反证法(证明) ppt课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若存在,求出其值,若不存在,请说明理由。
练习
求证:在任何三个整数中,必有这样的 两个数,他们的和是2的倍数
如果把9个苹果放在4个盒子里那么至少 有1个盒子中放了3个或者3个0 对于直线l : y kx 1 ,是否存在这样的
实数 k ,使得l 与双曲线 C : 3x2 y2 1
的交点A,B关于直线 y ax(a 是常数)对称?
例3 抛物线上任取四点4所组成的不可能是平行四边形。
练习
有一个4×4的方格表.先从中涂黑3个方格,然后再 将那些至少与两个已涂黑的方格相邻的方格也涂黑. 求证:无论最初涂黑哪3个方格,都不可能按这样的 规则涂黑所有的方格.
存在无限性命题与反证法
问题涉及存在多个符合某条件时,也使用反证法
反证法
反证法定义 方法的步骤 反证法的分类
反证法
反证法:通过证明命题的否定命题不真 实,从而肯定原命题成立的论证方式
包括归谬法和穷举法
反证法证题步骤
1、假设原命题不成立 2、从否定结论出发,逐层推理,得出与
公理、订立或者题设条件自相矛盾的结 论 3、根据排中律,肯定原命题成立
存在至多或者至少型命题
例8
若x, y, z 为实数,令 a x2 2y ,
2
b y2 2z , c z2 2x
3
6
求证:a,b, c 至少有一个不大于0。
例题
例8 把43人分成7各小组,总有一个小组 至少有7人
例9 把11个参加活动的名额分配给6个班, 每班至少分配1人,求证:不管怎么分, 至少有3个班的名额相等
否定性命题与反证法
否定型命题:结论中含有“不可 能……”“不是……”“不存在……”“不等于……” 等词句。这类命题通常用反证法证明。
例1 将数1,2,3,…,21分成七组,每组3个 数.试证:无论怎样分组,都不能保证每组中 都有一个数等于其余两数的和.
否定性命题与反证法
例2 证明:当0 a,b, c 1 时, (1 a)b , (1 b)c, (1 c)a 不能都大于 1 。
例5 设a, b都是整数,且a 2 b2 能被3整除,求证:
a和b都能被3整除。
练习
求证:从1、2、3、…、10这十个数中,任意 选出六个,这六个数中必有一个数是另一个数 的倍数。
能否在88 的方格表中的每一个方格中分别填
上1、2或者3,使得每行、每列以及两条对角 线上的各个数之和互不相同。
练习
求证:在任何三个整数中,必有这样的 两个数,他们的和是2的倍数
如果把9个苹果放在4个盒子里那么至少 有1个盒子中放了3个或者3个0 对于直线l : y kx 1 ,是否存在这样的
实数 k ,使得l 与双曲线 C : 3x2 y2 1
的交点A,B关于直线 y ax(a 是常数)对称?
例3 抛物线上任取四点4所组成的不可能是平行四边形。
练习
有一个4×4的方格表.先从中涂黑3个方格,然后再 将那些至少与两个已涂黑的方格相邻的方格也涂黑. 求证:无论最初涂黑哪3个方格,都不可能按这样的 规则涂黑所有的方格.
存在无限性命题与反证法
问题涉及存在多个符合某条件时,也使用反证法
反证法
反证法定义 方法的步骤 反证法的分类
反证法
反证法:通过证明命题的否定命题不真 实,从而肯定原命题成立的论证方式
包括归谬法和穷举法
反证法证题步骤
1、假设原命题不成立 2、从否定结论出发,逐层推理,得出与
公理、订立或者题设条件自相矛盾的结 论 3、根据排中律,肯定原命题成立
存在至多或者至少型命题
例8
若x, y, z 为实数,令 a x2 2y ,
2
b y2 2z , c z2 2x
3
6
求证:a,b, c 至少有一个不大于0。
例题
例8 把43人分成7各小组,总有一个小组 至少有7人
例9 把11个参加活动的名额分配给6个班, 每班至少分配1人,求证:不管怎么分, 至少有3个班的名额相等
否定性命题与反证法
否定型命题:结论中含有“不可 能……”“不是……”“不存在……”“不等于……” 等词句。这类命题通常用反证法证明。
例1 将数1,2,3,…,21分成七组,每组3个 数.试证:无论怎样分组,都不能保证每组中 都有一个数等于其余两数的和.
否定性命题与反证法
例2 证明:当0 a,b, c 1 时, (1 a)b , (1 b)c, (1 c)a 不能都大于 1 。
例5 设a, b都是整数,且a 2 b2 能被3整除,求证:
a和b都能被3整除。
练习
求证:从1、2、3、…、10这十个数中,任意 选出六个,这六个数中必有一个数是另一个数 的倍数。
能否在88 的方格表中的每一个方格中分别填
上1、2或者3,使得每行、每列以及两条对角 线上的各个数之和互不相同。