活塞式发动机时期

活塞式发动机时期
活塞式发动机时期

活塞式发动机时期

摘要本文回顾了航空发动机百年的发展历史。头40年为活塞式发动机统治时期,简述从液冷式为主

向气冷式为主的演变,介绍重要技术发明,说明活塞式发动机的性能进展和对飞机发展的贡献。在后60年

中,燃气涡轮发动机居主导地位,列出其各年代的技术进步,分涡喷/涡扇和涡桨/涡轴两部分回顾发展历

史,概括发动机性能的提高及其对航空器发展的作用。最后,指出了当前世界上航空发动机技术呈加速发

展的态势。

关键词活塞式发动机;涡轮发动机:推进技术:航空史

1引言

1903年12月17日,美国莱特兄弟实现了人类历史上首次有动力、载人、持续、稳定和可操作的重于空气飞行器的飞行。这使得几千年来由少数人从事的飞行探索事业在后来的百年中发展成为对世界政治、经济、军事、经济和技术以至人们的生活方式都有重要影响的航空业。因此,航空发动机从狭义上是航空器飞行的动力,从广义上它也是航空事业发展的推动力。

航空发动机的百年历史大致可分为两个时期。第一个时期从莱特兄弟的首次飞行开始到第二次世界大战结束为止。在这个时期内,活塞式发动机统治了40年左右。第二个时期从第二次设计大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。

2活塞式发动机时期

2. 1早期液冷发动机居主导地位,但气冷的旋转汽缸发动机曾风行一时

很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。

1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的“飞行者一号”飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg, 功重比为0.工1 kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制

螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、

载人、持续、稳定、可操作的重于空气飞行器的成功飞行。

以后,在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架时法国飞机,如装备伊斯潘诺一西扎V型液冷发动机的“斯佩德”战斗机。这种发动机的功率已达130-220kW,

功重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m.

当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年南注厂丁

国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时.这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞‘、

口0

2. 2两次世界大战之间的重要技术发明

在两次世界大战之间,在活塞式发动机领域出现几项重要的发明,为大幅度提高发动机和飞机的性能创造了条件。

(1)发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚

至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;

(2)废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;

(3)变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;

(4)内充金属钠的冷却排气门解决了排气门的过热问题;

(5)向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一:

(6)高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2-3逐步增加到

5-6,甚至8一9,既提高了升功率,又降低了耗油率。

2.3从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地

在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普惠公司先后发展出单排的“旋风”和“咫风”以及“黄蜂”和“大黄蜂”发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研

制成功,发动机功率己提高到600-820kW。此时,螺旋桨战斗机的飞行速度己超过SOOkm/h, 飞行高度达10000m.

在第二次世纪大战期间,气冷星型发动机继续向大功率方向发展。其中比较著名的有普惠公司的双排“双黄蜂”((R-2800)和四排“巨黄蜂" (R-4360)。前者在1839年7月1

定型,开始时功率为1230kW,共发展出5个系列几十个改型,最后功率达到2088kW,用于大量的军民用飞机和直升机。单单为P-47战斗机就生产了24000台R-2800发动机,其中

P-47)的最大速度达805km/h。虽然有争议,但据说这是第二次世界大战中飞得最快的战斗机。这种发动机在航空史上占有特殊的地位。在航空博物馆或航空展览会上,R-2800总是放置在中央位置。甚至有的航空史书上说,如果没有R-2800发动机,在第二次世界大战中盟国的取胜要困难得多。后者有四排28个汽缸,排量为71.5L,功率为2200-3000kW,是世界上功率最大的活塞式发动机,用于一些大型轰炸机和运输机。1941年,围绕六台R-4360 发动机设计的B-36轰炸机是少数推进是飞机之一,但未投入使用。莱特公司的R-2600和

R-335。发动机也是很有名的双排气冷星型发动机。前者在1939推出,功率为1120kW,用于第一架载买票旅客飞越大西洋的波音公司“快帆”314型四发水上飞机以及一些较小的鱼雷机、轰炸机和攻击机。后者在1941年投入使用,开始时功率为2088kW,主要用于著名

的B-29“空中堡垒”战略轰炸机。R-3350在战后发展出一种重要改型—涡轮组合发动机。发动机的排气驱动三个沿周向均布的废气涡轮,每个涡轮在最大状态下可发出150kW的功率。这样,R-3350的功率提高到2535kW,耗油率低达0.23kg/(kW -h), 1946年9月,装两台R-3350涡轮组合发动机的P2V1“海王星”飞机创造了18090km的空中不加油的飞行距

离世界纪录。

液冷发动机与气冷发动机之间的竞争在第二次世界大战中仍在继续。液冷发动机虽然有许多缺点,但它的迎风面积小,对高速战斗机特别有利。而且,战斗机的飞行高度高,受地面火力的威胁小,液冷发动机易损的弱点不突出。所以,它在许多战斗机上得到应用。例如,美国在这次大战中生产量最大的5种战斗机中有4种采用液冷发动机。其中,值得一提的是/>石

英国罗罗公司的梅林发动机。它在1935年11月在“咫风”战斗机上首次飞行时,功率达到708kW; 1936年在“喷火”战斗机上飞行时,功率提高到783kW。这两种飞机都时第二

次世界大战期间有名的战斗机,速度分别达到624km/h和750km/h。梅林发动机的功率在战争末期达到1238kW,甚至创造过1491kW的纪录。美国派克公司按专利生产了梅林发动机,用于改装P-51“野马”战斗机,使一种平常的飞机变成战时最优秀的战斗机。“野马”战斗

机采用一个不常见的五叶螺旋桨,安装梅林发动机后,最大速度达到760km/h,飞行高度为15000m。除具有当时最快的速度外,“野马”战斗机的另一个突出的优点是有惊人的远航能力,它可以把盟军的轰炸机一直护送到柏林。到战争结束时,“野马”战斗机在空战中共击落敌机495。架,居欧洲战场的首位。在远东和太平洋战场上,由于“野马”战斗机的参战,才结束了日本“零”式战斗机的霸主地位。航空史学界把“野马”飞机看作螺旋桨战斗机的顶峰之作。

在第二次世界大战开始之后和战后的最主要的技术进展有直接注油、涡轮组合发动机和低压点火。

在两次世界大战的推动下,发动机的性能提高很快,单机功率从不到10 kW增加到250 0

kW左右,功率重量比从0. 11 kW/daN提高到1. 5 kW/daN左右,升功率从每升排量几千瓦增

加到四五十千瓦,耗油率从约。.50 kg/(kWh)降低到。.23一。.27 kg/(kWh)。翻修寿命从几十小时延长到2000.3000h。到第二次世界大战结束时,活塞式发动机己经发展得相当

成熟,以它为动力的螺旋桨飞机的飞行速度从16km/h提高到近800 km/h,飞行高度达

到15。。。m。可以说,活塞式发动机己经达到其发展的顶峰。

2.4喷气时代的活塞式发动机

在第二次世界大战结束后,由于涡轮喷气发动机的发明而开创了喷气时代,活塞式发动机逐步退出主要航空领域,但功率小于37o kW的水平对缸活塞式发动机发动机仍广泛应用

在轻型低速飞机和直升机上,如行政机、农林机、勘探机、体育运动机、私人飞机和各种无人机,旋转活塞发动机在无人机上崭露头角。而且美国NASA还正在发展用航空煤油的新型二冲程柴油机供下一代小型通用飞机使用。

美国NASA己经实施了一项通用航空推进计划,为未来安全舒适、操作简便和价格低廉的通用轻型飞机提供动力技术。这种轻型飞机大致是4-6座的,飞行速度在365 km/h左右。一个方案是用涡轮风扇发动机,用它的飞机稍大,有6个座位,速度偏高。另一个方案是用狄塞尔循环活塞式发动机,用它的飞机有4个座位,速度偏低。对发动机的要求为: 功率为150 kW;

耗油率0. 22 kg/ (kW " h) ;

满足未来的排放要求;

制造和维修成本降低一半.

到2000年,该计划己经进行了500h以上的发动机地面试验,功率达到130 kW,耗油率0.23 kg/ (kW·h)。

3燃气涡轮发动机时期

第二个时期从第二次设计大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。在技术发展的推动下(见表1).涡轮

喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、桨扇发动机和涡轮轴发动机在不同时期在不同的飞行领域内发挥着各自的作用,使航空器性能跨上一个又一个新的台阶。

/1?

表1航空燃气涡轮发动机的技术进步

40年代

涡喷

50年代60年代}70年代80-90年代21世纪10-20年代

轴流式压

气机

双转子

双位喷管

高空模拟

试验

涡喷、涡

桨、涡轴

可调静子

马赫数3

气冷涡轮

加力燃烧

钦合金

涡喷、涡桨

多设计点

加力涡扇

跨声速压气机

环管燃烧室轻重量设计可调喷管

进/发匹配

V/STOL

断裂力学

镍基合金

航改燃机

核心机途径祸喷、涡桨祸轴、涡扇高推重比(8) 高涵道比

宽弦叶片

环形燃烧室三转子结构结构完整性数字电子控制低温复合材料定向凝固涡轮叶片

粉末冶金祸轮盘

单元体结构视情维修

加速任务试验祸喷、涡桨涡轴、涡扇超音速巡航计算流体力学空心风扇叶片整体叶盘

双级燃烧室

单晶涡轮叶片

隔热涂层

矢量喷管

全权数字电子

控制

低温复合材料

低应力陶瓷

CAD/C人M

寿命期成本循

环优化设计

部件级数值仿

真设计

涡喷、涡桨

涡轴、涡扇

超高推重比(20)

超高涵道比

超声速STOVL

变循环发动机

智能发动机

超微型发动机

主动流动控制

多电发动机

多点燃油喷嘴

无盘转子

HCF降低

金属间化合物

高温复合材料

陶瓷和碳碳材料

飞行一推进综合控制高温燃料

自动预诊断和状态管理推进系统数值仿真设计经济承受性设计

一机

3.1涡喷/涡扇发动机

英国的惠特尔和德国的奥海因分别在1937年7月14日和1937年9月研制成功离心

式涡轮喷气发动机WU和HeS3B。前者推力为530daN,但1941年5月15日首次试飞的格罗斯特公司E28/39飞机装的是其改进型WIB,推力为540daN,推重比2.20。后者推力为490 daN,

推重比1.38,于1939年8月27日率先装在亨克尔公司的He-178飞机上试飞成功。这是世界上第一架试飞成功的喷气式飞机,开创了喷气推进新时代和航空事业的新纪元。

世界上第一台实用的涡轮喷气发动机是德国的尤莫一004, 1940年10月开始台架试车,1941年12月推力达到980daN, 1942年7月18日装在梅塞施米特Me-262飞机上试飞成功。自1944年9月至1945年5月,Me-262共击落盟军飞机613架,自己损失200架(包括非

战斗损失)。英国的第一种实用涡轮喷气发动机是1943年4月罗·罗公司推出的威兰德,推力为755daN,推重比2.0。该发动机当年投入生产后即装备“流星”战斗机,于工944年5 月交给英国空军使用。该机曾在英吉利海峡上空成功地拦截了德国的V-1导弹。

战后,美、苏、法通过买专利,或借助从德国取得的资料和人员,陆续发展了本国第一代涡轮喷气发动机。其中,美国通用电气公司的J47轴流式祸喷发动机和苏联克里莫夫设计局的RD-45离心式涡喷发动机的推力都在2活塞式发动机时期

650daN左右,推重比为2-3,它们分别在1949

年和1948年装在F-86和米格一15战斗机上服役。这两种飞机在朝鲜战争期间展开了你死我

活的空战。

20世纪50年代初,加力燃烧室的采用使发动机在短时间内能够大幅度提高推力,为飞机突破声障提供足够的推力。典型的发动机有美国的J57和苏联的RD-9B,它们的加力推力分别为7000daN和3250daN,推重比各为3.5和4.5。它们分别装在超声速的单发F-100和双发米格一19战斗机上。

在50年代末和60年代初,各国研制了适合M2以上飞机的一批涡喷发动机,如J79, 375、埃汉、奥林帕斯、阿塔9C, R-11和R-13,推重比己达5-6。在60年代中期还发展出用于M3一级飞机的J58和R-31涡喷发动机。到70年代初,用于“协和”超声速客机的奥林帕斯593涡喷发动机定型,最大推力达到17000daN。从此再没有重要的涡喷发动机问世。

涡扇发动机的发展是从民用发动机开始的。世界上第一台涡扇发动机是1959年定型的英国康维,推力为5730daN,用于VC-10, DC-8和波音707客机。涵道比有0.3和0.6两种,耗油率比同时期的涡喷发动机低1M-20%o 1960年,美国在TT3C祸喷发动机的基础上改型研制成功JT3D涡扇发动机,推力超过7700daN,涵道比1.4,用于波音707和DC-8客机以

及军用运输机。

以后,涡扇发动机向低涵道比的军用加力发动机和高涵道比的民用发动机的两个方向发展。

在低涵道比军用加力涡扇发动机方面,20世纪60年代,英、美在民用涡扇发动机的基础上研制出斯贝一MK202和TF30,分别用于英国购买的“鬼怪”F-4M/K战斗机和美国的FI 11

(后又用于F-14战斗机)。它们的推重比与同时期的涡喷发动机差不多,但中间耗油率低,使飞机航程大大增加。在70-80年代,各国研制出推重比8一级的涡扇发动机,如美国的

F!00, F404, F110,西欧三国的RB199,前苏联的RD-33和AL-31F。它们装备目前在一线的第三战斗机,如F-15, F-16, F-18,“狂风”、米格一29和苏一27。目前,推重比10

一级的

涡扇发动机己研制成功,即将投入服役。它们包括美国的F-221F119、西欧的EFA20001E12 00

和法国的“阵风”/M88。其中,F-221F119具有第四代战斗机代表性特征—超声速巡航、

短距起落、超机动性和隐身能力。超声速垂直起飞短距着陆的JSF动力装置F136正在研制之中,预计将于2010-2012年投入服役。

自20世纪70年代第一代推力在20000daN以上的高涵道比(4-6)涡扇发动机投入使

用以来,开创了大型宽体客机的新时代。后来,又发展出推力小于20000daN的不同推力级的高涵道比涡扇发动机,广泛用于各种千线和支线客机。10000-15000daN推力级的CFM56 系列已生产13000多台,并创造了机上寿命超过30000h的记录。民用涡扇发动机依然投入使用以来,已使巡肮耗油率降低一半,噪声下降20dB, CO, UHC, NOX分别减少70%, 90%, 45%a 90年代中期装备波音777投入使用的第二代高涵道比(6-9)涡扇发动机的推力超过35000daN。其中,通用电气公司GE90-115B在2003年2月创造了56900daN的发动机推力世界纪录。目前,普惠公司正在研制新一代涡扇发动机P W 8000,这种齿轮传动涡扇发动机,

推力为11 000-16 000daN.涵道比11,耗油率下降9%,

3.2涡桨/涡轴发动机

1942年,英国开始研制世界上第一台涡桨发动机曼巴。该机装在海军“塘鹅”舰载反

潜飞机上。以后,英国、美国和前苏联陆续研制出多种涡桨发动机,如达特、T56. AI-20 和AI-24。这些涡桨发动机的耗油率低,起飞推力大,装备了一些重要的运输机和轰炸机。美国在1956年服役的涡桨发动机T56/501,装于C-130运输机、P3-C侦察机和E-2C预警机。它的功率范围为2580^-4414 kW,有多个军民用系列,已生产了17000多台,出口到50多个国家和地区,是世界上生产数量最多的涡桨发动机之一、至今还在生产。前苏联的HK-12M的最达功率达11000kW,用于图一20"熊”式轰炸机、安一22军用运输机和图一11 4

民用运输机。终因螺旋桨在吸收功率、尺寸和飞行速度方面的限制,在大型飞机上涡轮螺旋桨发动机逐步被涡轮风扇发动机所取代,但在中小型运输机和通用飞机上仍有一席之地。其中加拿大普·惠公司的PT6A发动机是典型代表,40年来,这个功率范围为350-1100kW 的发动机系列已发展出30多个改型,用于144个国家的近百种飞机,共生产了30000多台。美国在90年代在T56和T406的基础上研制出新一代高速支线飞机用的AE2100是当前最先进的涡桨发动机,功率范围为2983^-5966 kW,其起飞耗油率特低,为0. 249 kg/ ( kW·h).

最近西欧四国决定为欧洲中型军用运输机A400M研制TP400涡桨发动机。该发动机以法国的M88的核心机为基础,功率为7460kW,计划于2008年定型。

在20世纪80年代后期,掀起了一阵性能上介于涡桨发动机和涡扇发动机之间的桨扇发动机热。一些著名的发动机公司都在不同程度上进行了预计和试验,其中通用电气公司的无涵道风扇((UDF)GE36曾进行了飞行试验。由于种种原因,只有俄罗斯和乌克兰的安一70/D -27

进入工程研制并计划批生产装备部队。但因飞机技术老化、发动机噪声不符合欧洲标准和试验中发生的问题较多,最近俄乌双方作出放弃装备该机的决定。

从1950年法国透博梅卡公司研制出206 kW的阿都斯特I型涡轴发动机并装备美国的

S52-5直升机上首飞成功以后,涡轮轴发动机在直升机领域逐步取代活塞式发动机而成为最主要的动力形式。半个世纪以来,涡轴发动机已成功低发展出四代,功重比已从2kW/daN 提高到6.8-7.1 kW/daN。第三代涡轴发动机是20世纪70年代设计,80年代投产的产品。主要代表机型有马基拉、T700-GE-701A和TV3-117VM,装备AS322“超美洲豹”、UH-60A, AH-64A、米一24和卡一52。第四代涡轴发动机是20世纪80年代末90年代初开始研制的新一

代发动机,代表机型有英、法联合研制的RTM322、美国的T800-LHT-800、德法英联合研制的

MTR390和俄罗斯的TVD1500,用于NH-90, EH-101,WAH-64,RAH-66"科曼奇”,PAH-2/HAP/HA C

“虎”和长-52。世界上最大的涡轮轴发动机是乌克兰的D一”6,起飞功率为7500 kw,装两台发动机的米一26直升机可运载20 t的货物。以T406涡轮轴发动机为动力的倾转旋翼机

V-22突破常规旋翼机400 km/h的飞行速度上限,一下子提高到638 km/ho 目前,美国正准备利陆军计划利用高性能涡轮发动机技术((IHPTET)计划第一阶段和第二阶段的成果发展用于UH-60A"黑鹰"/AH-64A`‘阿帕奇”改进型的动力一一共用发动机项

目((CEP). CEP的目标是耗油率减少25-30%,功重比提高60%,采购成本和维护成本最小减少20%,使直升机的航程增加60%或载荷增加70%,同时减少后勤服务和维护的负担。CEP项目的生产型发动机的功率限制在2240kW ,

为满足未来运输旋翼机(FTR)的动力需求,2004财年将开始一个利用IHPTET第二

阶段和第三阶段技术的发动机验证计划。这种发动机的功率为7460kW,其工程和制造研制 (EMD)将于2008到2010财年进行。预计FTR与现在的重型运输直升机相比,可使航程增加三倍,或载荷增加一倍。

4结论

航空嫩气涡轮发动机问世以后的60年来在技术上取得的重大进步可用下列数字表明。

(1)服役的战斗机发动机推重比从2提高到7-9,己经定型并即将投入使用的达9-100

(2)民用大涵道比涡扇发动机的最大推力己超过50 000 daN,巡航耗油率从50年代的最主要的技术进展有直接注油、涡轮组合发动机和

低压点火。

在两次世界大战的推动下,发动机的性能提高很快,单机功率从不到10 kW增加到250 0

kW左右,功率重量比从0. 11 kW/daN提高到1. 5 kW/daN左右,升功率从每升排量几千瓦增

加到四五十千瓦,耗油率从约。.50 kg/(kWh)降低到。.23一。.27 kg/(kWh)。翻修寿命从几十小时延长到2000.3000h。到第二次世界大战结束时,活塞式发动机己经发展得相当

成熟,以它为动力的螺旋桨飞机的飞行速度从16km/h提高到近800 km/h,飞行高度达

到15。。。m。可以说,活塞式发动机己经达到其发展的顶峰。

2.4喷气时代的活塞式发动机

在第二次世界大战结束后,由于涡轮喷气发动机的发明而开创了喷气时代,活塞式发动机逐步退出主要航空领域,但功率小于37o kW的水平对缸活塞式发动机发动机仍广泛应用在轻型低速飞机和直升机上,如行政机、农林机、勘探机、体育运动机、私人飞机和各种无人机,旋转活塞发动机在无人机上崭露头角。而且美国NASA还正在发展用航空煤油的新型二冲程柴油机供下一代小型通用飞机使用。

美国NASA己经实施了一项通用航空推进计划,为未来安全舒适、操作简便和价格低廉的通用轻型飞机提供动力技术。这种轻型飞机大致是4-6座的,飞行速度在365 km/h左右。一个方案是用涡轮风扇发动机,用它的飞机稍大,有6个座位,速度偏高。另一个方案是用狄塞尔循环活塞式发动机,用它的飞机有4个座位,速度偏低。对发动机的要求为: 功率为150 kW;

耗油率0. 22 kg/ (kW " h) ;

满足未来的排放要求;

制造和维修成本降低一半.

到2000年,该计划己经进行了500h以上的发动机地面试验,功率达到130 kW,耗油率0.23 kg/ (kW·h)。

3燃气涡轮发动机时期

第二个时期从第二次设计大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。在技术发展的推动下(见表1).涡轮

喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、桨扇发动机和涡轮轴发动机在不同时期在不同的飞行领域内发挥着各自的作用,使航空器性能跨上一个又一个新的台阶。

/1?

表1航空燃气涡轮发动机的技术进步

40年代

涡喷

50年代60年代}70年代80-90年代21世纪10-20年代轴流式压

气机

双转子

双位喷管

高空模拟

试验

涡喷、涡

桨、涡轴

可调静子

马赫数3

气冷涡轮

加力燃烧

钦合金

涡喷、涡桨

祸轴、涡扇

多设计点

加力涡扇

跨声速压气

环管燃烧室

轻重量设计

可调喷管

进/发匹配

V/STOL

断裂力学

镍基合金

航改燃机

核心机途径祸喷、涡桨祸轴、涡扇高推重比(8) 高涵道比

宽弦叶片

环形燃烧室三转子结构结构完整性数字电子控制低温复合材料定向凝固涡轮叶片

粉末冶金祸轮盘

单元体结构视情维修

加速任务试验祸喷、涡桨涡轴、涡扇超音速巡航计算流体力学空心风扇叶片整体叶盘

双级燃烧室对转涡轮转子

单晶涡轮叶片

隔热涂层

矢量喷管

全权数字电子

控制

低温复合材料

低应力陶瓷

CAD/C人M

寿命期成本循

环优化设计

部件级数值仿

真设计

涡喷、涡桨

涡轴、涡扇

超高推重比(20) 超高涵道比

超声速STOVL

变循环发动机

智能发动机

超微型发动机

主动流动控制

多电发动机

多点燃油喷嘴

无盘转子

HCF降低

金属间化合物

高温复合材料

陶瓷和碳碳材料

飞行一推进综合控制

高温燃料

自动预诊断和状态管理

推进系统数值仿真设计

经济承受性设计

一机

3.1涡喷/涡扇发动机

英国的惠特尔和德国的奥海因分别在1937年7月14日和1937年9月研制成功离心

式涡轮喷气发动机WU和HeS3B。前者推力为530daN,但1941年5月15日首次试飞的格罗斯特公司E28/39飞机装的是其改进型WIB,推力为540daN,推重比2.20。后者推力为490 daN,

推重比1.38,于1939年8月27日率先装在亨克尔公司的He-178飞机上试飞成功。这是世界上第一架试飞成功的喷气式飞机,开创了喷气推进新时代和航空事业的新纪元。

世界上第一台实用的涡轮喷气发动机是德国的尤莫一004, 1940年10月开始台架试车,1941年12月推力达到980daN, 1942年7月18日装在梅塞施米特Me-262飞机上试飞成功。自1944年9月至1945年5月,Me-262共击落盟军飞机613架,自己损失200架(包括非

战斗损失)。英国的第一种实用涡轮喷气发动机是1943年4月罗·罗公司推出的威兰德,推力为755daN,推重比2.0。该发动机当年投入生产后即装备“流星”战斗机,于工944年5 月交给英国空军使用。该机曾在英吉利海峡上空成功地拦截了德国的V-1导弹。

战后,美、苏、法通过买专利,或借助从德国取得的资料和人员,陆续发展了本国第一代涡轮喷气发动机。其中,美国通用电气公司的J47轴流式祸喷发动机和苏联克里莫夫设计局的RD-45离心式涡喷发动机的推力都在

汽车发动机构造与原理分析解析

汽车发动机构造原理Automobile engine configuration principle (申请学位) 专业:汽车制造与装调技术专业 学生:x x x 指导教师:x x x教授 二零一一年七月

独创性声明 本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得xxxxxxx学校或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文作者签名:签字日期:年月日 学位论文版权使用授权书 本论文作者完全了解XXXX学校有关保留、使用论文的规定。特授权XXXX 学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 (保密的论文在解密后适用本授权说明) 论文作者签名:导师签名: 签字日期:年月日签字日期:年月日

中文摘要 发动机是汽车的心脏,为汽车的行走提供动力,汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)或天然气的热能,通过在密封汽缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,但其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点,现在的汽车发动机不仅注重汽车动力的体现,更加注重能源消耗、尾气排放等与环境保护相关的方面。使得人们在悠闲的享受汽车文化的同时,也能保护环境,节约资源 关键词:发动机构造、工作原理、分类、

航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关

闭。 (二)活塞式发动机的原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。

发动机的基本工作原理

发动机的基本工作原理 发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。下面是收集的发动机的基本工作原理,欢迎阅读。 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞 在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活 塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或 发动机排量,用符号VL表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压 缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内

的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。 压缩行程 为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。 压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示: 压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。

四行程发动机工作原理

四行程发动机工作原理 四行程汽油机经过进气、压缩、作功和排气行程完成一个工作循环。 (1) 进气行程 活塞从上止点向下止点运动,排气门关闭,进气门打开。可燃混合气通过进气门被吸入气缸,直至活塞向下运动到下止点。 (2) 压缩行程 曲轴继续旋转,活塞从下止点向上止点运动,这时进气门和排气门都关闭,气缸内成为封闭容积,可燃混合气受到压缩,压力和温度不断升高,当活塞到达上止点时压缩行程结束。 (3) 作功行程 作功行程,进气门和排气门仍然保持关闭。当活塞位于压缩行程接近上止点(即点火提前角)位置时,火花塞产生电火花点燃可燃混合气,可燃混合气燃烧后放出大量的热使气缸内气体温度和压力急剧升高,推动活塞从上止点向下止点运动,通过连杆使曲轴旋转并输出机械功,除了用于维持发动机本身继续运转外,其余用于对外作功。随着活塞向下运动,气缸内容积增加,气体压力和温度降低,当活塞运动到下止点时,作功行程结束。 (4) 排气行程当作功接近终了时,排气门开启,进气门仍然关闭,靠废气的压力先进行自由排气,活塞到达下止点再向上止点运动时,继续把废气强制排出到大气中去,活塞越过上止点后,排气门关闭,排气行程结束。 曲轴继续旋转,活塞从上止点向下止点运动,又开始了下一个新的循环过程。在每一个工作循环中,活塞在上、下止点往复运动了四个行程,相应地曲轴旋转了两圈 汽油喷射系统 电控汽油喷射系统是利用各种传感器检测发动机的各种状态,经电脑的判断、计算,使发动机在不同工况下,均能获得合适浓度的可燃混合气。 电子控制喷油系统是通过空气流量计、歧管绝对压力传感器或节气门位置传感器来检测发动机进气量,电子控制单元根据各种传感器的信号进行判断、计算、修正控制喷油器喷油的持续时间,使发动机获得该工况下运行所需的最佳可燃混合气浓度。 电控汽油喷射系统由进气系统、燃油系统、点火系统和控制系统四部分组成。 进气系统为发动机可燃混合气的形成提供必需的空气。空气经空气滤清器、空气流量计、节气门体、进气总管、进气歧管进入气缸。

!发动机基本工作原理

!发动机基本工作原理

发动机基本工作原理 一、基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、

油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 二、燃烧是关键 汽车的发动机一般都采用4冲程。4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期(2圈)。 理解4冲程活塞,它由一个活塞杆和曲轴相联,过程如下: 1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气 2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。

直列4缸V6 水平对置4缸 不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。 四、排量 混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。 所以增加汽缸数量或增加每个汽缸燃烧室的容

(完整版)液压自由活塞发动机

液压自由活塞发动机 把传统的曲柄连杆机构用刚性连接代替,从结构上可看成由内燃机和液压泵两部分组成。由帕斯卡原理可知,要产生高压必然大的为内燃机活塞,小的为液压泵柱塞。常见的有三种类型,见图2。 图1 图2 (1)单活塞式(single piston)见图2(a、b、c)是指HFPE拥有一个动力室和一个液压柱塞组件,只能产生一个作用(single acting)。 (2)双活塞式(dual piston)见图2(d、e)是指HFPE拥有两个动力室和一个液压柱塞组件,能产生两个作用(double acting)。 (3)对置活塞式(oppose piston)见图2(f、g)是指HFPE拥有一个动力室和两个液压柱塞组件,并且两活塞组件镜像布置,且有向内作用(inward acting)和向外作用(outward acting)两种。 基本原理活塞做往复直线运动,其工作原理见图3,(为荷兰Innas BV公司研发)。往复循环开始时,内燃机活塞处于最右端即底部下止点,电控系统使电磁阀得电,蓄能器中的高压油流入回复腔,推动活塞和柱塞往左运动,同时内燃活塞腔的空气被压缩,液压油吸入柱塞腔。当内燃机活塞到达上止点时,燃油喷射并点燃,高压气体推动活塞往右运动,柱塞将高压油通过单向阀压入高压侧,同时燃烧废气被扫出缸体,活塞运动到下止点,等待电磁阀打开进入下一循环,如此反复。

图3 基本特点大的内燃机活塞和小的液压柱塞是刚性连接的,省去了曲柄连杆机构和液压柱塞泵中的斜盘机构,故而得名“自由活塞”。与传统的发动机相比有许多新特点: (1)结构简单、零件数目少、质量轻;没有飞轮,选用2冲程发动机;单组元功率可为 15K W~30KW。 (2)活塞与缸体间无侧向力作用,磨损小;压缩比可变;活塞只做往复直线运动,发动 机起停较容易;控制系统复杂。 (3)经济性好、燃料使用范围广,甚至可用重质低质燃料;效率高,总效率可达40%(能 量链短);排放低。在对压缩比精确控制(误差为±2%)时,NOx排放为7~8gr/KWh; 煤烟排放FSN(filter soot number)为0.5~1.0;没有飞轮作用,熄火现象较严重; 为使效率最大和控制更简单,最适合常压变流量液压系统。

发动机基本概念

1.曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 2.配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 3.燃料供给系统 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。 4.润滑系统 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 5.冷却系统 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 6.点火系统 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 7.起动系统 要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。 8.上止点 活塞在气缸里作往复直线运动时,当活塞向上运动到最高位置,即活塞顶部距离曲轴旋转中心最远的极限位置,称为上止点。 9.下止点 活塞在气缸里作往复直线运动时,当活塞向下运动到最低位置,即活塞顶部距离曲轴旋转中心最近的极限位置,称为下止点。 10.活塞行程 活塞从一个止点到另一个止点移动的距离,即上、下止点之间的距离称为活塞行程。一般用s表示,对应一个活塞行程,曲轴旋转180°。

摩托车发动机技术及工作原理

摩托车发动机技术及工作原理 (一)摩托车发动机工作原理概述 1.四冲程发动机工作原理(如图1所示) (1)第一行程-进气行程 活塞在上止点前某一规定曲柄转角时,进气门开启,可燃混合气被吸入汽缸。当活塞由上止点向下止点运动,排气阀则在上止点某一规定的曲轴转角时关闭,同时活塞上方的汽容积增大,使汽缸形成真空度,可燃混合气继续通过进气门

吸入。当活塞行至下止点后某一规定曲柄转角时,进气门关闭。此时,进气工作过程结束。 (2)第二行程-压缩行程 活塞由下止点向上止点运动,当进气工作过程终了时,进气门和排气门都处于关闭状态,此时汽缸内的可燃混台气形台被压缩。 (3)第三行程-翻烧膨胀作功行程 在压缩行程,当活塞向上行至上止点前某-规定曲柄转角时,火花塞电极间发出火花,将被压缩的可燃混合气点燃。燃烧着的可燃混合旬吏汽缸内的温度和压力急剧升高,活塞则在此高温高压气压的作用下,再由上止点向下止点运动,且通过连杆驱使曲轴旋转而做有用功。 (4)第四行程-排气行程 在燃烧膨胀行程,当活塞行至下止点前某一规定曲轴转角时,扫汽阀开启,废气即通过排气门开始排出。曲轴仍继续旋转,并推动活塞再由下止点向上止点运动,将废气推出汽缸。此排气过程直到活塞行至上止点后某一规定曲轴转角,扫汽门被关闭时终止。 2.四冲程发动机优缺点 (1)优点 进气、压缩、膨胀(爆发)、排气各过程各自单独进行,因此工作可靠效率高,稳定性好。低速至高速的转速范围大(500-1000r/min以上)。不存在二冲程发动机那样的窜气回流损失,燃油消耗率低。低速运转平稳,依靠闰渭系润滑,不易过热。进气就压缩过程时间长,容积效率及平均有效压力高。热负荷比二冲程发动机小。不用担心变形和烧蚀问题。扫漫大,可设计成大功率发动机。 (2)缺点 气门配气机构复杂,零部件多,保养困难;机械噪声大;由于曲轴旋转二圈爆发1次,所以旋转平衡不稳定。

活塞式航空发动机

空 发 动 机 组成: 活塞式航空发动机是一种往复式内燃机, 连杆、曲轴、进气活门和排气活门等组成。 工作原理: 胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的混 合气体 被下行的活塞吸入气缸内。在压缩 冲程,活塞从下死点运动到上死点,进气 活门和排气活门都关闭,混合气体在气缸 内被压缩,在上死点附近,由装在气缸头 部的火花塞点火。在做功(膨胀)冲程, 混合气体点燃后,具有高温高压的燃气开 始膨胀,推动活塞从上死点向下死点运动。 在此行程,燃烧气体所蕴含的内能转变为 活塞运动的机械能,并有连杆传给曲轴, 成为带动螺旋桨转动的动力。在排气冲程, 活塞从下死点运动到上死 点,排气活门开 放,燃烧后的废气被活塞排出缸外。当活塞到达上死点 后,排气活门关闭,此时就完成了四个冲程的循 环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转 动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲 轴运动的协调,不能在运动中互相牵制。 通过带动螺旋桨高速转动而产生推力。 主要由气缸、活塞、 活塞式航空发动机一般用汽油作为燃料, 每一循环包括四个冲程, 即进气冲程、压缩冲程、做功(膨 啟功冲程 排競冲程 四申陛洁塞塩动或MfE 原理 排气口若谨這口开喷抽嘴

活塞式发动机的运

转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统 平对置早活塞发动机上采用液体冷却, 在发缸机外壳布置散热套,具有 定压力的冷却液在套内循环流动带走热量。 液体冷却系统因包括水箱、水泵、散热器和相 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器, 汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花, 将气缸内的混合气体 点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能 外,还有很大一部分传给了气缸壁和其他有关机件。 冷却系统的作用就是将这些热量散发出 去,以保证发动机正常工作。 启动系统:将发动机发动起来, 需要借助外来动力,通常用电动机带动曲轴转动使发动机启 动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂, 定时将进气活门和排气活门开启 和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、 功率大、尺寸小和耗油省等,因此活塞式发动机的 主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 发动机提供的功率和发动机重量之比。 功率重量比越大,越有利于改善飞机的飞行性能。 燃料消耗率: 燃料消耗率(耗油率)是衡量发动机经济性的一项指标。 一般定义为产生1KW 功率在每 小时所消耗的燃料的质量。 活塞发动机的发展在二战期间达到了顶峰,飞机喷气化以后用得越来越少。在 1000m 高度上,816km/h 的飞行速度已是活塞发动机的极限飞行速度。由于活塞发动机功率小,重 量大,外形阻力大,螺旋桨高速旋转时效率低, 且桨尖易产生激波,因此战后随着涡轮喷气、 涡轮螺桨和涡轮风扇发动机的发展,它逐渐退出了大中型飞机领域。 尽管活塞式发动机有如上致命弱点。 但是对低速飞机而言, 它具有喷气式发动机无可比 拟的优点,即效率高、耗油率低和价格低廉等。另外,由于燃烧较完全,对环境的污染相对 较小,噪音也比 应的管路系 复杂而笨 来采用气体 气冷式发动 曲轴为中 形,气缸外 散热片,飞 的高速气流 的热量散 却目的。 辅助系 统等,结构 重,因此后 冷却系统。 机气缸以 心,排成星 面有很多 行时产生 将气缸壁 去,达到冷 统:

航空发动机知识大全

航空发动机知识大全 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

世界最小的内燃机

世界最小的内燃机 内燃机: 内燃机,是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接 转换为动力的热力发动机。 广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。 活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其汽缸内 燃烧,释放出的热能使汽缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄 连杆机构或其他机构将机械功输出,驱动从动机械工作。 常见的有柴油机和汽油机,通过将内能转化为机械能,是通过做功改变内能。 内燃机的分类: 根据着火方式分为点燃式发动机和压燃式发动机 内燃机按照完成一个工作循环所需的行程数可分为四冲程内燃机和二冲程内燃机。 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。 内燃机按照气缸排列方式不同可以分为单列式和双列式。 内燃机按照进气系统是否采用增压方式可以分为自然吸气非增压式发动机和强制进气 增压式发动机。 船用内燃机可用柴油、汽油、煤油或煤气、天然气作燃料。烧煤气的叫煤气机,汽油机、煤气机功率小,仅用在小型船舶上。 新华网北京5月30日电据海外媒体报道,美国加州大学的科学家成功研制出一台,有望代替目前手提电脑或其他电子产品使用的电池。 据《科学与您》杂志提供的消息,加州大学的法兰地比路教授说,这台内燃机只有一 便士硬币大小,可以持续提供能源,供应如流动电话、手提电脑和机器人等电子产品使用,甚至可以给士兵携带的装备提供所需要的能源。 目前,科学家制造的内燃机只可以提供2.5W的电流,科学家计划制造一个可提供30W 的内燃机,作为电子产品的电源。

活塞式航空发动机.docx

谢谢欣赏 活塞式航空发动机+ 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油和空气的 混合气体被下行的活塞吸入气缸内。在 压缩冲程,活塞从下死点运动到上死点, 进气活门和排气活门都关闭,混合气体 在气缸内被压缩,在上死点附近,由装 在气缸头部的火花塞点火。在做功(膨 胀)冲程,混合气体点燃后,具有高温 高压的燃气开始膨胀,推动活塞从上死 点向下死点运动。在此行程,燃烧气体 所蕴含的内能转变为活塞运动的机械能, 并有连杆传给曲轴,成为带动螺旋桨转 动的动力。在排气冲程,活塞从下死点 运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。 谢谢欣赏

谢谢欣赏 谢谢欣赏 活 塞 式发动机的运 转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高, 因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有 一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 定时系统:定时系统是由曲轴带动凸轮盘推动连杆和摇臂,定时将进气活门和排气活门开启和关闭的系统。 主要性能指标: 活塞式发动机的主要要求是重量轻、功率大、尺寸小和耗油省等,因此活塞式发动机的主要性能指标有以下几个: 发动机功率: 发动机可用于驱动螺旋桨的功率称为有效功率。 功率重量比: 4缸水平对置 6缸V 形布置 2缸水平对置

基于Matlab的微型发动机燃烧过程仿真建模

万方数据

万方数据

模型、理想气体漏气模型和理想气体模型.计算得到的各项参数如活塞位置、活塞运行速度、燃烧室内温度和压力等进行对比分析,并将各种模型下的计算结果与文献[9]中微型HCCI自由活塞发动机单次冲击试验数据进行比较,如图2—6所示. 图2给出了4种模型下活塞位移的变化规律.可以很直观地看出在压缩和膨胀过程中,活塞位置随时间变化的曲线近似成一次函数的关系.在压缩过程中,活塞位置几乎无差别,而在膨胀过程中各种模型的计算结果有较大差异.其中同时考虑泄漏和传热的影响的模型计算结果与试验数据吻合得很好,说明气体泄漏和传热对燃烧过程有较大影响. 图4给出了4种模型下活塞速度的变化规律.从图中可以看出微型自由活塞HCCI发动机整个工作过程活塞速度的变化趋势,在压缩阶段,活塞速度缓慢下降,在到达上止点附近时,活塞速度下降较快,在压缩止点附近活塞速度反向.在经历了很短的燃烧持续期(1.4—1.6ins)后,进入膨胀过程,活塞速度在很短的时间迅速增加.其后,活塞速度的增加又开始减缓,曲线变得平坦.注意到考虑化学反应的传热和传热漏气模型的膨胀过程末速度明显大于活塞初速度,而不考虑化学反应的理想气体模型和理想气体漏气模型的活塞末速度则与初始速度相近,这是由于燃料化学能转变为自由活塞动能.另外,有漏气情况下膨胀过程中活塞的速率明显小于无漏气的情况,因为有漏气的情况在很大程度上降低了缸内压力,而速率由缸内压力决定,由于压力的降低而使速率减小. 图2捕蓉佗置与时『自】的天糸 Fig.2Relationshipbetweenpistonpositionandtime 图3中传热漏气模型和理想漏气模型的质量损 失百分率的变化情况很好地解释了泄漏对活塞位置 的影响.压缩开始时,质量损失近乎相等,随着压缩 图4活塞速度与时间的关系 的进行,有40%左右的充量在活塞变方向时损失掉Fig.4Relationshipbetweenpistonvelocityandtime (1?5ms左右)?因而,压缩过程中活塞的运动轨迹 图5和图6分别是4种情况下微型HCCI自由 相似而膨胀过程中区别很大?另外,传热漏气情况下 活塞发动机燃烧过程的温度和压力曲线.从图中可 燃烧发生时的质量损失明显低于同时刻理想气体漏 以看出,在1.5啪附近时,传热和传热漏气模型的气情况?这是因为燃烧使缸内压力骤答寸高,,明显高温度和压力陡升,而在理想的模型中这种现象并不于未发生燃烧的过程,茭且应用的尹。自.由.活多,所以存在.这是由于在传热和传热漏气模型中考虑了化此时发生燃烧过程的活塞速度的减型、程譬要比理想学反应,在活塞压缩到上止点时燃料反应放出大量气体的快很多,因此活塞在最大压孳皆竺譬历的时化学能,开始着火进行燃烧,使得温度和压力陡升.间相对减少,即在相对较大的压力处堂竽警时间减另外,注意到在压力曲线中传热模型的压力比漏气 少,故质量损失低于未发生燃烧的过程¨¨¨1? 模型的高,这也是由于存在漏气损失. 图3质量损失百分率 Fig.3Percentofmass lost 181 图5温度与时间的关系 Fig.5Relationshipbetweentemperatureand time 万方数据

(完整版)发动机原理知识点

1.发动机的定义。 燃料在机器内部燃烧而将化学能转化为热能,再通过气体膨胀做功将其转化为机械能输出的机械设备。 2.发动机发展历经的三个阶段。 ①20世纪70年代之前(提高生产力) 目标:追求良好的动力性能。 措施:提高压缩比,提高转速。 指标:最高车速、加速性能、最大爬坡能力。三个指标均取决于发动机及其它动力装置。 ②20世纪70~80年代(石油危机) 目标:追求良好的经济性能。 措施:降低油耗、增大升功率、减轻比重量。 指标:百公里油耗。 ③20世纪80年代后期(环境污染) 目标:追求良好的环保性能。主要解决排放与噪声问题。 3.常规汽车能源和新型替代能源有哪些,各有何特点? ①汽油机:汽油和空气混合经压缩由火花塞点燃。 ②柴油机:柴油和空气混合经压缩自行着火燃烧。 ③天然气发动机LNG ④液化石油气发动机LPG ⑤酒精发动机 ⑥双燃料、多燃料发动机 4.热力系统基本概念; 在热力学中,将所要研究的对象从周围物体中隔离出来,构成一个热力系统。 系统以外的一切物质,称为外界,热力系统和外界的分界面,称为界面。5.热力学第一定律的实质; 当热能与其它形式的能量相互转换时,能的总量保持不变,只是能量的形式发生了变化—能量守衡。吸收的能量-散失的能量=储存能量的变化量 6.理想气体的四个基本热力过程; ①定容过程:热力过程进行中系统的容积(比容)保持不变的过程。 ②定压过程:热力过程进行中系统的压力保持不变。 ③定温过程:热力过程进行中系统的温度保持不变 ④绝热过程:热力过程进行中系统与外界没有热量的传递 7.四行程发动机的实际工作循环过程; 进气过程、压缩过程、燃烧过程、膨胀过程、排气过程 8.发动机实际循环向理论循环的简化条件; ①忽略进、排气过程(r-a,b-r), 排气放热简化为定容放热过程; ②压缩、膨胀过程(复杂的多变过程)简化为绝热过程; ③把燃料燃烧加热燃气的过程简化成工质从高温热源的吸热过程,分为定容 加热过程(c~z’)和定压加热过程(z’~z); ④假定工质为定比热的理想气体。

直线发电机的方案设计_自由活塞式内燃直线发电机研究进展(二)

!专题综述# 直线发电机的方案设计 ———自由活塞式内燃直线发电机研究进展(二) 周志宏 Ξ (江汉石油学院机械系) 摘要 自由活塞式内燃直线发电机是近年来正在研究的发电机种类,具有结构简单、效率高 和单位质量功率大等特点。介绍了感应发电机、永磁直线发电机和同步磁阻直线发电机的结构及特点,这些种类的发电机应力都较低,不会对设计产生多大影响。对方案影响较大的是发电机的效率、功率因数和比功率。3种类型直线发电机中,永磁直线发电机综合性能最好,其中的扁平式永磁直线发电机性能最佳,是自由活塞式内燃发电机组的最佳选择。 关键词 直线发电机 感应直线发电机 永磁直线发电机 磁阻直线发电机 引 言 文献[1]介绍了自由活塞式直线发电机组的基本原理与结构以及HCCI 自由活塞式内燃机特点 和数值模拟的结果。然而,在自由活塞式发电机组中,直线发电机是另一个非常重要的部分。这个部分的设计好坏对整个机组的性能有很大的影响。 直线发电机有较长的发展历史,它与内燃机相结合则是近年来的事情。在研究与设计直线发电机时,应将整个系统综合考虑来确定某些设计参数。例如,发电机供电电路与其运动件的速度有关,而速度与加速度和力有关。作用在发电机运动部件上的力最主要是燃烧时活塞受到的膨胀力。运动部件的加速度取决于它的质量,它的质量是系统的关键参数。在常电负荷下,运动部件的加速度很大,因此在设计时需要特别予以关注,可能会引起高应力、疲劳等问题。此外,运动部件的速度也与正弦曲线相去很远,说明感生电动势的谐波比重很大,这要求对电器和滤波器的设计考虑这些因素。除了技术上的限制外,经济上也会对性能和设计产生约束,例如高效率、高功率质量比和低成本等。所有这些因素都会对直线发电机的方案选择及设计产生影响。 笔者从直线发电机运行应力、效率、功率因数 和比功率等几个对发电机组产生重大影响的方面, 介绍比较3种类型的直线发电机的结构及其优缺点,为在自由活塞式发电机组中选择方案和设计直线发电机提供参考。 发电机的方案 自由活塞式发电机组的成功不仅取决于发动机的设计,也取决于适当的发电机方案。但是不管那种方案,有一个共同点,直线型发电机是不连续的,因此或者是短的运动件或者是短的定子。短的运动件类型运动质量小,而短定子表现出高功率质量比。为了有效地利用作用材料,至少发电机的部件之一是一个冲程长度,另一个至少两个冲程长度。研究直线发电机的方案,先必须对发电机进行分类。 直线发电机有一种分类方法是基于运动件的作用材料,通常可以分为运动线圈、运动磁体和运动铁芯等3类发电机,由这3类组合的也有可能。另一种分类方法是感应发电机、永磁发电机和磁阻发电机。后一种分类方法更适合人们的习惯。以下介绍这几种发电机的结构和基本特性。 11感应发电机 感应发电机是一种稳定的、可靠的和低成本的交流发电机。直线感应发电机的技术已经非常成熟,它的缺点有:低功率质量比和低的功率因数。 ? 26? 石 油 机 械 CHINA PETROL EUM MACHIN ER Y 2003年 第31卷 第11期 Ξ 周志宏简介见本刊2003年第9期。 (收稿日期:2003-07-31;修改稿收到日期:2003-09-15)

发动机原理(热能与动力工程)

发动机原理 (Internal Combustion Engine Principles) 一、课程基本情况 课程编号:() 课程总学时:48 (其中:讲课:44,试验:4) 课程学分: 3 课程分类:必修 开设学期:春 开课单位:工学院车辆与交通工程系 适用专业:热能与动力工程 所需先修课:工程热力学、流体力学、传热学、发动机构造 课程负责人:李淑艳 二、课程内容简介 发动机原理是热能与动力工程(汽车发动机)专业最重要的一门专业技术基础课。通过本课程的教学和试验环节,使学生具有分析和改进提高发动机性能的基本能力,具有初步进行和组织发动机性能试验的基本能力,从而为学习本专业后续课程和从事本专业工作打下坚实的专业基础。 本课程以发动机的性能指标作为主要研究对象,把合理组织热力工作过程,提高整机性能作为中心内容,系统阐明发动机原理的基本理论、基本概念和基本试验方法,并深入到工作过程的各个阶段,分析影响性能指标的各种因素,找出规律,研究提高性能指标的措施与途径。 课程主要内容包括发动机的工作性能指标,工作循环分析,充量更换,混合气形成和燃烧,燃料供给与调节,排气污染物的生成机理与控制,工作特性与匹配。重点是研究发动机工作过程,综合分析发动机性能与参数之间的相互关系。 Internal Combustion Engine Principles is a basic professional course of Thermal Energy and Power Engineering (IC engine), and it is the most important course in all major courses of IC engine. Through teaching and testing, enable students to analyze and improve the basic capacity for improving the performance of engine, and be in capacity for organizing the internal combustion engine test, and this could lay the solid professional foundation for follow-up study. The main study objective of this course is engine operating parameters, organizing the working process reasonably and improving engine performance. Then systematically illustrate the basic theory, the basic concept and the testing method of engine. And this could be in the depth of each stage of thermo working process, and analyze various factors of influencing the performance indicators, and identify the general rules

四冲程发动机的工作原理

四冲程发动机的工作原理 四冲程发动机的使用范围很广,四冲发动机也就是说活塞每做四次往复运动汽缸点一次火。具体工作原理如下: 1·进气:此时进气门打开,活塞下行,汽油和空气的混合起被吸进汽缸内 2·压缩:此时进气门和排气门同时关闭,活塞上行,混合气被压缩。 3·燃烧:当混合器被压缩到最小时火花塞跳火点燃混和气,燃烧产生的压力推动活塞下行并带动曲轴旋转。 4·排气:当活塞下行到最低点时排气门打开,废气排出,活塞继续上行把多余的废气排出。 四冲程发动机的工作程序图 关于进排气的细节将在以后陆续为大家介绍,请密切留意动力机车 二冲程发动机的工作原理去 顾名思意二冲程发动机就是活塞上下运动两个行程,火花塞点火一次。二冲发动机的进气过程完全不同于四冲发动机,在二冲发动机上,混合气先流进曲轴箱然后才流进汽缸确切的说应是流进燃烧室,而四冲发动机的混合气是直接流进汽缸,四冲发动机的曲轴箱是用来存放机油的,二冲程发动机由于曲轴箱用来存放混合气不能储存机油所以二冲发动机用的机油是不能循环再用的燃烧机油。 二冲发动机的工作过程如下 1·活塞向上运动混合气流进曲轴箱 2·活塞下行把混合起压到燃烧室,有的书讲二冲程发动机要经过两次压缩,这就是第一次。 3·混合气到汽缸后活塞上行把进气口和排气口都关闭了,当活塞把气体压缩到最小体积时(这是第二次压缩)火花塞点火 4·燃烧的压力把活塞往下推,当活塞下行到一定的位置时排气口先打开,废气派出然后进气口打开,新的混合气进入汽缸把剩余废气挤出。 二冲程发动机的工作程序图 在相同的转速下因为二冲发动机比四冲发动燃烧次数多一次,所以功率大,而且二冲发动机也比同排量的四冲发动机轻巧许多,所以在赛车上二冲车占压倒性的优势,但由于二冲发动机的进气和排气在同时进行,当发动机的转速低时由于

活塞式航空发动机

活塞式航空发动机 + 组成: 活塞式航空发动机是一种往复式内燃机,通过带动螺旋桨高速转动而产生推力。主要由气缸、活塞、连杆、曲轴、进气活门和排气活门等组成。 工作原理: 活塞式航空发动机一般用汽油作为燃料,每一循环包括四个冲程,即进气冲程、压缩冲程、做功(膨胀)冲程、排气冲程。在进气冲程,活塞从上死点运动到下死点,进气活门开放而 排气活门关闭,雾化了的汽油 和空气的混合气体被下行的活 塞吸入气缸内。在压缩冲程, 活塞从下死点运动到上死点, 进气活门和排气活门都关闭, 混合气体在气缸内被压缩,在 上死点附近,由装在气缸头部 的火花塞点火。在做功(膨胀) 冲程,混合气体点燃后,具有 高温高压的燃气开始膨胀,推 动活塞从上死点向下死点运 动。在此行程,燃烧气体所蕴含的内能转变为活塞运动的机械能,并有连杆传给曲轴,成为带动螺旋桨转动的动力。在排气冲程,活塞从下死点运动到上死点,排气活门开放,燃烧后的废气被活塞排出缸外。当活塞到达上死点后,排气活门关闭,此时就完成了四个冲程的循环。 为满足功率要求,航空发动机一般都是由多气缸组合构成,多个缸体同时工作带动曲轴和螺旋桨转动以产生足够动力。缸体的数量和布置形式多种多样,但不管是哪种布置形式都必须保证活塞运动与曲轴运动的协调,不能在运动中互相牵制。

活塞式发动机的运转速度很高,气缸内每秒钟要点火燃烧几十次。高温高压的工作条件使得气缸壁温度很高,因此必须配备冷却系统。最早活塞发动机上采用液体冷却,在发动机外壳内有散热套,具有一定压力的冷却液在套内循环流动带走热量。液体冷却系统因包括水箱、水泵、散热器和相应的管路系统等,结构复杂而笨重,因此后来采用气体冷却系统。气冷式发动机气缸以曲轴为中心,排成星形,气缸外面有很多散热片,飞行时产生的高速气流将气缸壁的热量散去,达到冷却目的。 辅助系统: 进气系统:进气系统内常装有增压器来增大进气压力,以此改善高空性能。 燃料系统:燃料系统由燃料泵、汽化器或燃料喷射装置等组成。燃料泵将汽油压入汽化器,汽油在此雾化并与空气混合进入气缸。 点火系统:点火系统由磁电机产生的高压电在规定的时间产生电火花,将气缸内的混合气体点燃。 冷却系统:发动机内燃料燃烧时产生的热量除转化为的动能和排出的废气所带走的部分内能外,还有很大一部分传给了气缸壁和其他有关机件。冷却系统的作用就是将这些热量散发出去,以保证发动机正常工作。 启动系统:将发动机发动起来,需要借助外来动力,通常用电动机带动曲轴转动使发动机启动。 4缸水平对置 6缸V 形布置 2缸水平对置

相关文档
最新文档