围岩卸载损伤演化及应力场调整有限元分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文章编号:10012831X(2002)042310204
围岩卸载损伤演化及应力场调整有限元分析Ξ
刘庭金1、2,朱合华1,唐春安2
(1.同济大学地下建筑与工程系,上海 200092;2.东北大学岩石破裂与失稳研究中心,沈阳 110004)
摘 要:隧道、洞室等地下工程的修建过程,是洞室壁面附近围岩不断发生应力卸载的过程。在这一过程中围岩力学性质与加载过程中表现出的力学性质存在一定的差别。本文通过引入服从韦伯分布函数的细观岩石微元体,运用连续介质损伤力学理论,得出了可以反映岩石非均匀性的本构关系式:然后运用岩石破裂与失稳过程RFPA分析系统,对隧道、洞室等地下工程由于洞室开挖引起的围岩卸载过程中,洞室孔壁附近围岩发生的损伤演化和应力场调整全过程进行了有限元分析,得到了洞室壁面附近围岩损伤演化和应力场调整过程图。
关键词:微元体;本构关系;卸载;损伤演化;应力场
中图分类号:T B115;T U452 文献标识码:A
1 引言
隧道、地铁和地下洞室等地下工程的修建过程,是围岩不断发生卸载的过程,即围岩原始地应力场平衡状态受到扰动后不断重新分布的过程,在这一应力场调整过程中,临近壁面处的围岩由原来的三向受力状态变成二维受力状态,因而可能导致某些部位处的围岩产生应力集中,如果不能及时得到有效的支护,很可能导致围岩发生局部塌方、冒顶和岩爆等工程事故。对于各向同性的均质体材料,其圆孔孔壁附近的应力大小及其分布已有弹性和塑性等解析解。然而,岩石作为一种典型的非均质材料,由于其内部存在的薄弱部位往往容易在受力过程中形成局部应力集中,进而导致岩石发生失稳破坏,此时假设岩石为均质材料显然不太适合,因而针对均质材料得出的解析解一般也难以适用于岩石材料。因此,研究卸载过程中的围岩变形和破坏特性,对认识围岩损伤演化和应力场调整过程,为解决工程实际问题起着一定的理论指导作用。陶履彬[1]和李天斌[2]等采用常规三轴试验机,进行了恒轴压、卸围压应力途径下岩石试样的变形和强度特性研究。然而对于地下工程,由于孔壁形成的局部集中应力可以向围岩深部转移,即岩体具有一定的结构效应,其受力状态与岩石试样的受力状态存在较大的差别。为此,莫海鸿[3]等对硬岩地下洞室开挖过程中围岩应力重新分布规律和破坏机理进行了研究,并给出了围岩张性破坏判据,但在计算中没有考虑应力转移和由于破坏前出现的微裂隙而导致弹性模量降低这一实际情况。以相似理论为基础的模型试验,作为研究地下工程不可缺少的手段之一,对研究围岩受到扰动后的应力调整过程、应力分布和围岩破坏机制等提供了极大方便。黄伦海[4]通过大型相似模型试验,对公路隧道施工过程中围岩稳定性及位移场发展规律进行了研究。但是,由于模型试验费用较高,周期较长,而且数据采集较为困难以及自动化程度较低,特别是模型试验难以满足所有的破坏试验相似判据[5],另外,由于模型试验不可重复性,因此除在重点工程和特大工程应用外,其应用范围受到了一定的限制。
岩石作为一种天然的地质材料,由于存在大量的缺陷,在受力过程中其内部发生逐渐的累计损伤。岩体发生的宏观破坏,正是由于其内部许多微观破裂的综合表现[6]。因此,在地下工程围岩卸载
第22卷 第4期 地 下 空 间 V ol.22 N o.4 2002年12月 UNDERG ROUND SPACE Dec.2002
Ξ收稿日期:2002205225
作者简介:刘庭金(19762),男,江西人,博士研究生,从事岩土及地下工程设计与研究工作。
过程中,可以认为围岩材料的非均匀性是导致围岩形成应力集中并导致破坏的主导因素。损伤力学作为研究材料损伤随变形发展并导致破坏规律的科学,在岩石力学中得到了广泛的应用。唐春安[6]运用损伤和统计分布理论,建立了具有弱化性质的岩石本构关系,从理论和实验角度研究了岩石破裂和失稳过程。曹文贵[7],等从岩石微元强度服从随机分布出发,引进描述岩石微元强度分布的参量,建立了三维岩石损伤演化方程和岩石损伤软化本构方程。杨友卿[8]运用损伤力学理论,通过假设岩石材料强度服从概率统计分布,结合经典的莫尔准则,提出了三轴应力状态下的岩石本构关系表达式。潘一山[9]等通过假设岩石在峰值强度前无损伤,峰值强度后为线形损伤,导出了圆形洞室发生岩爆的解析解,但在模型中人为地假设弹性区和损失区,这与工程实际情况存在一定的出入。傅宇方[10]等人运用岩石破裂与失稳RFPA分析系统,对不同围压控制下轴向位移加载过程中孔壁周边裂纹演化过程进行了数值分析,得到了位移加载过程中不同裂纹间的相互作用机制。近年来,随着与CT机配套使用的三轴加载试验设备的研制成功,利用CT技术研究岩石在加载和卸载过程中的损伤演化机理得到了蓬勃发展,为从细观研究岩石宏观破裂过程提供了实验证据。葛修润[11]等利用CT 试验,得到了岩石在加、卸载过程中的细观损伤演化过程图像,对岩石损伤扩展规律进行了初步探讨。
本文基于岩石为非均匀性材料出发,通过引入细观层次的微元体,运用连续介质损伤力学和概率统计理论,对岩石宏观破裂与失稳全过程进行研究,并利用岩石破裂与失稳RFPA分析系统,对隧道和洞室等地下工程由于开挖而引起洞壁附近围岩损伤演化及应力场调整全过程进行了有限元分析。
2 岩石损伤本构关系
工程地质体由于其生成条件、矿物成分、胶结材料的不同以及后来所受地质构造等多方面的影响,导致其内部存在不同程度的缺陷,如节理、断层和破碎带等。假设岩石是由众多充分小的岩石微元体构成,且微元体小到可以视为满足连续介质损伤力学的一个质点,那么我们有理由认为岩石是由许多服从一定概率分布的不同强度的微元体构成,该随机统计分布一般可根据实验确定[12]。随着刚性加载试验机的出现,人们不断地得到了岩石加载
过程的应力与应变全过程曲线,从而进一步意识到岩石的变形和破坏;是一个不断发展的过程。因此,我们有理由认为岩石的变形和破坏过程是细观层次上微元体不断损伤累计的过程,其宏观表现为岩石发生失稳破坏[6]。
假设岩石微元体满足:①损伤前弹性模量为某一常量,其力学性质服从虎克定律:②只存在损伤和无损两种状态,损伤前具有良好的承载能力,受压损伤后仍具有一定的残余承载能力,受拉损伤后则不具有残余承载能力;③强度服从韦伯统计分布函数<(m,λ
,λ),其中m为材料均质度系数,反映微元体力学性质差别程度,即岩石材料的非均匀
性;λ
0反映微元体力学性质的平均值(如E0,
σ
),λ为岩石微元体的力学性质参数,采用M onte2Carlo 方法对微元体进行随机赋值:④损伤参量D与微元体损伤的概率密度存在(1)式关系[13]:
dD
dε
=<(ε)(1)
由:<(ε)=m
a
εm-1exp(-
εm
a
)(2)可得:
D=∫e0<(x)dx=1-exp(-εm a)(3)根据材料损伤模型:σ=E・ε(1-D),其中D为损伤参量,表示在单轴应力状态下材料体积单元中存在的微裂纹比率,我们可以得到岩石应力与应变全过程的本构方程:
σ=Eε(1-D)=Eε・exp(-
εm
a
)(4)另外,求得发生损伤后的宏观弹性模量E′:
E′=E・exp(-
εm
a
)(5)该式表明岩石材料损伤后的宏观弹性模量随承载能力的降低而减小。
根据以上对岩石微元体进行的几个假设,认为
微元体破坏前以线弹性特征为主,受压损伤后则具
有一定的残余强度,而受拉损伤后则不具有残余强
度。在微元体受力变形损伤过程中,其力学性质遵
循图1所示的规律。当微元体受力达到其峰值强
度(σ
c
,σt)后,微元体发生弱化。根据材料受压损
伤后仍具有一定的承载能力,所以在微元体受压损
伤后将其转变为具有传压能力的“接触”微元体;微
元体受拉破坏后将其转变为不具有继续承压能力
且具有“分离作用”的微元体。微元体破坏判据采
113
2002年第4期 刘庭金等:围岩卸载损伤演化及应力场调整有限元分析