红外传感技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 概述

物联网最初是以美国麻省理工学院Auto—ID中心研究的产品电子代码为核心,利用射频识别、无线数据通信等技术,基于计算机互联网构造的实物互联网。简单地说,物联网就是将各种信息传感设备如射频识别装置、红外感应器等与互联网结合形成的一个巨大网络,让相关物品都与网络连接在一起,以实现物品的自动识别和信息的互联共享。

射频识别(RFID)技术目前已经很成熟,射频识别系统阅读器发送的频率基本上划归三个范围:(1)低频(30kHz~300kHz);(2)中高频(3MHz~30MHz);(3)超高频(300MHz~3GHz)或微波(>3GHz)。虽然理论上无线电频谱是无限的,但是在实际的制造技术中,在某一个时间段里面可以使用频率资源是有限的,各个无线电系统之间如何区别,而目前我们生活中无线电使用又非常多,这个数字会越来越大,也同时使有限的频谱中更加拥挤。物联网中的无线电设备都需要使用频率资源,大量使用将会给频率,频谱管理带来很大的挑战。因此,迫切需要开发包括红外技术在内的更多技术,来代替物联网终端的通信。

红外线是波长在750nm至1mm之间的电磁波,它的频率高于微波而低于可见光,是一种人的眼睛看不到的光线。红外通信一般采用红外波段内的近红外线,波长在0.75μm~25μm 之间。由于红外线的波长较短,对障°-物的衍射能力差,适合于短距离、方向性强的无线通讯场合。红外线通信是一种廉价、近距离、无线、低功耗、保密性强的通讯方案,主要应用于近距离的无线数据传输,也有用于近距离无线网络接入的。

2 红外传感原理

红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。

2.1 红外探测机理

不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。从目前应用的情况来看,红外探测有如下几个优点:环境适应性优于可见光,尤其是在夜间和恶劣天候下的工作能力;隐蔽性好,一般都是被动接收目标的信号,比雷达和激光探测安全且保密性强,不易被干扰;由于是对目标和背景之间的温差和发射率差形成的红外辐射特性进行探测,因而识别伪装目标的能力优于可见光;与雷达系统相比,红外系统的体积小,重量轻,功耗低;探测器的光谱响应从短波扩展到长波;探测器从单元发展到多元、从多元发展到焦平面;发展了种类繁多的探测器和系统;从单波段探测向多波段探测发展;从制冷型探测器发展到室

温探测器;由于红外探测技术有其独特的优点从而使其在军事国防和民用领域得到了广泛的研究和应用,尤其是在军事需求的牵引和相关技术发展的推动下,作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。红外探测器是将不可见的红外辐射能转变成其它易于测量的能量形式的能量转化器,作为红外整机系统的核心关键部件,红外探测器的研究始终是红外物理与技术发展的中心。自1800年Herschel发现太阳光谱中的红外线时所用的涂黑水银温度计为最早的红外探测器以来,随着红外实验和理论的发展,新器件不断涌现。红外探测器制备涉及物理、材料、化学、机械、微电子、计算机等多学科,是一门综合科学。

(1)热探测器:

热探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。分别利用上述不同性能可制成多种热探测器:

①液态的水银温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。

②热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。

③石英共振器非制冷红外成像列阵:利用共振频率对温度敏感的原理来实现红外探测。

④测辐射热计:利用材料的电阻或介电常数的热敏效应—辐射引起温升

改变材料电阻—用以探测热辐射。因半导体电阻有高的温度系数而应用最多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。如果室温超导成为现实,将是21世纪最引人注目的一类探测器;

⑤热释电探测器:有些晶体,如硫酸三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。

(2)光子探测器

光子探测器吸收光子后,本身发生电子状态的改变,从而引起内光电效应和外光电效应等光子效应,从光子效应的大小可以测定被吸收的光子数。

①光电导探测器:又称光敏电阻。半导体吸收能量足够大的光子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。

②光伏探测器:主要利用p-n结的光生伏特效应。能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。存在的结电场使空穴进入p区,电子进入n区,两部分出现电位

差,外电路就有电压或电流信号。与光电导探测器比较,光伏探测器背景限探测率大40%,不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。

③光发射-Schottky势垒探测器:金属和半导体接触,形成Schottky势垒,红外光子透过Si层被PtSi吸收,使电子获得能量跃迁至费米能级,留下空穴越过势垒进入Si衬底,PtSi层的电子被收集,完成红外探测。

④量子阱探测器(QWIP):将两种半导体材料用人工方法薄层交替生长形成超晶格,在其界面有能带突变,使得电子和空穴被限制在低势能阱内,从而能量量子化形成量子阱。利用量子阱中能级电子跃迁原理可以做红外探测器。因入射辐射中只有垂直于超晶格生长面的电极化矢量起作用,光子利用率低;量子阱中基态电子浓度受掺杂限制,量子效率不高;响应光谱区,低温要求苛刻。

一、成果简介

本项目为我国带来自己的红外芯片技术,并已开发出接近产品性能的热像仪,打破了美国对中国的芯片禁运和技术封锁,以及欧洲在中国市场的芯片垄断。更重要的是,本项目的红外芯片开创了光读出的新一代热像仪,芯片的成本大大降低,系统的设计大大简化,将热像仪的生产成本降到与普通摄像机接近,

这一优势使得本技术有能力在全球范围内与FLIR等红外巨头竞争。

二、技术指标

本项目的技术采用一种新颖的光读出方法,通过芯片将红外信号转换为可见光信号,用成熟的CCD 和CMOS成像系统来观察可见光信号,从而得到热图像。这种做法的好处是红外芯片是一个信号转换器,不需要读出电路,因此生产成本低。信号读出通过传统的CCD或CMOS芯片,其本身和后端的信号读出

和处理已非常成熟,不需要专门设计。这样,芯片和系统的价格都大大降低了。并且,本项目发明的芯片灵敏度高,响应时间短,已成功制造出性能远高于国内各大研究所的红外成像芯片,并取得了优质的视频录像,在光读出的热像仪领域世界领先。本项目已进入产品开发阶段和芯片性能的进一步提高。

三、应用说明

任何物体都有热辐射,即红外辐射。热像仪探测物体的热辐射,并将景物的温度分布形成视频图像,

相关文档
最新文档