范围.

3





4
解:
, 0 . , .
3
3
, 7
4
4 3 12
例4、 已知扇形的周长为定值100,问扇形的半 径和圆心角分别为多少时扇形面积最大?最大值 是多少?
例1
设α 角是第二象限且满足|cosα| co限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
相关文档
最新文档