《线段的垂直平分线》课件.ppt

合集下载

时线段的垂直平分线的性质与判定课件

时线段的垂直平分线的性质与判定课件
如果一条直线上的点到线 段两个端点的距离相等, 那么这条直线是这条线段 的垂直平分线。
学习垂直平分线的注意事项
理解定义
要深入理解垂直平分线的定义,掌握其几何意义 和性质。
掌握性质
要牢记垂直平分线的性质,并能够灵活运用。
培养能力
要通过练习培养自己的分析问题和解决问题的能力。
如何更好地掌握垂直平分线的知识
垂直平分线的定理
定理1
如果一条直线是线段AB的垂直平 分线,那么这条直线上的任意一 点到A和B的距离相等。
定理2
如果一条直线不是线段AB的垂直 平分线,那么这条直线上任意一 点到A和B的距离之差与到AB的距 离相等。
02 线段垂直平分线 的画法
利用尺规作图
确定线段中点
首先确定线段的中点,标记为C。
垂直平分线的数学表示
假设线段AB,点C是AB的中点,那么 AC和BC的垂直平分线就是直线CB。
垂直平分线的性质
性质1
垂直平分线上的任意一点到线段 两端点的距离相等。
性质2
线段两端点关于其垂直平分线对称。
性质3
垂直平分线是线段最短的路径。即 在给定两点A和B的情况下,AC和 BC的垂直平分线是A和B之以线段的中点 C为起点,绘制直线。
确定垂直平分线
以中点C为圆心,以线段长度为 半径,画一个圆。与第一步绘制 的直线相交于两点A和B。连接这 两点,得到的直线即为线段的垂
直平分线。
利用计算机软件作图
选择绘图软件 绘制线段
选择一个具有绘图功能的计算机软件,如Microsoft Visio、 AutoCAD等。
在物理学中的应用
力学
在物理学中,垂直平分线被广泛应用于力学中。例如,在研究物体的运动时,垂 直平分线可以用于确定物体的重心和转动惯量。

线段的垂直平分线性质ppt课件

线段的垂直平分线性质ppt课件
猜想:
反过来,如果PA =PB,那么点P 是否在线 段AB 的垂直平分线上呢?
P
点P 在线段AB 的垂直平分线上.
已知:如图,PA =PB.
求证:点P 在线段AB 的垂直平
分线上.
A
B
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
小结与作业:
(1)本节课学习了哪些内容? (2)线段垂直平分线的性质和判定是如何得到的?
两者之间有什么关系? (3)如何判断一条直线是否是线段的垂直平分线?
教科书习题13.1第6、9题.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
拓展:
结论:三角形三边的垂直平分线交于一点, 并且这点到三个顶点的距离相等.
已知: △ABC中,边AB、 BC的垂直平分线交于点P.
求证:(1)PA=PB=PC.
(2)点P是否也在边AC的垂直平分线上?由此你
还能得出什么结论?
C
P
A
B
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
12.3 角的平分线
A DP C
O
EB
定理1 在角的平分线上的点到这 个角的两边的距离相等.
13.1 线段的垂直平分线
M P
A
B
N
定 理 线段垂直平分线上的点和 这条线段两个端点的距离相等.
定理2 到一个角的两边的距离相 等的点,在这个角的平分线上.
逆定理 和一条线段两个端点距离相 等的点,在这条线段的垂直平分线上.

线段垂直平分线的性质及判定定理ppt课件

线段垂直平分线的性质及判定定理ppt课件
今天学习了线段的中垂线的性质、 及逆定理,你能由此联想到前面学过的 什么知识与此类似吗?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线
上,可以先作出过点P的AB的垂线(或AB
的中点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是 否也可以得证?
驶向胜利 的彼岸
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3、如图,AD⊥BC,BD=DC,点C在AE的垂直 平分线上,AB、AC 、CE 的长度有什么关系? AB+BD 与DE有什么关系?
A
AB=AC=CE
AB+BD=DE B D C
E
4 、已知:如图,AB=AC=8cm ,DE是AB边的中垂线 认识到了贫困户贫困的根本原因,才能开始对症下药,然后药到病除。近年来国家对扶贫工作高度重视,已经展开了“精准扶贫”项目 交AC于点E,BC=6cm,求△BEC的周长A
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?

线段的垂直平分线ppt课件

线段的垂直平分线ppt课件

C 3. 如图,D是线段AC,AB的垂直平分线上,且∠ACD=30°, ∠BAD=50°,则∠BCD=
D
A
B
变式 如图,在△ABC中,点D是△ABC三边的垂直平分线 的交点,若∠C=60°,则∠D=
C
D
A
B
能力提升
1. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°, ∠BAD=50°,则∠BCD=
尺子作图 不精准
尺规作图
探究一:三角形三边的垂直平分线的性质
画出以下三角形三条边的垂直平分线,完成之后你发现了什么?
ADຫໍສະໝຸດ MBCE
N
O
F
猜想:三角形三条边的垂直平分线相交于一点,并且这一点 到三个顶点的距离相等.
证明:三角形三条边的垂直平分线相交于一点,且这一点到三个顶点 距离相等。
已知:如图,在△ABC中,边AB的垂直平分线与边BC的 垂直平分线交于P点.
求证:边AC的垂直平分线经过点P,且PA=PB=PC
归纳小结
三角形三边的垂直平分线的性质定理: 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点
的距离相等.
A
几何语言: ∵ 点P 为△ABC 三边垂直平分线的交点 B ∴ PA =PB=PC.
P C
探究二:尺规作图
议一议:(1)已知三角形的一条边及这条边上的高,你能作 出三角形吗?如果能,能作几个?所作出的三角形都全等吗?
的距离相等.
2. 尺规作图
2. 如图,在△ABC中,AB=BC,BD平分∠ABC,AB的垂直 平分线EF分别交AB,BD,BC于点E,G,F,连接AG,CG.
(1)求证:BG=CG.
(2)若∠ABC=42°,求∠CGF的大 小.

线段的垂直平分线课件

线段的垂直平分线课件

定理应用
在几何作图和证明中,垂直平分线是重要的工具之一。通过 垂直平分线,我们可以找到一个点到线段两端点距离相等的 点,从而解决一些几何问题。
在实际生活中,垂直平分线的应用也十分广泛。例如,在建 筑、道路规划、通信等领域中,常常需要用到垂直平分线的 性质来解决问题。
PART 03
线段垂直平分线的作法
垂直平分线的判定
判定1
若一条直线过线段中点且与线段 所在直线垂直,则该直线为线段
的垂直平分线。
判定2
若一条直线与线段上的两点距离相 等,且该直线与线段所在直线垂直 ,则该直线为线段的垂直平分线。
判定3
若一条直线与线段所在直线垂直, 且该直线上的点到线段两端点的连 线形成的角均为直角,则该直线为 线段的垂直平分线。
详细描述
首先,确定已知线段和该线段的垂直 平分线。然后,使用直尺或三角板, 将垂直平分线与线段的两个端点连接 。最后得到的直线即为所求的垂直平 分线。
PART 04
线段垂直平分线的性质在 生活中的应用
REPORTING
三角形中的垂直平分线
总结词
三角形中的垂直平分线有助于确定顶点的位置和三角形的形状。
详细描述
在三角形中,垂直平分线通过顶点将相对边等分,有助于确定顶点的位置和三角形的形状。在几何学中,垂直平 分线的性质常用于解决与三角形相关的问题。
地球上的经纬线
总结词
地球上的经纬线是垂直平分线的应用实例,用于确定地理位置和方向。
详细描述
经纬线是地球表面上的垂直平分线系统,用于确定地球上任意地点的地理位置和方向。经纬线交汇的 点称为经纬度,是地理坐标的基础。
总结词:操作简单,适合快 速作图。
01
第一步,将三角板的一条直

垂直平分线的性质ppt课件

垂直平分线的性质ppt课件
解:
∵DE是AB的垂直平分线 ∴EA=EB(线段垂直平分线上的点与这条线 段的两个端点的距离相等)
A D B
∵△BCE周长=CE+EB+BC 又∵AC=CE+EA=CE+EB
∴BC=△BCE周长-(CE+EB) =△BCE周长-AC =10cm
E C
21
做一做
已知:如图,P为∠MON内一点,OM⊥PA 于E,ON⊥PB于F,EA=EP,FB=FP,若AB 长为15cm,求△PCD的周长。
22
线段的垂直平分线
一、性质定理:线段垂直平分线上的点到这条线段两个端 点的距离相等。
二、逆定理:到线段两个端点距离相等的点,在这条 线段的垂直平分线上。
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点到这 条线段两个端点的距离相等
到线段两个端点距离相等的点, 在这条线段的垂直平分线上
PA=PB
分析:
点P在线段AB的 垂直平分线上
点P在线段BC的 垂直平分线上
A M
M’
P
PA=PB
PB=PC
B
PA=PB=PC
∵PA=PC ∴点P在AC的垂直平分线上
C N N’
18
例2:
如图,在Rt△ABC中,∠C=90
度,DE是AB的垂直平分线,连
接AE,∠1:∠2=1:2,求∠B
的度数。
C
E
B
D
A
19
1题图
13
2、如图,在△ABC中,BC的
中垂线交斜边AB于D,图中相
等的线段有( )
A、1组
B、2组
C、3组
D、4组
1
2
14

线段的垂直平分线PPT课件

线段的垂直平分线PPT课件

把其中的字母去掉,全用文字来表述:
如果_有__一__个__点_为__线__段__垂__直_平__分__线__上__的_任__意__一__点____________, 那么_这__个__点__到_这__条__线__段__的_两__个__端__点__距_离__相__等______________
把如果与那么再去掉,又可简写为:
如果有一个点为线段垂直平分线上的任意一点, 那么这个点到线段的两个端点距离相等。 其中,题设是__有_一__个__点__为__线_段__垂__直__平__分_线__上__的__任__意_一__点_
结论是__这__个__点__到_线__段__的__两__个_端__点__距__离__相_等______ 逆命题是 如果__有__一__个__点_到__线__段__的__两__个_端__点__距__离__相_等____
提出问题
问题:有两个村庄A、B,为了便于两个村庄的人看病,乡 政府计划修建一所医院,使得它到两村庄的距离相等,试 问医院的院址应选在何处?
A
B
图形展示
C P
A
E
D
已知CD是AB的垂直平 分线,P是CD上任意一点, 连接PA和PB,问PA=PB吗?
从图形上来看,随着P点上下 移动,PA=PBB你能用所学过的 Nhomakorabea识来证明吗?
A
C
B P L D
问题2:有三个村庄A、B、C,为了便于三个村庄的人看病,
乡政府计划修建一所医院,使得它到三个村庄的距离相等,
试问医院的院址P应选在何处?
A
F
D
P
B
E
想一想,P点与BC有怎样 的关系?
C
G
三角形三条边的中垂线是交 于一点的,这个点到三个顶 点距离相等

线段的垂直平分线ppt课件

线段的垂直平分线ppt课件
因为 OA =OB.由SSS可知△AOP ≌△BOP,
因为 所以 ∠AOP +∠ BOP=180°, ∠AOP = ∠ BOP,所以∠AOP = ∠ BOP=90°,即 B PO⊥ AB,所以PO是线段AB的垂直平分线,
这就是说,点P在线段AB的垂直平分线上.
CLL
新知学习
到线段两端距离相等的点在线段的垂直平分线上.
3.在公路CD同侧有A、B两个村庄,现要在公路上
CLL
建一车站,使车站到两村距离相等,如何确定车
站的位置?
P
A C 点P就车站所在的位置.
B
P
D
CLL
CLL
布置作业
基础性作业:课本习题2.4 1、2题 拓展性作业:同步练习册35页第6题
CLL
谢谢大家
CLL
情景导入
在公路CD同侧有A、B 两个村庄,现要在公路上建 一车站,使车站到两村距离 相等,如何确定车站的位置?
CLL
2.4 线段的垂直平分线 (第1课时)
CLL
1.体会线段的轴对称性,认识线段垂直平分线。 2.掌握线段垂直平分线的性质并会应用. 3.知道到线段两端距离相等的点在线段的垂直平分
线段垂直平分线上的点到线段两端的距离相等.
符号语言:
因为点P在 线段AB的垂直平分线上,
A
所以PA =PB.
M P
O N
CLL
B
CLL
学以致用
如图,点P、C、D是线段AB的垂直平分线MN上的任意 三点,分别连接PA,PB,AC,BC,AD,BD,指出图 中相等的线段
A
OA=OB,PA=PB,CA=CB,DA=DB
线上。 4.会用尺规作图作出一条线段的垂直平分线。

16.2 线段的垂直平分线(课件)冀教版数学八年级上册

16.2 线段的垂直平分线(课件)冀教版数学八年级上册

读 点 P 在
径画弧,交 l 于 A,B 两点;
直线 l
②作线段 AB 的垂直平分线 CD,

CD 即为直线 l 的垂线
图示
返回目录
第二课时 线段垂直平分线的判定和画法






返回目录
续表
①以点 P 为圆心,适当长为半径
点 P
画弧,交 l 于 A,B 两点;②分
在直
别以点 A,B 为圆心,适当长为
16.2 线段的垂直平分线
第一课时 线段垂直平分线的性质
● 考点清单解读
● 重难题型突破
● 易错易混分析
第一课时 线段垂直平分线的性质
■考点
返回目录
线段垂直平分线的性质定理


内容


线段垂直平分线上的点到线段两端的距

读 性质
离相等条件:点在线段的垂直平分线上
定理
结论:这个点到线段两端的距离相等






[解题思路]
[答案]9
返回目录
第一课时 线段垂直平分线的性质
返回目录
重 ■题型 线段垂直平分线的性质定理的应用


如图,在△ABC 中,∠A=60°,∠B=45°.若边

型 AC 的垂直平分线 DE 交边 AB 于点 D,交边 AC 于点 E,

破 连接 CD,则∠DCB 的度数为 (
返回目录
解题通法
涉及尺规作图的题目,首先要根据作图方


题 法或作图痕迹判断出所作图形,再结合题目所给条件解决
型 问题.

人教版八年级上册13.1.2线段的垂直平分线的性质 课件(共13张PPT)

人教版八年级上册13.1.2线段的垂直平分线的性质 课件(共13张PPT)

证明2:∵MN是线段AB的垂直平分线 ∴A、B关于MN成轴对称,A、B沿 MN对折之后能完全重合。 ∴PA = PB
演示
结论:
垂直平分线上的点到线段两端 点的距离相等
关键信息点: 垂直平分线上的点 到线段两端
练习: 1、一条线段的垂直平分线必定经过这条线段的 中 点 2、一条线段有 1 条垂直平分线。
拟 报 最 佳 理 由如下 : 1、 “ 机 关 作 风建设 年”活 动,是 工委党 建工作 围绕中 心,突出 重点,务 实创新 的一个
实际举措。
“ 机 关 作 风 建设年 ”活动 ,是机关 近年来 党建工 作能以 选择好 载体,结 合实际 ,开展 的 一 项 重 要 活动。 纪工委 起草了 《工委 开展“ 机关作 风建设 年”活 动实施 方案》 , 成 立 了 三 个 督查小 组,全年 组织四 次以上 大规模 检查,并 向主要 部门和市领导报告检 查 情 况 ,受 到 领导重 视。机 关64个 单位,有 60个单 位成立 了机关 纪律作风建设领导小 组 和 办 公 室 ,有组织 、有领 导、有 计划、 层层有 人抓。 作风建 设年活 动规模 大、影
3、已知MN是线段AB的垂直平分线,P为MN线上的一点,
若PA=6 ,则PB= 6 .
M P
O
A
B
N
4、已知MN是线段AB的垂直平分线,D、P是MN上的两点, 求证:△APD≌△BPD
证明:∵MN是线段AB的垂直平分线
M D
∴AD=BD ,AP=BP
P
在△APD 和 △BPD 中
A
O
B
AD BD
响 面 大 ,受 到 基层各 单位普 遍重视 。 2、 “ 机 关 作 风建设 年”活 动为开 展“工 业年” 保驾护 航。

《线段的垂直平分线》课件

《线段的垂直平分线》课件
详细描述
线段垂直平分线是数学竞赛中常用的解题工具之一。在数学竞赛中,常常会遇到一些复杂的几何问题 ,需要利用线段垂直平分线的性质来解决。通过深入理解线段垂直平分线的性质和定理,可以更好地 解决数学竞赛中的几何问题,提高解题效率。
THANK YOU
《线段的垂直平分线》PPT 课件
目录
• 引言 • 线段垂直平分线的性质证明 • 线段垂直平分线的作法 • 线段垂直平分线的应用实例
01
引言
什么是线段的垂直平分线是一条 过线段中点且垂直于线段 所在直线的直线。
性质
垂直平分线上的任意一点 到线段两端点的距离相等 。
详细描述
首先,连接两个给定点并确定中点。 然后,同样使用直角三角板或量角器 ,过中点作与线段垂直的垂线。最后 ,标记垂足,完成作图。
通过三个给定点作已知线段的垂直平分线
总结词
通过三个给定点作已知线段的垂直平分线的方法较为复杂,需要先确定三个点 的中点,然后过中点作垂线。
详细描述
首先,连接三个给定点并确定其中两个点的中点。然后,使用直角三角板或量 角器,过中点作与线段垂直的垂线。接着,再确定第三个点与前两个点的中点 ,重复上述步骤。最后,标记所有垂足,完成作图。
04
线段垂直平分线的应 用实例
线段垂直平分线在几何图形中的应用
总结词
解决几何图形问题
详细描述
线段的垂直平分线在几何图形中有着广泛的应用。它可以用来解决与线段、三角 形、四边形等有关的几何问题,例如线段的等分、角度的确定等。通过利用线段 垂直平分线的性质,可以简化几何图形的解题过程。
线段垂直平分线在日常生活中的应用
在三角形中,垂直平分 线将三角形分为两个面
积相等的子三角形。

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册

例5:如图,在Rt△ABC中,∠ACB=90°,D是AB上一点, BD=BC,过点D作AB的垂线交AC于点E,连接BE.求证: BE垂直平分CD.
证明:∵∠ACB=90°,DE⊥AB, ∴∠EDB=∠ACB=90°.∵BD=BC,BE=BE, ∴Rt△BED≌Rt△BEC,点B在CD的垂直平分线上, ∴DE=CE,∴点E在CD的垂直平分线上, ∴BE垂直平分CD.
13.1 轴对称
13.1.2线段的垂直平分线的性质
13.1.2.1 线段的垂直平分线的性质
学习目标
1.通过学生自主探究,理解并掌握线段垂直平分线的性质和判定,会用 线段的垂直平分线的性质和判定解决简单的数学问题,培养学生解决问 题的能力.
2.学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操 作能力和逻辑推理能力.
4.如果将已知、求证换一下位置,还能成立吗?试着探究一下.
如图,已知 PA=PB,
求证:点 P 在 AB 的垂直平分线上.
证明:如图,过点 P 作 AB 的垂线 l 交 AB 于点 C,

R
t△PAC

Rt△PB
C
中,
PA=PB, CP=CP,
∴R t △PAC≌R t △PB C(H L ).
∴AC=BC.∴直线 l 垂直平分 AB,
∴点 P 在 AB 的垂直平分线上.
小组讨论
1.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平 分线ON交于点O,分别交BC于点D,E,△ADE的周长为5 cm. (1)求BC的长;(2)求证:点O在线段BC的垂直平分线上.
(1)解:∵OM,ON分别是线段AB,AC的垂直平分线, ∴AD=BD,AE=CE.∵△ADE的周长=AD+AE+DE=5 cm, ∴BC=BD+DE+EC=5 cm.

13.1.2线段垂直平分线性质课件(共34张PPT)

13.1.2线段垂直平分线性质课件(共34张PPT)

B的距离.你有什么发现?再取几个点试试.你能说明理由吗?
发现: P到A的距离与P到B的距离相等.
P
已知:如图.AC=BC. PC⊥AB,P是MN上任意一点.
求证:PA=PB.
证明:∵MN⊥AB, ∴ ∠PCA=∠PCB=90° 在△APC与△BPC中:
PC=PC(公共边) ∠PCA=∠PCB(已证) AC=BC(已知) ∴△PCA≌△PCB(SAS) ∴PA=PB(全等三角形的对应边相等)
五角星的对称轴有什么特点? 相交于一点.
练习
1.作出下列图形的一条对称轴.和同学比较一下.你们 作出的对称轴一样吗?
练习
2.如图,角是轴对称图形吗?如果是,它的对称轴是什 么?
练习
3.如图,与图形A 成轴对称的是哪个图形?画出它的 对称轴.
A
B
C
D
做一做
1.正方形ABCD边长为a,点E,F分别是对角线BD上的两点, 过点E,F分别作AD,AB的平行线,如图所示,则图中阴影 部分的面积之和等于 1 a 2 .
B A
5.求作一点P,使它和已△ABC的三个顶点 距离相等.
A
·P
B
C
试一试
N
已 知 : P为 M ON内 一 点 。 P与 A关 于 ON对 称 , A
P与 B关 于 OM 对 称 。 若 AB长 为 15cm
求 : PCD的 周 长 .
D P
解: P与A关于ON对称
ON为PA的中垂线(
? …)
F
∴PA=PB 同理:PB=PC
P E
∴PA=PB=PC
A
N
B
结论:三角形三边的垂直平分线交于一 点,并且这点到三个顶点的距离相等.

线段的垂直平分线的性质课件ppt

线段的垂直平分线的性质课件ppt
平移等距性
在平移变换中,垂直平分线上的 点到线段两个端点的距离相等, 且等于平移的距离。
旋转变换中应用
旋转不变性
垂直平分线在旋转变换下保持不变, 即旋转后的图形仍然保持垂直平分线 的性质。
旋转等角性
以垂直平分线上一点为旋转中心,旋 转任意角度后,所得图形与原图形关 于该点对称。
对称变换中应用
对称中心
思路拓展与延伸
拓展1
探究线段垂直平分线与三角形的关系。例如,已知三角形ABC 中,D是AB的中点,DE垂直于AC于点E,求证:DE是AB的垂 直平分线。
拓展2
将线段垂直平分线的性质应用于实际问题中。例如,在建筑 设计或工程测量中,如何利用线段的垂直平分线性质来确定 某点的位置或某线段的长度。
易错点提示与防范策略
THANKS
感谢观看
线段的垂直平分线是对称中心,即关于垂直平分线的对称点连线的中点就是垂 直平分线与线段的交点。
对称轴
线段的垂直平分线也是对称轴,即关于垂直平分线对称的两个图形是全等的。
05
典型例题解析与思路拓展
典型例题解析
例题1
已知线段AB和点C,D分别是AB,BC的中点,求证:CD是AB的垂直平分线。
解析
根据中点的定义,可知AC=CB,BD=DA。因为CD是AB的中线,所以CD垂直于AB。 又因为AC=CB,所以角ACD=角BCD,从而角ADC=角BDC。根据角平分线的性质, 可知CD平分角ADB,所以CD是AB的垂直平分线。
性质1
垂直平分线上的任意一点 到线段两端的距离相等。
性质2
线段的垂直平分线是其对 称轴,即线段关于垂直平 分线对称。
判定方法
判定定理
一条直线是某线段的垂直 平分线当且仅当该直线过 线段的中点且与该线段垂 直。

《线段的垂直平分线》课件

《线段的垂直平分线》课件
《线段的垂直平分线》课件
目录
• 线段与垂直平分线基本概念 • 构造垂直平分线方法 • 垂直平分线与相关几何图形关系 • 垂直平分线在解决实际问题中应用 • 知识点总结与回顾 • 练习题及解答环节
01 线段与垂直平分线基本概 念
线段定义及性质回顾
01
02
03
线段定义
直线上两个点和它们之间 的所有点组成的图形叫做 线段。
关键概念梳理
线段的垂直平分线定义
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条 线段的垂直平分线。
线段的中点
线段上的一点,把线段分成两条相等的部分,这个点叫做线段的中 点。
垂直
两直线相交成直角时,称这两条直线互相垂直。
重要性质归纳
线段垂直平分线的性质定理
线段垂直平分线上的点和这条线段两个端点的距离相等。
利用尺规作图法
准备工具
直尺和圆规是尺规作图 的基本工具,需确保工 具准确无误。
确定线段
在图纸上确定需要作垂 直平分线的线段AB。
作法步骤
首先以线段AB的两个端 点为圆心,以大于线段 AB长度的一半为半径画 弧,两弧交于两点C和D; 然后连接CD,直线CD 即为线段AB的垂直平分 线。
使用几何画板辅助构造
在四边形中应用举例
在平行四边形中
平行四边形的对角线互相平分,因此可以利用垂直平分线的性质来证明对角线 的性质。
在菱形中
菱形的对角线互相垂直且平分,垂直平分线可以应用于证明菱形的性质和判定。
拓展到多边形和圆中
在多边形中
对于任意多边形,可以通过连接多边形的顶点与对边的中点,构造出多条垂直平 分线。这些垂直平分线会相交于多边形的质心,质心具有一些重要的几何性质。

《线段的垂直平分线》PPT课件

《线段的垂直平分线》PPT课件

练习
1. 如图,在△ABC中,AB的垂直平分线分别交 AB,BC于点D,E,∠B=30°,∠BAC= 80°, 求∠CAE的度数.
答:∠CAE=50°.
2.已知:如图,点C,D是线段AB外的两点,且 AC =BC,AD=BD,AB与CD相交于点O.
求证:AO=BO.
证明: ∵ AC =BC,AD=BD, ∴ 点C和点D在线段AB的垂直平分线上, ∴ CD为线段AB的垂直平分线.
练习
用尺规完成下列作图(只保留作图痕迹,不要 求写出作法).
1. 如图,在直线l上求作一点P,使PA= PB.
已知:如图,在△ABC中,AB,BC的垂直平分线相交于点P,
求证:点P也在AC的垂直平分线上
证明:连接AP,BP,CP.
∵点P在线段AB的垂直平分线上, A
∴PA=PB
同理,PB=PC.
中考 试题

如图,在△ABC中,BC=8cm,AB的垂直
平分线交AB于点D,交边AC于点E,△BCE 的周长等于18cm,则AC的长等于( C ).
A.6cm B.8cm C.10cm D.12cm
解析 ∵DE是AB的垂直平分线, ∴AE=BE(线段垂直平分线上的点到线段两端点的距离相等).
又∵在△BCE中,
∴EB=EA ∴△AEC的周长
=AC+CE+EA
C E
=AC+CE+EB
=AC+BC
B
=4+5 =9
D A
做一做
已知:如图,P为∠MON内一点,OM⊥PA 于E,ON⊥PB于F,EA=EP,FB=FP,若AB 长为15cm,求△PCD的周长。
M A
E C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上。
角的平分线是到角的两边距离 线段的垂直平分线可以看作是和线段
相等的所有点的集合
两上端点距离相等的所有点的集合
点的集合是一条射线
点的集合是一条直线
C
B
P1 N
线段的垂直平分线
命题:线段垂直平分线上的点和这条线段两个端点的距离相等。
已知:如图,直线MN⊥AB,垂足为C, 且AC=CB. 点P在MN上.
求证:PA=PB
M P
证明:∵MN⊥AB
∴ ∠ PCA= ∠ PCB=90º
在 ΔPAC和Δ PBC中,
AC=BC
∠ PCA= ∠ PCB
PC=PC
线段的垂直平分线
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P. 求证:PA=PB=PC;
分析:
点P在线段AB的 垂直平分线上
点P在线段BC的 垂直平分线上
A M
M’
P
PA=PB
PB=PC
B
C N
N’
PA=PB=PC
如初多媒体 制作中心
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分
逆命题:和一条线段两个端点距离相等的点,在这条线 段 的垂直平分线上。
P
点P在线段
AB的垂直 平分线上
?
PA=PB
A
C
B
线段的垂直平分线
一、性质定理:线段垂直平分线上的点和这条线段两个端 点的距离相等。
二、逆定理:和一条线段两个端点距离相等的点,在这条 线段的垂直平分线上。
点P在线段 AB的垂直 平分线上
A
C
B
∴ ΔPAC ≌Δ PBC
∴PA=PB
N
线段的垂直平分线
性质定理:线段垂直平分线上的点和这条线段两个端点的
距离相等。
M
线段垂直平分线上的点和这
点P在线段 条线段两个端点的距离相等
P
AB的垂直
PA=PB
平分线上
A
C
B
N
3.14 线段的垂直平分线
性质定理:线段垂直平分线上的点和这条线段两个端 点的 距离相等。
轴,是任何一对对称点所 连线段的垂直平分线。
如初多媒体 制作中心
M
p
Q
C
D
G
N
.Q
F E
MN⊥AF于P AP = PF
1、图中的对称点有哪些? 2、点A和F的连线与直线
A
MN有什么样的关系?
M
p
F
直线MN垂直且平分线段A F定义:经过线段中点并且
Q
C
D
垂直于这条线段的直线, B
G
E
叫做这条线段的垂直平分 线,也叫中垂线。
3.9 角的平分线
3.14 线段的垂直平分线
A
D
C
P
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
A
B
N
定 理 线段垂直平分线上的点和 这条线段两个端点的距离相等。
定理2 到一个角的两边的距离相等 逆定理 和一条线段两个端点距离相
的点,在这个角的平分线上。
等的点,在这条线段的垂直平分线
线段垂直平分线上的点和这 条线段两个端点的距离相等
和一条线段两个端点距离相等的 点,在这条线段的垂直平分线上
PA=PB
三、 你线能段根的据垂上直述平定分理线和逆的定集理合,定说义出:
线段线的段垂的直垂平直分平线分的线集可合以定看义作吗是?和线 段两个端点距离相等的所有点的集合
4、如图,若AC=12,BC=7,AB的垂直 平分线交AB于E,交AC于D,求△BCD的 周长解。: ∵ED是线段AB的垂直平分线
泰安市政府为了方便居民的生活,计划在 三个住宅小区A、B、C之间修建一个购物 中心,试问,该购物中心应建于何处,才 能使得它到三个小区的距离相等。
B
C
如初多媒体 制作中心
线段的垂直平分线
实际问题
数学化
1、求作一点P,使 它和△ABC的三个 顶点距离相等.
A


问 题
1
B
p
C
PA=PB=PC
如初多媒体 制作中心
§16.2 线段的垂直平分线
比较归纳:
区别 联系
轴对称图形 _ 一 个图形
两个图形成轴对称 _两 个图形
1.沿一条直线折叠,直线两旁的部分能够 _互_相_重合_.
2.都有_对_称_轴_.
3.如果把一个轴对称图形沿对称轴分成 两个图形,那么这两个图形关于这条直线 _对_称_;如果把两个成轴对称的图形看成 一个图形,那么这个图形就是_轴_对_称图_形.
∴ BD=AD
E
如初多媒体 制作中心
∵ △BCD的周长
=BD+DC+BC
B
AD+DC+BC ∴ △BCD的周长=
AC+BC
= 12+7=19
=
A D C
例题:
如下图△ABC中,AC=16cm,
A
DE为AB的垂直平分线,
△BCE的周长为26cm,求BC
的长。
D
E B
C
如初多媒体 制作中心
实际问题1 A
线交于P.
求证:PA=PB=PC;
A
证明:
M M’
∵点P在线段AB的垂直平分线MN上,
P
∴PA=PB(?).
同理 PB=PC. ∴PA=PB=PC.
B
C
N
N’
结你论能:依据三例角1形得三到边什垂么直结平论分?线交于一点,
这一点到三角形三个顶点的距离相等。
如初多媒体 制作中心
今天学习了线段的中垂线的性质、 逆定理及集合定义,你能由此联想到前 面学过的什么知识与此类似吗?
N 图中的两个三角形关于直线MN对称
如初多媒体 制作中心
线段的垂直平分线
动手操作:作线段AB的中垂线MN,垂
足为C;在MN上任取一点P,连结PA、PB;
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
M P
由此你能得到什么规律?
命题:线段垂直平分线上的点和
这条线பைடு நூலகம்两个端点的距离相等。 A
如初多媒体 制作中心
成轴对称的两个图形一定全等吗? 全等的两个图形一定成轴对称吗?
如初多媒体 制作中心
直线MN垂
直平分线段
轴对称的性质: AF、CD、
BE
如果两个图形关于某
A
条直线对称,那么对称轴
是任何一对对称点所连线
段的垂直平分线。
即对称点的连线被对称轴垂 B 直平分。
类似地,轴对称图形的对称 P.
相关文档
最新文档