正弦型函数y=Asin(ωx+φ) 的图象

正弦型函数y=Asin(ωx+φ) 的图象
正弦型函数y=Asin(ωx+φ) 的图象

教 案

课外作业

教学后记、A对图象的影响较直观,ω的变化引起

图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知的难点,在教学

中,抓住“

对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。

授课主要内容或板书设计

(六)

巩固所学

布置作业

纵坐标不变

横坐标变为倍

纵坐标不变横坐标

向左平移(π/6)个单位

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质 一、学情分析: 1、学习过指数函数和对数函数; 2、学习过周期函数的定义; 3、学习过正弦函数、余弦函数[]π2,0上的图象。 二、教学目标: 知识目标: 1、正弦函数的性质; 2、余弦函数的性质; 能力目标: 1、能够利用函数图象研究正弦函数、余弦函数的性质; 2、会求简单函数的单调区间; 德育目标: 渗透数形结合思想和类比学习的方法。 三、教学重点 正弦函数、余弦函数的性质 四、教学难点 正弦函数、余弦函数的性质的理解与简单应用 五、教学方法 通过引导学生观察正弦函数、余弦函数的图象,从而发现正弦函数、余弦函数的性质,加深对性质的理解。(启发诱导式)

六、教具准备 多媒体课件 七、教学过程 1、复习导入 (1) 我们是从哪个角度入手来研究指数函数和对数函数的? (2) 正弦、余弦函数的图象在[]π2,0上是什么样的? 2、讲授新课 (1)正弦函数的图象和性质(由教师讲解) 通过多媒体课件展示出正弦函数在[]ππ2,2-内的图象,利用函数 图象探究函数的性质: ⅰ 定义域 正弦函数的定义域是实数集R ⅱ 值域 从图象上可以看到正弦曲线在[]1,1-这个范围内,所以正弦函数的值域是[]1,1- ⅲ 单调性 结合正弦函数的周期性和函数图象,研究函数单调性,即: ⅳ 最值 观察正弦函数图象,可以容易发现正弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论: 上是增函数;在)(22,22Z k k k ∈??????+-ππππ上是减函数;在)(232,22Z k k k ∈????? ?++ππππ1,22max =∈+=y Z k k x 时,当ππ1,2 2min -=∈-=y Z k k x 时,当ππ

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

正弦型函数图像高考题

正弦型函数历年高考题 1 一、选择题 1、(2005)函数y=sinx 的图象向左平移 6 π 后得到的图像的解析式是( ) A 、y=sinx+6π B 、y=sinx-6π C 、y=sin(x+6π) D 、y=sin(x-6 π ) 2、(2007)函数y=sin2x 的图象向左平移6 π 后得到的图像的解析式是( ) A 、y=sin(2x+6π) B 、y=sin(2x-6π) C 、y=sin(2x-3π) D 、y=sin(2x+3 π ) 3、 (2009)如图是函数y=2sin(x ω?+) (其中ω>0,?< 2 π ),则ω、?正确的是( A ω=2,?=6π B ω=2,?=3 π C ω=1,?=6π D ω=1,?=3 π 5、(2011)把y=sinx 的图像向左或向右平移π/2个单位,得到的函数是( ) A y=sinx B y=-cosx C cos y x = D y=sinx 或 y=-cosx 6、(2012)函数)4 2sin(2π + =x y 的图像,可由函数x y 2sin 2=的图像( )而得到。 A. 向左平移 4π个单位 B. 向右平移4π 个单位 C. 向左平移8π个单位 D.向右平移8π 个单位 二、填空题 7、(2003)函数sin 24y x π? ? =+ ?? ? 的图象向右平移 8 π 单位,所得图象的函数解析式是 。 2、(2004)函数sin 22 x x y =的最小正周期为 ,值域为 。 3、(2007)函数y=sinxcosx 的最小正周期是 ,最小值是 。 8、(2012)正弦型函数)sin(?ω+=x A y )0,0(>>?A 在一个最小正周期内的图像中,最高点为 )2,9(π,最低点是)2,9 4(-π ,则ω=___________. 9、(2014)把正弦函数sin 2y x =的图像向_________________个单位,可以得到正弦函数 sin 24y x π? ?=+ ?? ?的图像

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

正弦函数y=sinx的图象和性质

【本讲教育信息】 一. 教学内容: 1.3.1 正弦函数的图象和性质 二. 教学目的 1、掌握用几何法绘制正弦函数y sin x,x R =∈的图象的方法;掌握用五点法画正弦函数的简图的方法及意义; 2、掌握正弦函数y sin x,x R =∈的性质及应用; 3、掌握正弦型函数y Asin(x ),x R =ω+?∈的图象(特别是用五点法画函数 y Asin(x ),x R =ω+?∈的图象)、性质及应用。 三. 教学重点、难点 重点: 1、用五点法画函数y Asin(x ),x R =ω+?∈的简图; 2、函数y Asin(x ),x R =ω+?∈的性质及应用; 3、函数y sin x,x R =∈与y Asin(x ),x R =ω+?∈的图象的关系。 难点: 1、正弦函数y sin x,x R =∈的周期性和单调性的理解; 2、函数y sin x,x R =∈与y Asin(x ),x R =ω+?∈的图象的关系。 四. 知识分析 1、正弦函数图象的几何作法 采用弧度制, x 、y 均为实数,步骤如下: (1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从这个圆与 x 轴交点 A 起把圆分成 12 等份; (3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π 、L 、2π的正弦线; (4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份; (5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合; (6)用光滑曲线把这些正弦线的终点连结起来。 2、五点法作图 描点法在要求不太高的情况下,可用五点法作出,y sin x,x [0,2]=∈π的图象上有五

正弦函数的图像和性质教学设计

正弦函数的图象和性质 教师行为 学生学习活动 设计意图 (一) 提出问题,引入新课 教师引导学生复习:1、三角函数的定义及实质;2、三角函数线的作法和作用。 提问:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象? 在作图过程中有什么困难? 学生根据教师的提问,思考并回答问题。根据经验,画函数的图象,应该列表、描点。可是,感觉到困难。 把问题作为教学的出发点,引起学生的好奇,激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,关注学生动手能力培养。 (二) 初步探索,展示内涵 提出问题一:你是如何精确描出点 呢? 问题二:什么是正弦线?我们怎样找的正弦线? 学生讨论,问题一引导他们想到 的正弦值是 学生回答问题二:由单位圆的正弦线知识,只要已知角x 的大小,就可以由几何法作出相应的正弦值 来。 由浅入深、由易到难,帮助学生体会从三角函数线出发,“以已知探求未知”的数学思想方法,培养 学生的思维能力。 通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。 数形结合,扫清了学生的思维障 碍,更好地突破了教学的重难点。 (三) 合作交流,联想探究 1、 介绍正弦函数图象的几何作 图法 学生分组讨论研究,总结交流成果。一方面分组合作探究,展示动手结果,上台板演,同时回答同学们提出的问题。 使学生掌握探究问题的方法,发展他们分析问题和解决问题的能力,老师的点拨,学生探究实践,进一步加深学生对几何法作正弦函数图象的理解。

2、介绍“五点作图法” 让学生亲自动手实践,体会数与形的完美结合。 (四) 循序渐进,延伸探究 例1 画出函数 的 简图 思考:若从函数 的图像变换分析 的图象可由的图象怎 样得到? 大家是否能用同样方法来解决变式题呢? 变式:画出函数 的简 图 逐步掌握“五点法”作图。 学生思考、小结。 归纳得到,函数y=1+sinx 的图象可由y=sinx 的图象向上平移1个单位得到。 学生独立完成,上台板演,进一 步巩固“五点法”作图。 突出学生的主体性,通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充,增强合作意识。 (五) 归纳总结,内化知识 1、正弦曲线 2、注意与三角函数线等知识的联系 3、思想方法:“以已知探求未知”、类比、从特殊到一般 学生讨论,相互补充后进行回答。 让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。这是一个重组知识的过程,是一个 多维整合的过程,是一个高层次的自我认识过程,这样可帮助学生自行构建知识体系,理清知识脉络, 养成良好的学习习惯

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

正弦函数的图像和性质

1定义 编辑 数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为f(x)=sin x,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sin A=b/sin B=c/sin C 在直角三角形ABC中,∠C=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sin A=y/r,r=√(x^2+y^2) 2性质 编辑 图像 图像是波形图像(由单位圆投影到坐标系得出),叫做正弦曲线(sine curve) 正弦函数x∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1 ②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1 零值点:(kπ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称 2)中心对称:关于点(kπ,0),k∈Z对称 周期性 最小正周期:y=sinx T=2π 奇偶性

奇函数(其图象关于原点对称) 单调性 在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增. 在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减. 3正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin(ωx+φ)+h 各常数值对函数图像的影响: φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减) ω:决定周期(最小正周期T=2π/|ω|) A:决定峰值(即纵向拉伸压缩的倍数) h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图 “五点作图法”即当ωx+φ分别取0,π/2,π,3π/2,2π时y的值. 单位圆定义 图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了sin θ=y/1。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1 查看无限数目的三角形的一种方式。即sinθ=AB,与y轴正方向一样时正,否则为负 sina 对于大于2π或小于0 的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为2π的周期函数。[1] 4诱导公式 编辑 sin cos tαn cot sec csc π/2(90°)-α cos sin cot tαn csc sec π/2(90°)+α

正弦型函数的图像和性质(教学设计)

正弦型函数的图像和性质教学设计 教学目标:使学生掌握正弦型函数的图像及其性质,掌握图像 的变化规律。 重点:掌握正弦型函数的图像及其性质,掌握图像的变化规律。 难点:正弦型函数图像的变化规律。 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时, A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振 动一次需要的时间2T π ω =称为这个振动的周期,单位时间内往复振动的次数 12f T ω π == ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =, 先画出它在长度为一个周期内的闭区间上的简x 6 π- 12π 3π 712π 56 π 23 x π + 0 2 π π 32 π 2π 3sin(2)3 x π + 3 0 3- 0 x y O π 3 π- 6 π- 53 π 2π sin()3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(2)3 y x π =+

函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上; ②再把图象上所点的横坐标缩短到原来的1 2 ,得到sin(2)3y x π=+的图象;③再把 图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图 象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还 可看作由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移 6 π 个单位,得到函数sin 2()6 y x π =+的图象; ③再把函数sin 2()6 y x π=+的图象上所有点的纵坐标伸长到原来的3倍,得到 3sin 2()6 y x π =+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,

相关文档
最新文档