史密斯(Smith)圆图
史密斯圆图的原理及应用

史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。
它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。
二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。
具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。
2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。
3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。
这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。
4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。
5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。
三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。
通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。
工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。
2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。
通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。
3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。
通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。
4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。
通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。
5. 负载匹配•史密斯圆图也可以应用于负载匹配。
通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。
Smith(史密斯)圆图阻抗匹配

利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2
ZL Z0 ZL Z0
2
tan 1
RL2
2 X LZ0
X
2 L
Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X
2b
(1
2 a
)2
b2
a
2
R R 1
b2
1
2
R 1
等归一化电阻圆方程
a
12
b
1 X
2
1 X
2
等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。
史密斯圆图

反射系数的图形表示
• 已知以负载端为坐标起点,反射系数为与坐标变量Z的关系为:
Γ z Γ L e j
L - 2z , L 是终端反射系数的相角
• 反射系数的模值和相角的表述形式,也可以写成实部和虚部的形式:
Γ z Γ L e j Γ L cos(z ) j Γ L sin(z )
反射系数的坐标表示
Γ
i
反射系数圆图上的相角、模值以及与负载距离的关系
• 最大圆的半径对应的反射系数为1, 沿半径向圆心反射系数逐渐减小, 圆心处反射系数为0 • 根据反射系数的相位变化周期是二 分之一波长,圆图旋转一周总长为 λ /2,半周为λ /4 • 终端短路的传输线,其终端反射系 数的相角为180度,因此实轴左边的 端点是负载位置即0λ处
[例3] 已知传输线如图所示。若负载阻抗为Zl=25+j25Ω,求距离负载 0.2λ处的等效阻抗。 解: •先求出归一化负载阻抗 zl 0.5 j0.5 ,
•在圆图上找出与此相对应的点 P1。因为虚部是 正的,应在横轴以上,又因为实部小于 1 ,该 点应在第二象限
•以圆图中心点 O为中心,以 OP1为半径,顺时 针 ( 向 电 源 方 向 ) 旋 转 0.2λ 到 达 P2 点 , 即 : (0.2λ/0.5λ)*2π=0.8 π •查出P2点的归一化阻抗为2-j1.04Ω,将其乘以 特性阻抗即可得到 z=0.2λ 处的等效阻抗为 100j52 Ω。
r
Γ
r
Γ
r
r
1)2 Γ
i
这两个方程是以归一化电阻(图(a))和归一化电抗(图(b))为参数的两组圆方程。
• 电阻圆的圆心在实轴(横轴)(r/(1+r),0)处,半径为1/(1+r),r愈大圆的半径愈小。 • 当r=0(短路)时,圆心在(0,0)点,半径为1;当r→∞(开路)时,圆心在(1, 0)点,半径为零。即从左至右,电阻越来越大 • 电抗圆的圆心在(1,1/x)处,半径为1/x。由于x可正可负,因此全簇分为两组, 一组在实轴的上方,另一组在下方。当x=0时,圆与实轴相重合;当x→±∞时, 圆缩为点(1,0)。 同样,从左至右电抗的绝对值越来越大。
(完整word版)史密斯圆图简介

史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。
在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。
Smith chart 就是其中最常用一种。
1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。
阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。
1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。
图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。
椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。
图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。
Smith圆图详解

并联电感:沿导纳圆逆时针转,即从A点转到B点。从A点到B点转的长度为0.2-0.5=-0.3。即相当于外加 一个j*-0.3电纳后,即可转到B点。 并联的电感量为L,则其电抗为jwL,归一化为jwL/Z0,其电纳为Z0/jwL,则有: Z0/(jwL)=j*-0.3=>L=Z0/(0.3w)=50/(0.3*2*3.14*2.4*109)=11.06nH 串联电感:沿电阻圆顺时针转,即从B点转到C点。从A点到B点转的长度为0-1.22=-1.22。即相当于外加 一个j*-1电抗后,即可转到C点。 串联的电容量为C,则其电抗为1/jwc,归一化为1/jwcZ0,则有: 1/(jwcZ0)=j*-1.22=>c=1/(1.22wZ0)=1/(1.22*2*3.14*2.4*109*50)=1.08pF
m2 freq= 3.000GHz VSWR1=2.618
2.6180340
m3
S(1,1)
2.6180340
VSWR1
m3 freq= 10.00GHz S(1,1)=0.447 / 26.565 impedance = Z0 * (2.000 + j1.000)
2.6180340
m2
2.6180340
Smith 圆图——ADS验证
m2 freq=2.400GHz dB(S(1,1))=-37.839
-15
-20
-25
dB(S(1,1))
-30
-35
m2
-40
m1 freq=2.400GHz S(1,1)=0.013 / -160.338 impedance = Z0 * (0.976 - j0.008)
转换为dB为: 20Log|Γ|=20Log0.447=-7dB 回波损耗为:RTN LOSS=-20Log|Γ|=7dB 驻波比: SWR=(1+0.447)/(1-0.447)=2.6
Smith(史密斯)圆图阻抗匹配

与阻抗的关系
与导纳的关系
两个公式在形式上是完全相同的,所以导纳
圆图与阻抗圆图在图形坐标的数值、符号和曲线 形状上是相同的,可以把阻抗圆图当作导纳圆图 来使用,但是图上各点所代表的物理含义要作不 同的解释。
1、导纳圆图的特点
jb' B 0.5
B0
容性
B 1
G 0.5
G 1
X
2b
(1
2 a
)2
b2
a
2
R R 1
b2
1
2
R 1
等归一化电阻圆方程
a
12
b
1 X
2
1 X
2
等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
2、导纳圆图的另一构成方法
jb P
P’
旋转构图方法:
阻抗圆图上P与P'点关 于原点对称,根据/4阻抗 变换特性可知,这两点阻抗 a 互为倒数,即P'点的阻抗为 P点的导纳。
因此,可以将阻抗圆图 旋转180°就可以得到一种 新的导纳圆图。
第二种导纳圆图的特点
jb'
B0
感性
B 1
B 0.5
(0,0)
(1,
电流波节 Gmin=K B 0.5
B 1
电流波腹 Gmax=S
感性
B0
Y (z ') G(z ') jB(z ')
史密斯圆图

史密斯(Smith)圆图知识史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
图1. 阻抗和史密斯圆图基础史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s 11。
我们知道反射系数定义为反射波电压与入射波电压之比:负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:i r OL O L inc reflL j Z Z Z Z V V Γ⋅+Γ=+-==Γ (1) 由于阻抗是复数,反射系数也是复数。
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。
这里Zo (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50、75、100和600。
于是我们可以定义归一化的负载阻抗:jx r Z jX R Z Z z O O L +=+==/)(/ (2)据此,将反射系数的公式重新写为:1111/)(/)(++-+=+-=+-=+-=Γ⋅+Γ=Γjx r jx r z z Z Z Z Z Z Z Z Z Z Z j O O L O O L O L O L i r L (3)从上式我们可以看到负载阻抗与其反射系数间的直接关系。
但是这个关系式是一个复数,所以并不实用。
我们可以把史密斯圆图当作上述方程的图形表示。
为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。
首先,由方程求解出;ir ir L L j j jx r z Γ-Γ-Γ+Γ+=Γ-Γ+=+=1111 (4)并且2222211ir r i r r Γ+Γ⋅-Γ+Γ-Γ-= (5) 令等式的实部和虚部相等,得到两个独立的关系式:2222211ir r i r r Γ+Γ⋅-Γ+Γ-Γ-= (6) 22212i r r ix Γ+Γ⋅-Γ+Γ⋅=(7)重新整理等式(6),经过等式(8)至(13)到最终的方程(14)。
2-4史密斯Smith圆图(传输线理论的计算工具)(可编辑)

2-4史密斯Smith圆图(传输线理论的计算工具)Smith圆图-传输线理论的计算工具主要内容: Smith圆图的参量 Smith圆图的构造Smith圆图的应用使用圆图前提:归一化 2.等x圆常用:圆图上特殊的三个点三点:匹配点O 短路点A 开路点B l开路、短路点(全反射的驻波):计算沿线各点的阻抗、反射系数、电压驻波比等方向小结: * * 一:Smith圆图的参量史密斯圆图 Smith chart 是利用图解法来求解无耗传输线上任一点的参数。
围绕以下三个公式: 2.反射系数 1.输入阻抗 3. 电压驻波比阻抗归一:圆图作用:使我们可能在一有限空间读出无耗传输线的三个参量Z、Γ、和ρ。
ZL d=0 二: smith圆图的构造 1.归一化电阻圆:等r圆2.归一化电抗圆:等x圆 3. 反射系数模值圆:等圆等式两端展开实部和虚部,并令两端的实部和虚部分别相等。
归一化阻抗圆上式为两个圆的方程。
可得代入上式为归一化电阻的轨迹方程,当r等于常数时,其轨迹为一簇圆; 1.等r圆半径圆心坐标 r 0;圆心(0,0)半径 1 r 1;圆心(0.5,0)半径 0.5 r ∞;圆心(1,0)半径 0 归一化电抗的轨迹方程,当x等于常数时,其轨迹为一簇圆弧;在的直线上半径圆心坐标 x +1;圆心(1,1)半径 1 x -1;圆心(1,-1)半径 1 x 0;圆心(1,∞)半径∞x ∞;圆心(1,0)半径 0 Gi Gr 归一化阻抗圆:等r圆和等x圆例:在圆图上具体的找归一化阻抗点:z=1+j 分两步:(1)找r=1的电阻圆(2)找x=1的电抗圆 r 1 X 1 传输线上任一点的反射系数为:是一簇|G|?1同心圆。
3. 等圆复角增加复角减少例:在圆图上具体的找反射系数点:分两步:(1)找大小为0.6的等圆(2)找角度为45度的线等反射系数模值圆对应于驻波比也是一簇同心圆说明:等驻波比圆 B A O 三个点的物理意义 l匹配点(没反射的行波):中心点O 对应的电参数:匹配点 O 开路点纯电抗圆与正实轴的交点B(阻抗无穷)B A 短路点电抗圆与负实轴的交点A(阻抗为0)纯电抗圆三:Smith圆图应用应用过程分以下三步: 1.起点(已知P) 2.终点(所求Q) 3.旋转(方向) ZL 传输线上的点与圆图上的点一一对应,所以圆图可以用来: Q P L 向电源:d 增加―从负载移向信号源,在圆图上顺时针方向旋转;向负载:d减小―从信号源移向负载,在圆图上逆时针方向旋转; ZL d=0 例1 已知:求:距离负载0.24波长处的Zin. 解:查史密斯圆图,其对应的向电源波长数为则此处的输入阻抗为: 向电源顺时针旋转0.24 等半径 ZL 0.24l 思考:已知输入阻抗,求距离0.24波长处的负载阻抗?。
(完整word版)smith史密斯圆图(个人总结),推荐文档

smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。
主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。
Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。
史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。
当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。
圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。
圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。
中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。
当中向上发散的是正数,向下发散的是负数。
圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。
圆图的边缘代表其反射系数的幅度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)。
有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。
圆图中的每一点代表在该点阻抗下的反射系数。
该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。
同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。
由反射系数可以得到电压驻波比和回波损耗。
史密斯圆图

导纳圆图的特点
' jG b
B 0.5
G 0.5
(0,0) 开路点
(1,0)
匹配点
电流波节 Gmin=K B 0.5
B0
导纳圆图使用原则: 容性 同一张圆图,既可以当 作阻抗圆图来用,也 B 1 可以当作导纳圆图来 G 1 G (,) 用,但是在进行每一 短路点 次操作时,若作为阻 B 1 抗圆图用则不能作为 电流波腹 Gmax=S 导纳圆图。
例3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
圆反时针旋转转λ /3得到 zL 0.77 j1.48 , 故得负载阻抗为 Z 38.5 j 74() L
| G | 1/ 3 圆
0
zmin 1.55
0.5
zL
zL 1.55 j 0.65
j 0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:zL 2 j0.6
180度,得 yL 0.45 j0.15
zL 点沿等Γ线旋转
8
例2 已知: Z 0 50
Z L 100 j50
0.24
ZL
求:距离负载0.24波长处ห้องสมุดไป่ตู้Zin.
解
ZL zL 2 j Z0
l 0.213
查史密斯圆图,其对应的 电波长数为
向电源顺时针旋转0.24(等半径)
zin 0.42 j0.25
史密斯圆图及应用课件

CONTENTS
目录
• 史密斯圆图简介 • 史密斯圆图的应用 • 如何绘制史密斯圆图 • 史密斯圆图的优缺点 • 史密斯圆图的发展趋势 • 史密斯圆图的实际应用案例
CHAPTER
01
史密斯圆图简介
史密斯圆图的起源
史密斯圆图起源于20世纪初,由英国 工程师罗伯特·史密斯(Robert Smith)发明。
THANKS
感谢观看
通过旋转和缩放史密斯圆图,可以方便地找到不同频率和阻抗条件下的匹配点。
史密斯圆图的特点
史密斯圆图具有直观、易用的 特点,使得阻抗匹配变得简单 快捷。
通过在史密斯圆图上旋转和缩 放,可以快速找到最佳的阻抗 匹配点,提高信号传输效率。
史密斯圆图不仅可以用于阻抗 匹配,还可以用于分析信号的 频率、相位等特性。
射电信号处理
史密斯圆图在射电天文学中用于射电信号的处理和分析,通过圆图可以直观地 了解射电信号的频率、幅度和相位特性,为后续的天体物理研究提供重要依据 。
在其他领域的应用
微波测量
史密斯圆图在微波测量领域中也有广泛应用,可以用于测量微波元件的性能参数 和传输特性。
电子工程
史密斯圆图在电子工程领域中常用于分析ቤተ መጻሕፍቲ ባይዱ络的阻抗特性和匹配问题,是电子工 程师必备的工具之一。
CHAPTER
02
史密斯圆图的应用
在通信系统中的应用
信号传输
史密斯圆图用于通信系统中信号的传 输,通过圆图可以方便地调整信号的 幅度和相位,确保信号在传输过程中 的质量。
阻抗匹配
史密斯圆图在通信系统中用于阻抗匹 配,通过调整电路元件的参数,使得 信号源和负载之间的阻抗达到最佳匹 配状态,提高信号传输效率。
史密斯圆图基本原理及应用

第一章 均匀传输线理论之史密斯圆图及其应用
结论:阻抗圆图上的重要点、线、面
上半圆电感性
x=+1电抗圆弧
r=1的纯电阻圆 开路点 匹配点
纯电阻线 短路点
纯电抗圆
x=-1电抗圆弧
下半圆电容性
微波工程基础
10
第一章 均匀传输线理论之史密斯圆图及其应用
结论
在阻抗圆图的上半圆内的电抗为x>0呈感性;下半圆内的 电抗为x<0呈容性; 实轴上的点代表纯电阻点,左半轴上的点为电压波节点, 其上的刻度既代表rmin ,又代表行波系数K,右半轴上的点 为电压波腹点,其上的刻度既代表rmax ,又代表驻波比; 圆图旋转一周为/2; =1的圆周上的点代表纯电抗点; 实轴左端点为短路点,右端点为开路点;中心点处有r=1、 x=0,是匹配点; 在传输线上由负载向电源方向移动时,在圆图上应顺时针 旋转;反之,由电源向负载方向移动时,应逆时针旋转。
作为图形设计工具,通过比较
SMITH圆图中等驻波比圆的半 径,可以直观地观测传输线和附 载阻抗之间的失配程度。
终端负载决定了无耗传输线反
射系数大小 微波工程基础
16
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-3]已知传输线的特性阻抗Z0=50。假设传输线的负 载阻抗为Zl=25+j25 ,求离负载z=0.2处的等效阻抗。
微波工程基础
14
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-1]已知传输线的特性阻抗Z0=50Ω,终端 接有下列负载阻抗,将其用反射系数表示 ~ Z a L 1 a Z L 0 ZL L Z0 b L 1 b Z L ~
(c ) Z L 50 ( d ) Z L (16.67 j16.67) (e) Z L (50 j 50)
smith圆图介绍

二、Smith圆图的基本构成
分开实部和虚部得两个方程
r
1
2 r
2 i
1 r
2
2 i
x
1
2i
r 2
2 i
先考虑(7-4)中实部方程
r2rr rr2 ri2 1r2 i2
1rr2 2rr 1ri2 1r
三、Smith圆图的基本功能
Z in 0 .4 5 3
i
2 + j1 Z l 0 .2 1 3
0
r
向电源
Zin0.24j0.25
反归一 ZinZinZ021j12.5
三、Smith圆图的基本功能
[例4]在Z 0为50的无耗线上=5,电压波节点距负载/3,求负载阻抗Z l
i j1 .4 8 0 .3 3
b
b= sh o rte d .c
i b= 1
b = 0 .5
容纳
b= 0
0
o p e n .c r
感纳 b = -0 .5 b= -1
图 7-6 等电纳圆
二、Smith圆图的基本构成
在很多实际计算时,我们要用到导纳(特别是对于并联 枝节)。对比阻抗和导纳,在归一化情况下,
恰好是反演关系。
非归一情况
sh o rted .c
0
x= o p en .c r
容抗
x= -1/2 x= -1
图 7-3 等电抗图
3. 标定电压驻波比实轴表示阻抗纯阻点。因此,可 由电阻r 对应出电压驻波比。
4. 导纳情况
二、Smith圆图的基本构成
Y(z ) 1(z ) 1(z)
04Smith圆图

2. 以系统不变量|Γ|作为Smith圆图的基底在无耗传输 线中, |Γ|是系统的不变量。所以由|Γ|从0到1的同心 圆作为Smith圆图的基底,使我们可能在一有限空间表示 全部工作参数Γ、Z(Y)和ρ。
1.等反射系数圆
由无耗传输线的反射系数
写成复数形式,有
e
j
cos sin r ji
本节要点
Smith圆图的构成原理 Smith圆图各区域与传输线工作状态的关系 反射系数、输入阻抗沿无耗和有耗传输线的在圆图上的 变化轨迹
运用Smith圆图进行阻抗匹配的方法
Smith图圆的基本思想
Smith圆图,亦称阻抗圆图。其基本思想有三条: 1. 特征参数归一思想 特征参数归一思想,是形成统一Smith圆图的最关键 点,它包含了阻抗归一和电长度归一图的基本功能
[例4]在 Z 0 为50的无耗线上=5,电压波节点距负载/3,求负载阻抗 Z l
i Zin Zmin 0.2
Z min 1
j1.48 0.33
0.77 0 5.0 r
0.2
向负载旋转
向 负 载
. j74 0.33 Z in Z in Z 0 385
,点找
l 0.24
求 Z in
Z i n
Z 0 = 5 0
Z l = 1 0 0 + j 5 0
归一化
Z l 2 j1
Smith圆图的基本功能
i
Zl Zin
0.453
2+j1 0.213
r
0
向 电 源
Z in 0.24 j0.25
反归一 Z in Z in Z 0 21 j12.5
微波技术-史密斯圆图

1.圆图的概念
由于阻抗与反射系数均为复 数,而复数可用复坐标来表示, 因此共有两组复坐标: • 归一化阻抗或导纳的实部和虚 部的等值线簇;
x
r =const
r x =const
Z (d ) z (d ) = = r (d ) + jx(d ) = z e jq Z0
• 反射系数的模和辐角的等值线簇。
骣 1÷ 圆心坐标 ç1, ÷ 在 GRe = 1 的直线上 ç ç x÷ 桫
GRe
半径
1 x
x =∞:圆心(1,0)半径=0
x =+1:圆心(1,1)半径=1 x =-1:圆心(1,-1)半径=1
x =0:圆心(1, ∞ )半径= ∞
c.等驻波比圆
VSWR =
1+ G 1- G
驻波比:对应于反射系数也是一簇同心圆 (1,∞)
GIm
半径
1 1+ r
GRe
r =∞:圆心(1,0) 半径=0 r =1:圆心(0.5,0)半径=0.5
r =0:圆心(0,0) 半径=1
1 x 圆 (G - 1)2 + 骣 - 1 鼢= 骣 珑 Im G 鼢 珑 Re 珑 桫 x鼢 桫 x
2
2
GIm
为归一化电抗的轨迹方程, 当 x 等于常数时,其轨 迹为一簇圆弧;
0.343
z L 0.57 j1.5
Z L 28.5 j 75
例2.5-3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
史密斯圆图

9.旋转方向:圆图还注明了顺时针旋转为向始端(信号源端)方向移
动,逆时针旋转为向终端(负载端)方向移动。 10.
r 值的标注: r 值标注在纯电阻线上,开路点为 ,短路点为0,
匹配点为1。
11.X值的标注:标注在 1 大圆的内侧等X线与 1 大圆的交点处。
Zb zb Zc (105 j50)
作业:用Smith圆图完成以下作业
特性阻抗为 Z0 50 ,负载阻抗为Z L (50 j100) ,
l 0.2 ,求输入阻抗 Z in 。
1.等反射系数图
均匀无耗线上任一处的反射系数 ( z ) 可以表示为
( z) 2 e
j (2 2 z )
在极坐标中其曲线是一个以原点为圆心、 2 为半径的 圆。在一段终端接以某负载、无分支的无耗线上,其 的值由长线的特性阻抗 Z0 和负载阻抗 Z L 所决定,而沿 线各处的 2 与 是相同的,只是反射相位将随位置的 改变而改变,故称此圆为等反射系数图。因为反射系数 的模与驻波比 是一一对应的,故又称为等驻波比圆。
Smith圆图(极坐标圆图)
构成圆图的依据是长线理论中的一些基本公式(沿线Z坐标原点均选在终端)
Z in ( z ) 1 ( z ) Z (z) Z0 1 ( z)
L 1 2 Z 1 2
(z) 1 Z (z) (z) 1 Z
( z ) 2e
u
的直线上。圆心的纵坐标等于圆半径。故所有等 X 圆也全相切于点 (1,0)。
圆、等 将等 R X 圆绘制在同一复平面 u j v 上便得到如下所示的等 阻抗图。
史密斯圆图即为等反射系数圆与等阻抗圆的重叠图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
史密斯(Smith)圆图部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑阻抗匹配与史密斯(Smith>圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA>之间的匹配、功率放大器输出(RFOUT>与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻>对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”>的计算公式、并且被处理的数据多为复数。
∙经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
∙史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
图1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz> IC连线的电磁波传播现象。
这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。
大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:Rs + jXs = RL - jXL图2. 表达式Rs + jXs = RL - jXL的等效图在这个条件下,从信号源到负载传输的能量最大。
另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。
史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数(伽马,以符号Γ表示>的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即s11。
史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导>,在处理RF频率的问题时ΓL更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。
这里Z0 (特性阻抗>通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。
于是我们可以定义归一化的负载阻抗:据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系。
但是这个关系式是一个复数,所以并不实用。
我们可以把史密斯圆图当作上述方程的图形表示。
为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线>。
首先,由方程2.3求解出;并且令等式2.5的实部和虚部相等,得到两个独立的关系式:重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。
这个方程是在复平面(Γr, Γi>上、圆的参数方程(x-a>2 + (y-b>² = R²,它以(r/r+1, 0>为圆心,半径为1/1+r.更多细节参见图4a。
图4a. 圆周上的点表示具有相同实部的阻抗。
例如,r = 1的圆,以(0.5, 0>为圆心,半径为0.5。
它包含了代表反射零点的原点(0, 0> (负载与特性阻抗相匹配)。
以(0, 0>为圆心、半径为1的圆代表负载短路。
负载开路时,圆退化为一个点(以1, 0为圆心,半径为零>。
与此对应的是最大的反射系数1,即所有的入射波都被反射回来。
在作史密斯圆图时,有一些需要注意的问题。
下面是最重要的几个方面:∙所有的圆周只有一个相同的,唯一的交点(1, 0>。
∙代表0Ω、也就是没有电阻(r = 0>的圆是最大的圆。
∙无限大的电阻对应的圆退化为一个点(1, 0>∙实际中没有负的电阻,如果出现负阻值,有可能产生振荡。
∙选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。
作图经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。
同样,2.19也是在复平面(Γr, Γi>上的圆的参数方程(x-a>² + (y-b>² = R²,它的圆心为(1, 1/x>,半径1/x。
更多细节参见图4b。
图4b. 圆周上的点表示具有相同虚部x的阻抗。
例如,x = 1的圆以(1, 1>为圆心,半径为1。
所有的圆(x为常数>都包括点(1, 0>。
与实部圆周不同的是,x既可以是正数也可以是负数。
这说明复平面下半部是其上半部的镜像。
所有圆的圆心都在一条经过横轴上1点的垂直线上。
完成圆图为了完成史密斯圆图,我们将两簇圆周放在一起。
可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。
若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。
可互换性上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和x的值。
过程如下:∙确定阻抗在史密斯圆图上的对应点∙找到与此阻抗对应的反射系数(Γ>∙已知特性阻抗和Γ,找出阻抗∙将阻抗转换为导纳∙找出等效的阻抗∙找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7>推论因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。
下面是一个用史密斯圆图表示的RF应用实例:例:已知特性阻抗为50Ω,负载阻抗如下:Z1= 100 + j50ΩZ2 = 75 - j100ΩZ3= j200ΩZ4= 150ΩZ5= ∞ (开路> Z6 = 0 (短路> Z7= 50ΩZ8 = 184 - j900Ω对上面的值进行归一化并标示在圆图中(见图5>:z1 = 2 + j z2 = 1.5 - j2 z3 = j4 z4 = 3z5 = 8 z6 = 0 z7 = 1 z8 = 3.68 - j18点击看大图(PDF, 502K>图5. 史密斯圆图上的点现在可以通过图5的圆图直接解出反射系数Γ。
画出阻抗点(等阻抗圆和等电抗圆的交点>,只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6>。
该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ:Γ1 = 0.4 + 0.2j Γ2 = 0.51 - 0.4j Γ3 = 0.875 + 0.48j Γ4 = 0.5Γ5 = 1 Γ6 = -1 Γ7 = 0 Γ8 = 0.96 - 0.1j图6. 从X-Y轴直接读出反射系数Γ的实部和虚部用导纳表示史密斯圆图是用阻抗(电阻和电抗>建立的。
一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。
可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。
然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。
通常,利用导纳更容易处理并联元件。
我们知道,根据定义Y = 1/Z,Z = 1/Y。
导纳的单位是姆欧或者Ω-1 (早些时候导纳的单位是西门子或S>。
并且,如果Z是复数,则Y也一定是复数。
所以Y = G + jB (2.20>, 其中G叫作元件的“电导”,B称“电纳”。
在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。
用导纳表示时,第一件要做的事是归一化, y = Y/Y0,得出y = g + jb。
但是如何计算反射系数呢?通过下面的式子进行推导:结果是G的表达式符号与z相反,并有Γ(y> = -Γ(z>。
如果知道z,就能通过将的符号取反找到一个与(0, 0>的距离相等但在反方向的点。
围绕原点旋转180°可以得到同样的结果(见图7>。
图7.180°度旋转后的结果当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。
(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推>出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。
因此在圆图上读出的数值单位是姆欧。
尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。
导纳圆图在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。
于是,将整个阻抗圆图旋转180°就得到了导纳圆图。
这种方法十分方便,它使我们不用建立一个新图。
所有圆周的交点(等电导圆和等电纳圆>自然出现在点(-1, 0>。
使用导纳圆图,使得添加并联元件变得很容易。
在数学上,导纳圆图由下面的公式构造:解这个方程接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:从等式3.4,我们可以推导出下面的式子:它也是复平面(Γr, Γi>上圆的参数方程(x-a>² + (y-b> ² = R² (方程3.12>,以(-g/g+1, 0>为圆心,半径为1/(1+g>。