发酵类制药废水处理工艺及相关案例分析摘取简要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘取简要

一、发酵类制药废水来源

近年来,我国发酵类制药产业发展快速,产生了大量的废水。发酵类药物产品主要有抗生素、氨基酸、维生素和其他几大类型。发酵类药品的生产过程一般都需要经过菌种的筛选、种子制备、微生物发酵、发酵液预处理和固液分离、提炼纯化、精制、干燥、包装等步骤,生产过程中将会有产生大量的高浓度的有机废水,如图1.1所示,由此对环境造成严重的污染。

此废水主要可分为四类:(1)主生产过程排水;(2)辅助过程排水;(3)冲洗水;(4)生活污水。

从图中可以看出发酵类制药废水在生产过程中排水点很多,高、低浓度废水的单独排放,有利于清污分流,高浓度废水间歇排放,酸碱度和温度变化比较大,污染物浓度高,如废滤液、废母液等的COD一般在10 000 mg/L以上。

二、发酵类制药废水水质特征及典型处理技术

1.水质特征

制药废水作为最难处理的工业废水之一,废水中的污染主要来源于菌渣的分离,溶剂萃取,精制,药品回收设备,地面冲洗水处理等生产过程。高浓度的发酵类废水的COD含量一般在10000mg/L以上,BOD5/COD值差异较大,废水带有较重的颜色和气味,容易产生泡沫,废水的pH值、水质、水量的波动大等。2.发酵类制药废水有以下几个较为明显的共同点:

(1)污染物的种类繁多,成分复杂;

(2)冲击负荷大,废水的水质和水量随时间变化很大;

(3)含抗生素,对微生物的生长有抑制和阻碍的作用;

(4)氮的浓度高,碳氮比低;

(5)悬浮物浓度高;

(6)色度高;

(7)硫酸盐浓度高;

(8)BOD5/COD比值低,可生化性极差,难生物降解的有机物成分高

3.典型处理技术

1)铁碳微电解法:以Fe-C作为制药废水的预处理工艺,可大大提高出水的可生化性。采用铁炭-微电解-厌氧-好氧-气浮联合工艺处理医药中间体生产废水,COD的去除率可达20%。

2)臭氧氧化法:不但能提高抗生素废水的BOD5/COD,同时能较好去除废水中COD。应用臭氧氧化技术对抗生素制药废水进行处理。结果表明,在废水pH 值不变的条件下,臭氧氧化过程COD去除率均可达到75%以上。

3)Fenton试剂法:是亚铁盐和H2O2的组合,在处理青霉素废水的方面有较好开发前景。Fenton氧化不但能有效的去除废水中有害有机物质,它同样也是有效的预处理技术,可以改变有机物成分有利于后续更好的生物降解;并且可以在后续的生物处理过程中能够减少微生物的毒性。

4)光催化氧化法:具有新颖、高效、对废水没有选择性且不产生二次污染,因此具有良好的应用前景。对不饱和烃的降解尤其适用。

5)厌氧法:国内对高浓度有机制药废水的处理主要采用厌氧法,但厌氧法一般不能单独使用要经过进一步的后续好氧生物处理。优点是可直接处理高浓度的有机制药废水,产生的甲烷可回收利用,节能且剩余污泥量少。

6)序批式间歇活性污泥法(SBR) :已成功应用于制药工业生产的有机废水处理中,缺点是污泥沉降、泥水分离时间较长。针对高浓度废水的处理,往往需要投加粉末活性炭(PAC)来保持较高的污泥浓度,减少泡沫,阻止污泥膨胀的发生,提高污泥沉降性和泥水分离能力、污泥的脱水能力等,从来提高去除效果。例如采用SBR工艺处理青霉素制药废水时,可以同时克服传统好氧工艺能耗高、稀释水量大和传统厌氧工艺相比对于预处理要求高、运行管理费用高的缺点。

7)循环式活性污泥法(CASS法) :与SBR相比,优点是可以更好的去除对

难降解的有机物;进水过程是连续的;比SBR法的抗冲击能力更好。

4.发酵类废水处理工艺

1)好氧移动床生物膜法(MBBR)

MBBR是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率的一种污水处理方法。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。

该方法是一种新型高效的污水处理方法,兼具传统流化床和生物接触氧化法两者的优点,充分发挥附着生物膜和悬浮活性污泥两者的优势。与普通的填料相比,动力消耗极低,可以和废水频繁且多次的进行接触,因此称为“移动的生物膜”。MBBR内微生物种类繁多,其各微生物专性强;食物链长。污泥浓度比普通活性污泥法高5~10

倍,曝气池污泥总质量

浓度最高可达30~40

g/L,可以在填料单元内

形成从细菌→原生动物

→后生动物的食物链;

污泥沉降性能强,便于

固液分离;同时能够处

理低浓度的污水。

2)特异性流化生物膜法(SMBBR)

SMBBR工艺技术是基于MBBR的一种改进技术。根据MBBR的特点,选用特殊的SDC-03型聚乙烯生物载体作为填料,选用特定的高活性反硝化菌DNF409作为菌种,组合成SMBBR工艺。

SMBBR与传统的MBBR的运行方式相似为:在氧气充足的条件下,微生物在填料的表面聚附着形成生物膜,当废水以一定的流速流过填料时,生物膜中的微生物能够吸收分解水中的有机物,从而使污水得到净化,同时微生物得到增殖,生物膜也逐渐增厚。当生物膜达到一定厚度时,由于向生物膜内部扩散的氧受到限制,从而内层则会呈缺氧甚至厌氧状态,但其表面仍然是好氧状态,形成厌氧—好氧的有效处理机制。

三、发酵类废水工艺流程案例

SMBBR工艺和CASS工艺相比,SMBBR单位容积反应器内微生物量为CASS工艺的5~20倍,处理能力强,对水质、水量、水温变动的适应性强。SMBBR不会出现污泥膨胀现象,能保证出水悬浮物含量较低,运行管理方便。并且剩余污泥产量为CASS池的1/4,污泥处置费用低。食物链较长,生物膜内同时存在硝化与反硝化反应,所需空间少、占地省。而且COD负荷率高,空气氧的利用率高,抗冲击负荷能力强且不需要设置回流装置,能量消耗较低。

1.案例一

某公司主要生产辅酶Q10,废水主要污染物为生物发酵剩余的营养物质、生物代谢产物等。原水的水质水量变化较大,其成分复杂,碳氮营养比例失调(氮源过剩),硫酸盐和悬浮物含量高,废水带有较重的颜色和气味,易产生泡沫,含有具有抑菌作用的难降解物质。

表1 原水水质情况

相关文档
最新文档