数学分析 微分中值定理及其应用 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
)
()
()()()()(ξξg f a g b g a f b f '=--
柯西中值定理的几何意义 若连续 曲线
由参数方程
],[)
()
(b a x x g Y x f X ∈⎪⎩⎪⎨⎧==
给出,除端点外处处有不垂直于 轴 的切线,则 上存在一点 P 处的切线平 行于割线
.。

注意曲线 AB 在点 ),(Y X 处的切线的斜率为

)(1ξF )(2ξF )
(a F A
)
(b F B
)(
x F N
M
x
o
y
⎩⎨
⎧==)
()(x f Y x F X 而弦 的斜率为
.
受此启发,可以得出柯西中值定理 的证明如下:
由于

类似于拉格朗日中值定理的证明,作一辅助函数
容易验证
满足罗尔定理的条件且
根据罗尔定理,至少有一点使得

由此得
注2:在柯西中值定理中,取,则公式(3)可写成
这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则. 这恰恰是罗尔定理.
注3:设在区间I上连续,则在区间I上为常数,.
三、利用拉格朗日中值定理研究函数的某些特性。

相关文档
最新文档