肿瘤的多药耐药及其逆转剂研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综述
肿瘤的多药耐药及其逆转剂研究进展
安徽省肿瘤医院桂留中
化疗仍是恶性肿瘤的重要治疗手段之一,然而肿瘤细胞的耐药常使化疗最终失败。根据肿瘤细胞的耐药特点,耐药可分为原药耐药(Primary drug resistance,PDR)和多药耐药(Multidrug resistance ,MDR)。PDR只对诱导药物产生耐药而对其他药物不产生交叉耐药性,如抗代谢药类;MDR 则是指肿瘤细胞对一种抗肿瘤药产生抗药性的同时,对其他结构和作用机制不同的抗肿瘤药产生交叉耐药性。MDR的表现十分复杂,既可有原发性(天然性)耐药,也可有诱导性(获得性)耐药;还有典型性和非典型性耐药之分。由于MDR给化疗带来了困难,近年人们对其产生的机制以及试图寻找逆转剂做了大量的工作。本文简介MDR产生的机制并着重介绍近年逆转剂的研究进展。
1.MDR产生的机制
1.1膜糖蛋白介导的机制
1.1.1 P-gp与MDR 1976年Ling等首先在抗秋水仙碱的中国仓鼠卵巢细胞株上发现了一种能调
节细胞膜通透性的糖蛋白(P-glycoprotein,P-gp),因其相对分子量为170kd,又称P-170。[1]。
P-gp主要分布在有分泌功能的上皮细胞的细胞膜中,在人类正常组织中有不同程度的表达,其中肾上腺、肺脏、胃肠、胰腺等组织中表达较高,而在骨髓中表达较低。P-gp属于ATP结合盒家族的转运因子,其生理功能为在ATP供能下将细胞内的毒性产物泵出细胞,对组织细胞起保护作用。
P-gp由mdr1基因编码产生。人类mdr1基因位于7号染色体长臂2区一带一亚带(7q21.1)。1986年,Gros将编码P-gp的mdr1cDNA直接转染敏感细胞后,转染细胞表现出完全的MDR表型,从而提供了P-gp能够导致多药耐药的有力证据。
现已证明,许多肿瘤原发性或获得性耐药均与P-gp过量表达有关。P-gp随mdr1基因扩增而增加。P-gp有多个药物结合位点,因而具有多种药物泵出功能,不过其底物多为天然性抗癌药如长春碱类、蒽环类、紫杉醇类和鬼臼毒素类等。由于P-gp能逆浓度差将药物泵出胞外,使细胞内药物浓度降低,从而减弱了药物的细胞毒作用。
1.1.2 MRP与MDR 1992年Cole等在两种非P-gpMDR细胞中发现了一种膜转运蛋白基因过度表达,
并由其命名为mrp基因。该基因位于人类染色体16q13.1,由其编码组成的跨膜糖蛋白称为多药耐药相关蛋白(Multidrug resistance-associated protein ,MRP),相对分子量为190kd,也属于ATP依赖性跨膜转运蛋白类。MRP的MDR相对机制与P-gp相似又有不同,相似的是都可依赖ATP供能将药物泵出细胞外,不同的是:① MRP转运时或与GSH结合,或与GSH共转运,改变药物在胞内的分布以降低核内药物浓度,从而使药物在DNA靶点的绝对浓度降低;②通过形成CL 通道或改变通道活性而改变细胞质或细胞器内的pH值,而肿瘤细胞内pH值降低将导致质子化的药物大量外排。MRP与P-gp之间存在交叉耐药种类,包括长春碱类、阿霉素、足叶乙苷等,均为能与GSH共结合的药物[1,2,3]。
1.1.3 LRP与MDR 1993年Scheffer发现小细胞肺癌中有lrp基因表达,该基因定位于
16q13.1-16q11.2,编码相对分子量为110kd蛋白,称肺耐药相关蛋白(Lung resistance-associated,LRP)。该蛋白是穹隆蛋白的主要成分,阻止以细胞核为靶点的药物通过核孔进入胞核,并将进入胞浆的药物转运到运输囊泡中,以胞吐的方式排出胞外,从而影响胞内的药物转运与分布,致靶点药物浓度下降,但亦依赖ATP供能。LRP分布在人体体腔上皮、分泌器官等正常组织中,也不同程度地分布于各种肿瘤组织中。LRP不仅对蒽环类、生物碱类、鬼臼毒素类产生耐药,也对以DNA为靶点的非P-gp和MRP介导耐药的顺铂、卡铂等烷化剂产生耐药。
1.1.4 BCRP与MDR 1998年美国3个不同的研究小组相继报道无P-gp和MRP表达的乳腺癌耐药细
胞系以及结肠癌耐药细胞系发现新的肿瘤耐药蛋白。后经RNA指纹分析技术发现,这些肿瘤细胞
有一2.4kb的mRNA过度表达,该mRNA编码一种655个氨基酸的蛋白质,被命名为乳腺癌耐药相关蛋白(BCRP)。该蛋白也是依赖ATP供能将化疗药物泵出细胞外导致MDR。免疫荧光显像证实BCRP主要位于细胞膜上,参与膜内外药物的转运,而不是像MRP那样主要改变药物在胞内的分布。过度表达BCRP的肿瘤细胞株对米托蒽醌、阿霉素、柔红霉素、鬼臼乙叉苷、喜树碱类产生交叉耐药,而对长春新碱、紫杉醇等较少交叉耐药。
1.2 酶介导的MDR
1.2.1谷胱甘肽转移酶(GST)与MDR GST是机体中催化GSH与亲电物质发生结合的一类酶系,是由同源或异源二聚体组成的超基因家族,到目前为止,共发现5类,即α、ζ、μ、θ、π。其中GST-π与恶性肿瘤关系最为密切.GST-π可催化亲电子物质与GSH结合,形成GSH-药物结合物,增加其水溶性促进代谢,最终将毒物从尿中排出或降解为无毒性的醇类物质,从而降低抗肿瘤药物的细胞毒作用.其主要介导顺铂、烷化剂、蒽环类的耐药.研究表明,肿瘤耐药程度与GST-π表达高低成正比.
1.2.2拓扑异构酶(Topoisomeras,TOPO) TOPO是一种能催化DNA超螺旋结构局部构型改变的基本核酶,分为Ⅰ、Ⅱ两类。其中TOPOⅡ与细胞耐药关系密切。TOPOⅡ是依托泊苷、替尼泊苷及蒽环类等的作用靶点。肿瘤细胞由于快速增长的特性,其TOPOⅡ含量及活性远高于正常细胞。含量越高,抗肿瘤药物作用靶点越多,化疗效果越好,反之效果差。已证明一些耐药肿瘤细胞内TOPOⅡ含量下降或活性减弱。因此TOPOⅡ含量可作为化疗的一个敏感性指标参数。此种耐药并不伴随P-gp或MRP的表达,因此又称为非典型性耐药。
1.2.3蛋白激酶C(PKC)与MDR PKC是一组Ca/磷脂依赖的同工酶,几乎参与所有MDR的调节。P-gp 是PKC催化磷酸化的底物,P-gp磷酸化后可被激活。PKC也可使MRP、LRP、GST和TOPOⅡ磷酸化而被激活。
1.2.4 环氧化酶(Cyclodxygenase,COX)是前列腺素合成过程中的关健酶,是一种膜结合蛋白,存在于核膜和线粒体上。其中COX-2是诱导型酶。近来一些研究表明,COX-2不仅通过多种机制参与肿瘤的发生发展和预后,还可能参与MDR的调节:人和鼠COX-2基因侧翼区含2个NF-kB结合位点,COX-2可能通过NF-kB途径调节P-gp的表达;COX-2的催化产物PGE2可使PKC上调而活化P-gp和MRP。一项研究表明[4],54例非小细胞肺癌中,COX-2阳性表达率为59.3%,P-gp表达率为46.3%,相应癌旁正常组织未见COX-2表达;在COX-2阳性组中,P-gp阳性表达率65.6%,明显高于COX-2阴性组的18.2%。刘军等[5]检测48例胃癌组织中COX-2阳性为29例(60.4%),P-gp阳性31例(64.6%);29例COX-2阳性者中有24例P-gp表达阳性。
1.3 凋亡调控基因介导的MDR
1.3.1 P53基因 P53基因位于17号染色体短臂,因编码相对分子量为53kd的核磷酸蛋白而命名。P53基因有两种:野生型和突变型。野生型是抑癌基因,可诱导肿瘤细胞凋亡,控制处于生长停止状态的静止期细胞从G0期到G1期的转变。野生型P53产物P53蛋白半衰期较短,一般无法用免疫组化法检测到。突变型不仅失去抑癌基因的作用,而且导致癌细胞凋亡信号丧失,从而增加癌细胞对抗癌药物诱导凋亡的耐受力。野生型P53能从基因转录水平抑制P-gp表达,而突变型P53将失去此作用,甚至能激活mdr1基因下游启动子转录活性,从而导致耐药。突变型P53基因所表达的蛋白结构改变,半衰期延长,而且易检测,广泛存在于多种肿瘤组织中。当用免疫组化法在癌组织中检测到P53蛋白时,便可认定P53基因发生了突变。
1.3.2 bcl-2家族 bcl-2家族是一类与细胞凋亡有关的基因家族,也是一个同源蛋白家族。Bcl-2是抑制细胞凋亡的重要基因,是决定肿瘤预后的重要指标。该基因表达增强能显著抑制细胞凋亡。Bcl-2不仅促进化疗和放疗的耐受,而且提高肿瘤复发率和恶变的潜力。
1.4 其他
DNA的去甲基化:目前,DNA甲基化作为一种基因外遗传信号逐渐为人们所熟知。DNA甲基化是在DNA甲基转移酶的作用下,以S-腺苷甲硫氨酰为甲基供体,将甲基转移到胞嘧啶的第5位上。